

Analysis of major sperm proteins in two nematode species from two classes, *Enoplus brevis* (Enoplea, Enoplida) and *Panagrellus redivivus* (Chromadorea, Rhabditida), reveal similar localization, but less homology of protein sequences than expected for Nematoda phylum

Julia K. Zograf

A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS

Yulia A. Trebukhova

A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS

Vladimir V. Yushin

A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS

Konstantin V. Yakovlev (✉ konstantin.yakov@gmail.com)

A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS <https://orcid.org/0000-0002-0718-0775>

Original Article

Keywords: Chromadorea, Enoplea, evolution, MSP, Nematoda, spermatozoa

Posted Date: February 9th, 2021

DOI: <https://doi.org/10.21203/rs.3.rs-172088/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Version of Record: A version of this preprint was published at Organisms Diversity & Evolution on September 20th, 2021. See the published version at <https://doi.org/10.1007/s13127-021-00522-y>.

Analysis of major sperm proteins in two nematode species from two classes, *Enoplus brevis* (Enoplea, Enoplida) and *Panagrellus redivivus* (Chromadorea, Rhabditida) reveal similar localization, but less homology of protein sequences than expected for Nematoda phylum

6 Julia K. Zografi¹, Yulia A. Trebukhova², Vladimir V. Yushin¹, Konstantin V.
7 Yakovlev^{3*}

¹ Laboratory of Embryology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.

² Laboratory of Systematics and Morphology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.

³ Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.

Vladimir V. Yushin and Konstantin V. Yakovlev contributed equally to this work

*Corresponding author. Email: konstantin.yakov@gmail.com

ORCID IDs

Julia Zograf <https://orcid.org/0000-0002-4723-7078>

Yulia Trebukhova <https://orcid.org/0000-0003-0538-6005>

Vladimir Yushin <https://orcid.org/0000-0002-0622-3112>

Konstantin Yakovlev <https://orcid.org/0000-0002-0718-0775>

26 **Abstract**

27 Major sperm proteins (MSP) are a nematode-specific system of motor proteins required for
28 amoeboid sperm movement. A number of MSP genes vary in different nematode species, but
29 encoded protein sequences reveal high homology between these proteins. In fact, all studies of
30 MSPs localization and functions are based exclusively on the representatives of the order
31 Rhabditida belonging to the nematode class Chromadorea, while MSP-driven sperm movement in
32 Enoplea, another major clade of the phylum Nematoda is still unconfirmed. In this study, we found
33 out the presence of MSPs in the enoplean nematode *Enoplus brevis* (Enoplida) and compared MSP
34 localization in sperm of this species with the chromadorean nematode *Panagrellus redivivus*
35 (Rhabditida). Then, we analyzed the putative MSP sequences of both species. Our results indicate
36 that MSPs are presented in *E. brevis* spermatozoa and form filamentous structures after sperm
37 activation, which may be considered as the evidence of their motor functions similar to those in
38 the spermatozoa of chromadorean nematodes. We found that *E. brevis* MSPs show lower
39 homology to known proteins of rhabditids which species reveal hyper-conservatism in MSP
40 protein sequences. It reflects evidently more distant evolutionary relationships of Enoplea and
41 Chromadorea than exist within Rhabditida order. Our data denote necessity of reconsideration of
42 view on MSP evolution within Nematoda.

43 **Keywords** Chromadorea · Enoplea · evolution · MSP · Nematoda · spermatozoa

44
45 **Acknowledgments** The authors are grateful to staff of the Far Eastern Center of Electron
46 Microscopy (NSCMB FEB RAS) for their assistance in imaging. The authors are also grateful to
47 staff of White Sea Biological Station for the help in *E. brevis* collection.

48
49 **Funding information** This study was supported by Russian Foundation for Basic Research
50 (Grants No. 17-04-00719-a and 14-04-00334-a).

51

1 52 **Data availability statement** Nucleotide sequences coding *E. brevis* MSP124-1, MSP124-2 and
2 53 MSP124-3 were deposited to the Third Party Annotation Section of the DDBJ/ENA/GenBank
3 54 databases under the accession numbers TPA: BK014294-BK014296..
4 55
5
6 56 **Conflict of interest** The authors declare that they have no conflict of interest.
7
8 57

58 **Introduction**

59 Nematodes are one of several animal groups which spermatozoa are amoeboid cells devoid of
1
2 flagella (Morrow 2004). Nematode spermatozoa accumulated in the seminal vesicles of males are
3
4 non-motile cells and may be considered as *immature spermatozoa* because the final step of
5
6 spermiogenesis proceeds only after insemination and activation in the female gonoduct where
7
8 spermatozoa are drastically transformed into pseudopod bearing motile cells termed as *mature*
9
10 spermatozoa (Shepherd 1981).

11
12 The amoeboid mature spermatozoa move by crawling which resembles amoeboid motility
13 in other eukaryotic cells including some aflagellate spermatozoa. Instead of actin, motility of
14
15 nematode sperm is driven by unique motor system based on the major sperm protein (MSP)
16 filaments (Roberts and Stewart 2012). Molecular machinery of nematode sperm crawling well-
17 studied in *Ascaris suum* and *Caenorhabditis elegans* (Smith 2014) is similar to actin-based
18 amoeboid movement (Ryan et al. 2012). A basis of this movement is assembly-disassembly of
19 MSP filaments in pseudopod, where MSP is accumulated after spermatozoon activation and forms
20 long multi-filament fibers (King et al. 1994). MSP filaments assemble preferentially at the leading
21 edge of the sperm pseudopod and are organized into long, multi-filament fiber complexes. These
22 filamentous arrays are linked to the pseudopod plasma membrane and extend back to the junction
23 between the cell body and pseudopod. As sperm crawl forward, these complexes flow back
24 towards the cell body due to filaments assembly at the leading edge and disassembly at the rear of
25 the pseudopod (King et al. 1994; Sepsenwol et al. 1989). Both processes are tightly regulated by
26
27 set of cytosolic, membrane and MSP filament-associated proteins (Ellis and Stanfield 2014;
28 Roberts and Stewart 2000; Singaravelu and Singson 2011; Smith 2014). Although many proteins
29 with MSP domain persist in plants, fungi and other animals (Tarr and Scott 2005) motor functions
30 of MSPs have been found only in nematode sperm. Motor (cytoskeletal) MSPs conserved between
31
32 nematode species consist of 126-127 amino acids and detected as small 14-17-kDa proteins
33 (Höglund et al. 2008; King et al. 1992; Klass and Hirsh 1981; Strube et al. 2009).

84 The classification based on morphological and molecular data subdivides the phylum
85 Nematoda into two classes Enoplea and Chromadorea (Fig. 1) (De Ley and Blaxter 2002). The
86 latter comprises seven orders where the movement of spermatozoa have been observed and studied
87 in details in the most diverse order Rhabditida due to the free-living soil nematode *C. elegans* and
88 several parasitic taxa including *Ascaris*. The MSPs as the nematode-specific cytoskeleton proteins
89 or MSP-coding genes have also been found in all tested species of the order Rhabditida (Fig. 1).
90 Within this order, MSP identity of amino acid sequences is over 80% between species (Kasimatis
91 and Phillips 2018; Scott et al. 1989). In representatives of other orders of Chromadorea amoeboid
92 movement of spermatozoa confirmed by development of prominent pseudopods filled with
93 cytoskeleton fibers reminding well cytoskeleton of pseudopods in rhabditids (Justine 2002; Yushin
94 and Malakhov 2014). We assume that the amoeboid movement based on MSP fibers is
95 characteristic for entire class Chromadorea.

96 Another nematode class Enoplea includes two well defined subclasses Dorylaimia and
97 Enoplia (De Ley and Blaxter 2002). In the representatives of Dorylaimia amoeboid spermatozoa
98 with pseudopods filled with cytoskeleton fibers have been described in many taxa (Justine 2002;
99 Yushin and Malakhov 2014). This specific morphology of motile sperm is confirmed by direct
100 observation of sperm movement in the dorylaimian *Gastromermis* sp (order Mermithida) (Poinar
101 and Hess-Poinar 1993). However, analysis of genome of the dorylaimian *Trichinella spiralis*
102 (Trichinellida) did not show the presence of presumptive amino acid sequences with great
103 similarity to spermatozoan MSPs of rhabditids (Kasimatis and Phillips 2018). So, proteins driving
104 ameboid movement of sperm in species of Dorylaimia are still undetermined.

105 The representatives of Enoplida have plesiomorphic features such as nuclear envelope in
106 spermatozoan nucleus, early indeterminate cleavage, late establishment of bilateral symmetry, late
107 separation of the germ line, absence of eutely (cell constancy), capability to limited regeneration,
108 absence of distal tip cell in gonads (Felix 2004; Joshi and Rothman 2005; Malakhov 1994, 1998;
109 Rusin and Malakhov 1998; Schulze and Schierenberg 2011; Voronov 1999; Voronov and Panchin

110 1998; Yushin et al. 2014; Yushin and Malakhov 2004). Basal position of Enoplida is confirmed
111 also by latest molecular phylogenetic analyses of nematode relationships (Bik et al. 2010; Blaxter
112 and Koutsovoulos 2015; Holterman et al. 2006; Smythe et al. 2019; van Megen et al. 2009).

113 The subclass Enoplia includes taxa where characteristic pseudopod bearing spermatozoa
114 also have been described (Justine 2002; Lak et al. 2015; Yushin and Malakhov 2014). The
115 spermatozoa of nematodes of the genus *Enoplus* (order Enoplida) are amoeboid cells moving by
116 crawling; as in many other nematodes they are subdivided into posterior main cell body and
117 anterior pseudopod filled with cytoskeleton fibers (Yushin and Malakhov 1994). Similar
118 morphology and behavior of *Enoplus* sperm may points to the presence of similar motor proteins,
119 like MSPs. Nevertheless, as in the case of *Dorylaimia*, it is still unclear whether MSPs underlie
120 sperm crawling in Enoplia.

121 The goal of this study is to define the presence of MSP in Enoplia, and estimate possible
122 motor functions of MSP in this taxon. In this issue, we analyzed the presence of MSP and its
123 localization in spermatozoa of the marine enoplean species *Enoplus brevis* Bastian, 1865
124 (Enoplida) and compared results with MSP protein sequences and localization in the
125 chromadorean nematode *Panagrellus redivivus* Linnaeus, 1767 (Rhabditida), the species which
126 has typical spermatozoan morphology (Zograf 2014) and genome of which contains several MSP
127 genes (Scott et al., 1989; Srinivasan et al., 2013). Our choice of this representative of Chromadorea
128 as reference species is also based on the ability of *P. redivivus* mature spermatozoa for conjugation
129 in female gonoduct with formation of characteristic sperm chains (Zograf 2014). These chains can
130 be easily isolated from inseminated females for convenient observations of mature spermatozoa.

131 Next, to estimate phylogenetic relationships of both *P. redivivus* and *E. brevis* MSPs we
132 carried out phylogenetic analysis using MSP protein sequences of both taxa and available
133 sequences in databases of several Rhabditida and Dorylimia MSPs. By using anti-MSP antibodies,
134 we revealed that MSPs in cases of *E. brevis* and *P. redivivus* are cytoskeletal proteins that undergo
135 reorganization during maturation that led to formation of MSP fibers in mature sperm. Then, based

136 on antigen sequence used for antibody generation we found mRNA possibly encoding cytoskeletal
137 MSP in *E. brevis* transcriptome. We conclude that *E. brevis* spermatozoa have MSP and its amino
138 acid sequence is similar to *P. redivivus* and *C. elegans* MSPs (75% and 72%, respectively). Here,
139 our results demonstrate that sperm of nematode *E. brevis* have MSPs, but their amino acid
140 sequences are less similar than between Rhabditida species. Thus, we conclude that within the
141 Nematoda phylum MSPs may more rapidly evolve in their protein sequences than expected, but it
142 does not lead to loss of their motor function.

143

144 **Materials and methods**

145 **Animals**

146 *P. redivivus* cultures were kept in oatmeal and bread-based medium with addition bakery yeasts.
147 Adult males and females of *E. brevis* were obtained from sand collected in the intertidal zone at
148 White Sea Biological Station of Lomonosov Moscow State University (Kandalaksha Bay, White
149 Sea).

150

151 **Production of anti-MSP antibodies**

152 Polyclonal anti-MSP antibodies were raised in rabbits against synthetic peptide
153 IKTTNMKRLGVDPPCGVLDPE, which corresponds to part of the MSP domain of several
154 Rhabditida species, like *C. elegans* and *Onchocerca volvulus* (GenBank accession numbers
155 CCD73220.1 and AAA29421.1, respectively). For immunization synthetized peptide was
156 conjugated with keyhole limpet hemocyanin (KLH). Then antibodies were purified using antigenic
157 peptide by affinity chromatography. All procedures of antibody production were made in Cytokine
158 company (St. Petersburg, Russia).

159

160 **SDS-electrophoresis and Western blot analysis**

161 Animals were frozen at -80° C in minimal volume of 20 mM potassium phosphate buffer with 100
162 mM NaCl (pH 5.7) (*P. redivivus*) or Ca²⁺, Mg²⁺-free salt solution (CMFSS) (*E. brevis*). Samples
163 were thawed out, briefly homogenized in Sample buffer and boiled. Samples were resolved with
164 10% (tubulin detection), 12% (*E. brevis*, MSP detection) and 14% (*P. redivivus*, MSP detection)
165 SDS-PAGE and transferred to PVDF membrane. Membranes were incubated with 4% milk in
166 PBST (PBS with 0.05% Tween 20) for 1 h and then with primary antibodies diluted with 1% milk
167 overnight at 4° C. Monoclonal mouse anti- α -tubulin antibody (clone DM1A, Sigma-Aldrich,
168 USA) was used at 1:10000 dilution. Rabbit anti-MSP antibodies were used at concentrations 0.24
169 ug/ml for *P. redivivus* and 1.6 ug/ml for *E. brevis*. After washing membranes were incubated with
170 HRP-conjugated goat anti-rabbit (1:5000 dilution, PI-1000, Vector Laboratories, USA) and anti-
171 mouse antibodies (1:5000 dilution, PI-2000, Vector Laboratories, USA) for 1 h. Then, membranes
172 were washed with PBST and PBS and then developed with Clarity Western ECL Substrate (Bio-
173 Rad, USA). To perform peptide competition assay, 2.25 ug of anti-MSP antibodies were incubated
174 with 10 ug of the synthetic peptide overnight at 4° C, centrifuged at 10000xg for 15 min and then
175 used with *E. brevis* samples.

176

177 **Immunofluorescence and imaging**

178 Immunostaining procedure was performed on sperm isolated by dissection from males and mated
179 females. Adult *P. redivivus* were directly dissected on poly-L-lysine-coated slides in PBS and then
180 incubated for 10 min for binding extracted sperm to slides. *E. brevis* were dissected on poly-L-
181 lysine-coated slides in filtered sea water. All samples were fixed with 4% PFA in PBS for 30 min.
182 Slides were rinsed with PBS, permeabilized 0.1% Triton X-100 for 20 min and then blocked with
183 1% normal goat serum and 1% BSA in washing buffer (0.01% Tween 20, PBS) for 2 h. Samples
184 were incubated with anti-MSP antibodies (2.4 ug/ml for *P. redivivus*, 12ug/ml for *E. brevis*)
185 overnight at 4° C. After washing slides were incubated with secondary goat anti-rabbit antibodies
186 labeled with Alexa Fluor 488 and Alexa Fluor 546 (1:500) diluted in 0.1% BSA for 1 h. Nuclei

187 were stained with DAPI (2 µg/ml) for 20 min. Slides were rinsed with PBS and mounted in
188 Vectashield medium (Vector Laboratories, Burlingame, CA, USA). Fluorescent images were
189 taken using LSM 510 Meta and LSM 780 confocal microscopes (Carl Zeiss, Jena, Germany) and
190 processed using ImageJ software (National Institutes of Health, USA).

191

192 **Transcriptome assembly and phylogenetic analysis**

193 *E. brevis* transcriptome was assembled using RNA-seq library available in GenBank (BioProject
194 PRJEB7588, SRA experiment accession number ERX616982) in Galaxy web-based platform
195 (<https://usegalaxy.org>) (Afgan et al. 2018). Initially, reads were filtered by quality (Filter by
196 quality option, quality cut-off: 20, minimum percentage: 90) and then by Trimmomatic (Bolger et
197 al. 2014). Filtered RNA-seq reads were used for *de novo* transcriptome assembly with Trinity with
198 default parameters (exceptions, minimum contig length: 250). Protein coding sequences were
199 extracted using TransDecoder (<https://github.com/TransDecoder>). MSP-domain proteins were
200 identified by Pfam search (El-Gebali et al. 2019).

201 Nucleotide sequences were aligned using MUSCLE (Edgar 2004). Protein sequences were
202 aligned using ProbCons (Do et al. 2005) and visualized in Jalview (Waterhouse et al. 2009).
203 Phylogenetic tree was created using maximum likelihood method with WAG substitution model
204 and branch support with SH-like aLRT (Shimodaira–Hasegawa-like approximate likelihood ratio
205 test). Multiple alignments and phylogenetic tree construction were done in Phylogeny.fr resource
206 (Dereeper et al. 2008).

207

208 **Results**

209 **Localization of MSP in sperm**

210 Firstly, we give data obtained on *P. redivivus* because this species has conserved MSPs that can
211 be detected by generated anti-MSP antibodies. In *P. redivivus* samples, Western Blot analysis
212 using generated anti-MSP antibodies showed two bands with approximate weight of 15 and 16

1 kDa in both males and females, which corresponds to mobility of nematode MSPs (Fig. 2). The
2 presence of MSP in female samples confirms that they include mated females bearing deposited
3 spermatozoa. Immunostaining of isolated spermatozoa revealed cytoplasmic localization of MSP.
4
5 In immature spermatozoa extracted from males, MSP localization is granular with highest signal
6 in cell periphery (Fig. 3a). Mature spermatozoa extracted from mated females were found as
7 conjugated into the chains (Fig. 3b). These chains supporting by tight contacts between
8 spermatozoa were earlier observed in the female gonoduct of *P. redivivus* and described by
9 transmission electron microscopy (Zograf 2014). Our results show that chains retain their
10 organization in PBS after dissection procedure. In activated spermatozoa, MSP localize
11 predominantly in well-defined pseudopodia, where MSP have granulo-fibrillar pattern (Fig. 3b).
12
13

14 In *E. brevis*, anti-MSP antibodies detected a band with approximate size of 36-38 kDa (Fig.
15 4a), which is higher than known for MSPs in Rhabditida. Subsequent peptide competition assay
16 using peptide antigen showed significant reduction of the signal that confirm specificity of anti-
17 MSP reactivity in the case of the *E. brevis* samples (Fig. 4b). The presence of MSP in female
18 samples point to the presence of mature spermatozoa in uteri. Immunostaining of isolated
19 spermatozoa revealed different localizations. In immature spermatozoa, MSP was detected in
20 granules (Fig. 5a). Notably, incubation of spermatozoa in the sea water for 5-10 minutes led to re-
21 distribution of MSP toward more diffuse and filamentous manner in peripheral cytoplasm though
22 pseudopodia did not appear (Fig. 5b). Mature spermatozoa extracted from females had
23 pseudopodia where MSP now is localized (Fig. 5c).
24
25

26 **234 Analysis of MSP sequences and phylogeny**

27 For reasons given that the peptide antigen sequence is identical or highly homological to MSPs of
28 Rhabditida species, we decided to use its amino acid sequence to find MSP sequences of both *P.*
29 *redivivus* and *E. brevis* that potentially recognized by the generated antibodies. *P. redivivus*
30 putative protein sequences of MSPs are available and we used them in our analysis. Blast search
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

239 using peptide antigen as a query in WormBase Parasite detected six most homologous putative
1 240 MSPs of *P. redivivus* consisting of 127 amino acids (Fig. 6a). These proteins are highly
3 241 homologous to each other with identity between them 94-99%. Alignment of the found *P.*
4 242 *redivivus* MSPs with *C. elegans* one with accession number P53017 showed identity 87-90%. In
5 243 our research we used generated transcriptome of *E. brevis* from available SRA data (ERX616982).
6 244 Blast search among putative proteins generated from the transcriptome with peptide antigen
7 245 sequence as query detected three 124-amino acid proteins called MSP124-1, MSP124-2 and
8 246 MSP124-3.
9
10
11
12
13
14
15
16
17

18 247 Independent Pfam search among putative protein sequences generated from whole
19 transcriptome attributed MSP124 proteins to MSP family. The presence of MSP124 transcripts
20 248 was validated by RT-PCR (Fig. S1). Primers and PCR conditions are shown in Table S1. Multiple
21 249 alignment of their coding mRNAs showed that these transcripts are highly homologous in their
22 250 alignment of their coding mRNAs showed that these transcripts are highly homologous in their
23 251 coding regions and variable in untranslated regions (Fig. S2). Amino acid sequences of MSP124-
24 252 1, MSP124-2 and MSP124-3 are almost identical to each other (98-99%) (Fig. 6b). Among
25 253 proteins with MSP domain of *E. brevis* MSP124 is a group, which most homologous to sperm
26 254 MSPs of Rhabditida. ExPASy calculations showed that all MSP124 are basic proteins with
27 255 predicted weight 13.7 kDa (https://web.expasy.org/compute_pi/) (Gasteiger et al. 2005). Predicted
28 256 molecular weight of MSP124 proteins did not conform with results of Western Blot, when
29 257 molecular weight of *E. brevis* MSP was much higher than expected. Though, peptide competition
30 258 assay showed specific binding of anti-MSP antibodies to this protein band (Fig. 4). So, we
31 259 concluded that MSP124 proteins may have unusual mobility in SDS-PAGE conditions due to post-
32 260 translation modifications or some unknown features of these proteins.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

261 To evaluate phylogenetic relationships of *P. redivivus* and *E. brevis* MSPs, we analyzed
262 these proteins by multiple alignment and created phylogenetic tree. In this alignment, we used one
263 of six found *P. redivivus* MSPs (Pan_g9068.t1), all three MSP124 proteins of *E. brevis* and
264 available sequences of Rhabditida and Dorylaimia species. The latter were chosen as most

homological proteins to *C. elegans* and *P. redivivus* (*Trichuris trichiura*, *Trichinella nativa*, *T. pseudospiralis* and *T. papuae*) and subsequently selected by pl value (pl>7) by ExPASy analysis, because MSPs found in rhabditids are basic proteins. Multiple alignment, which has been done in ProbCons, is given in Fig. 7a. MSP of *P. redivivus* related to that of Rhabditida with 88% identity to *C. elegans* one. *E. brevis* MSP124 proteins have the same values of similarity to MSPs of *C. elegans* (52% identity and 72% similarity) and *P. redivivus* (55% identity and 75% similarity). Also, similarity between MSPs of Dorylaimia and Rhabditida taxa is 48-62%, and similarity between Dorylaimia taxa and *E. brevis* is 48-53%. Between Dorylaimia species there is high divergence in MSP sequences. Similar protein sequences can be found only within the same genus, for example, in *Trichinella* (Fig. 7a, *T. pseudospiralis* and *T. papuae*). Unlike Rhabditida, different genera of Dorylaimia, as *Trichuris* and *Trichinella*, do not have great homology among submitted MSPs. Brief screening of available genomes of at least fourteen Dorylaimia species (WormBase Parasite) showed that these species have also relatively distant MSPs to both Rhabditida and *E. brevis* proteins (these sequences are not included in alignment). The presented alignment was subsequently used as input for generation of Maximum likelihood phylogenetic tree (Fig. 7b). As expected, *P. redivivus* MSP is related to the Rhabditida proteins. The most interestingly that Rhabditida and *E. brevis* MSPs form sister groups with significant SH-aLRT branch support (0.84). Dorylaimia MSPs are located on different branches, and more careful phylogeny requires more MSP sequences of this group.

Discussion

Aflagellate spermatozoa appeared independently during evolution in different metazoan taxa many times. Nematoda and its sister group, Nematomorpha (horsehair worms), both produce aflagellate spermatozoa (Schmidt-Rhaesa 1997/98). It is known that spermatozoa of nematodes locomote by amoeboid movement, while spermatozoan motility in horsehair worms has not been described to date. In the most cases, amoeboid motility is driven by actin polymerization or cortical actin-

1 myosin contraction (Miyata et al. 2020). Numerous studies on Rhabditida, an order of the
2 nematode class Chromadorea, showed an existence of unique MSP-based sperm locomotion. MSP
3 protein sequences among Rhabditida, as previously noted, are highly conserved and many
4 researchers conclude that it is the case for the whole phylum Nematoda (Höglund et al. 2008;
5 Hojas and Post 2000; Scott et al. 1989). Kasimatis and Phillips (2018) proposed that conservation
6 of MSP sequences should be tightly evolutionary regulated, as nonsynonymous mutations lead to
7 lack or incorrect MSP filament assembly (del Castillo-Olivares and Smith 2008).

8 Nematodes can be found everywhere; they inhabit different ecological niches and comprise
9 both free-living and parasitic taxa. In spite of the great ecological and taxonomical diversity of
10 nematodes, it has been postulated that sequences of MSPs to be highly conserved. This suggestion
11 originates from the fact that all tested species, both free-living and parasitic, have highly similar
12 MSP protein sequences. The exception may be some parthenogenetic nematodes which MSPs
13 have not been found at protein level, though their genomes contain functional MSP genes (Heger
14 et al. 2010). Nevertheless, a hypothesis of MSP conservatism is based only on studies of species
15 belonging to one chromadorean order Rhabditida. Evidences that MSPs in another class of
16 nematodes, Enoplea, are identical over 80 % to those of Rhabditida, have not been published to
17 date.

18 Important questions originate from the well-known MSP-based locomotion of spermatozoa
19 in rhabditids and the lack of direct evidences, whether Enoplea also use MSP machinery for sperm
20 movement. Does the origin of the MSP-based locomotion correlate with appearance of amoeboid-
21 moving sperm of nematodes? To answer to this question, it is necessary ascertain, whether MSP-
22 based sperm locomotion exists in species of the enoplean clades Enoplia and Dorylaimia. To
23 search for MSPs in *E. brevis*, we applied a comparative approach using *P. redivivus*, the Rhabditida
24 species, which sperm have MSP. This approach is a combination of the detection of MSPs by
25 antibodies and the subsequent search of genome- or transcriptome-encoded MSP sequences using
26 the antigenic peptide sequence as a query.

317 Firstly, we tested the chosen approach on *P. redivivus*, which sperm cells is of typical
318 morphology for Rhabditida (Zograf 2014). MSP localization in *P. redivivus* showed that in the
319 round immature spermatozoa MSPs were found throughout cytoplasm with maximal signal in cell
320 periphery, while in the amoeboid mature spermatozoa MSPs mainly localized in pseudopodia.
321 These changes of MSP localization before and after sperm activation are typical for *C. elegans*
322 (Chu and Shakes 2013) and correlate with appearance of MSP fibers required for sperm movement
323 (Marcello et al. 2012). These data and finding presumptive encoded MSPs in genome, which are
324 highly homologous to those of other Rhabditida species, suggest that the *P. redivivus* spermatozoa
325 use MSP-based movement.

326 Secondly, the used approach allowed us to detect MSPs in the spermatozoa of *E. brevis*
327 and find out three MSP-coding sequences in transcriptome that we called MSP124-1, 2 and 3.
328 Despite the lack of functional analysis, we suggest that *E. brevis* MSPs are motor proteins because
329 their intracellular localization changed after sperm activation toward formation of MSP fibers in a
330 pseudopod, as it was demonstrated in spermatozoa of *P. redivivus* and other rhabditids (Yushin et
331 al. 2016).

332 Our data show that the *E. brevis* MSP124 proteins are less homologous to MSPs of
333 Rhabditida. All three MSP124 proteins showed less similarity (identity and positive substitutions)
334 to those of *C. elegans* (72%) and *P. redivivus* (75%), than it is known for Rhabditida (83.5-97.7%
335 identity between species) (Kasimatis and Phillips 2018). Our results showed that MSPs of the
336 representatives of all three subclasses, Enoplia, Dorylaimia and Rhabditida, are moderately
337 similar. The lack of highly homologous MSPs between different genera of Dorylaimia does not
338 allow discussing MSP phylogeny in this group and requires detailed phylogenetic study using
339 additional MSP samples from diverse taxa of this subclass. The fact that the similarity of MSP
340 sequences between representatives of three nematode subclasses is ranged from 48 to 75% show
341 that MSPs in Nematoda are less conserved proteins by sequences than it has been expected earlier.
342 MSP sequences retained high identity during approximate 500 million-year evolution withing

343 order Rhabditida (Blaxter 2009) revealing protein sequence hyper-conservation (Kasimatis and
1 Phillips 2018). Nevertheless, MSP sequence hyper-conservation is not the case for phylum
2 Nematoda as a whole. This difference in MSPs variability between two major clades of nematodes
3 correlates well with sperm diversity which is very wide in Enoplea but relatively low in
4 Chormadorea, especially in the order Rhabditida where sperm patterns are enormously uniform
5 (Justine and Jamieson 1999; Slos et al. 2020; Yushin and Malakhov 2014).
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

349 In summary, we found the first evidences that *E. brevis* spermatozoa use MSP-based
350 locomotion and suggest that it may be the case for other species of Enoplia. Though, the early
351 evolution of nematodes is still unresolved due to controversy in different phylogenetic analyses
352 (Smythe et al. 2019), it is known that Enoplia is one of early-branching group, which reveals
353 presumably ancestral features among nematodes (Bik et al. 2010; Blaxter and Koutsovoulos 2015;
354 Felix 2004; Holterman et al. 2006; Joshi and Rothman 2005; Malakhov 1994, 1998; Rusin and
355 Malakhov 1998; Schulze and Schierenberg 2011; Smythe et al. 2019; van Megen et al. 2009;
356 Voronov 1999; Voronov and Panchin 1998; Yushin and Malakhov 2004). More basal phylogenetic
357 position of Enoplia in relation to Chromadorea should give a contribution to understanding of
358 origin and evolution of nematode sperm motility based of MSP function.
359
360

40 **References**

361 Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., et al. (2018). The
362 Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018
363 update. *Nucleic Acids Research*, 46(W1), W537-W544, doi:10.1093/nar/gky379.
364 Bik, H. M., Lamshead, P. J. D., Thomas, W. K., & Lunt, D. H. (2010). Moving towards a
365 complete molecular framework of the Nematoda: a focus on the Enoplida and early-
366 branching clades. *BMC Evolutionary Biology*, 10, 353, doi:10.1186/1471-2148-10-353.
367 Blaxter, M. (2009). Nematodes (Nematoda). In S. B. Hedges, & S. Kumar (Eds.), *The Timetree
368 of Life* (pp. 247-250). New York: Oxford University Press.

369 Blaxter, M., & Koutsovoulos, G. (2015). The evolution of parasitism in Nematoda. *Parasitology*,
1 370 142, S26-S39, doi:10.1017/s0031182014000791.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
371 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
372 sequence data. *Bioinformatics*, 30(15), 2114-2120, doi:10.1093/bioinformatics/btu170.
373 Chu, D. S., & Shakes, D. C. (2013). Spermatogenesis. *Advances in Experimental Medicine and
374 Biology*, 757, 171-203, doi:10.1007/978-1-4614-4015-4_7.
375 De Ley, P., & Blaxter, M. (2002). Systematic position and phylogeny. In D. L. Lee (Ed.), *The
376 Biology of Nematodes* (pp. 1-30). London and New York: Taylor & Francis.
377 del Castillo-Olivares, A., & Smith, H. E. (2008). Critical contact residues that mediate
378 polymerization of nematode major sperm protein. *Journal of Cellular Biochemistry*,
379 104(2), 477-487, doi:10.1002/jcb.21636.
380 Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., et al. (2008).
381 Phylogeny.fr: robust phylogenetic analysis for the non-specialist. *Nucleic Acids
382 Research*, 36(Web Server issue), W465-W469, doi:10.1093/nar/gkn180.
383 Do, C. B., Mahabhashyam, M. S., Brudno, M., & Batzoglou, S. (2005). ProbCons: Probabilistic
384 consistency-based multiple sequence alignment. *Genome Research*, 15(2), 330-340,
385 doi:10.1101/gr.2821705.
386 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
387 throughput. *Nucleic Acids Research*, 32(5), 1792-1797, doi:10.1093/nar/gkh340.
388 El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., et al. (2019). The
389 Pfam protein families database in 2019. *Nucleic Acids Research*, 47(D1), D427-D432,
390 doi:10.1093/nar/gky995.
391 Ellis, R. E., & Stanfield, G. M. (2014). The regulation of spermatogenesis and sperm function in
392 nematodes. *Seminars in Cell & Developmental Biology*, 29, 17-30,
393 doi:10.1016/j.semcd.2014.04.005.

394 Felix, M.-A. (2004). Developmental biology of nematodes—what we learn from *Caenorhabditis*
395 *elegans*. In Z. X. Chen, S. Y. Chen, & D. W. Dickson (Eds.), *Nematology—Advances and*
396 *Perspectives* (Vol. 1, pp. 71-174). Wallingford, UK: CABI Publishing.

397 Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005).
398 Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.),
399 *The Proteomics Protocols Handbook* (pp. 571-607): Humana Press.

400 Heger, P., Kroher, M., Ndifon, N., & Schierenberg, E. (2010). Conservation of MAP kinase
401 activity and MSP genes in parthenogenetic nematodes. *BMC Developmental Biology*, 10,
402 51, doi:10.1186/1471-213X-10-51.

403 Höglund, J., Engstrom, A., Morrison, D. A., Mineur, A., & Mattsson, J. G. (2008). Limited
404 sequence variation in the major sperm protein 1 (MSP) gene within populations and
405 species of the genus *Dictyocaulus* (Nematoda). *Parasitology Research*, 103(1), 11-20,
406 doi:10.1007/s00436-008-0877-8.

407 Hojas, R. M., & Post, R. J. (2000). Regional genetic variation in the major sperm protein genes
408 of *Onchocerca volvulus* and *Mansonella ozzardi* (Nematoda: Filarioidea). *International*
409 *Journal of Parasitology*, 30(14), 1459-1465.

410 Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov,
411 O., et al. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic
412 relationships among nematodes and accelerated evolution toward crown Clades.
413 *Molecular Biology and Evolution*, 23(9), 1792-1800, doi:10.1093/molbev/msl044.

414 Joshi, P. M., & Rothman, J. H. (2005). Nematode gastrulation: Having a BLASTocoel! *Current*
415 *Biology*, 15(13), R495-R498, doi:10.1016/j.cub.2005.06.030.

416 Justine, J.-L. (2002). Male and female gametes and fertilisation. In D. L. Lee (Ed.), *The Biology*
417 *of Nematodes*. (pp. 73-120). London and New York: Taylor & Francis.

418 Justine, J.-L., & Jamieson, B. G. M. (1999). Nematoda. In B. G. M. Jamieson (Ed.),
419 *Reproductive Biology of Invertebrates* (Vol. 9, Part B, pp. 183-266). New Delhi &
420 Calcutta: Oxford & IBH.
421 Kasimatis, K. R., & Phillips, P. C. (2018). Rapid gene family evolution of a nematode sperm
422 protein despite sequence hyper-conservation. *G3: Genes, Genomes, Genetics*, 8(1), 353-
423 362, doi:10.1534/g3.117.300281.
424 King, K. L., Stewart, M., & Roberts, T. M. (1994). Supramolecular assemblies of the *Ascaris*
425 *suum* major sperm protein (MSP) associated with amoeboid cell motility. *Journal of Cell
426 Science*, 107 (Pt 10), 2941-2949.
427 King, K. L., Stewart, M., Roberts, T. M., & Seavy, M. (1992). Structure and macromolecular
428 assembly of two isoforms of the major sperm protein (MSP) from the amoeboid sperm of
429 the nematode, *Ascaris suum*. *Journal of Cell Science*, 101 (Pt 4), 847-857.
430 Klass, M. R., & Hirsh, D. (1981). Sperm isolation and biochemical analysis of the major sperm
431 protein from *Caenorhabditis elegans*. *Developmental Biology*, 84(2), 299-312,
432 doi:10.1016/0012-1606(81)90398-5.
433 Lak, B., Yushin, V. V., Slos, D., Claeys, M., Decraemer, W., & Bert, W. (2015). High-pressure
434 freezing and freeze-substitution fixation reveal the ultrastructure of immature and mature
435 spermatozoa of the plant-parasitic nematode *Trichodorus similis* (Nematoda;
436 *Triplonchida*; *Trichodoridae*). *Micron*, 77, 25-31, doi:10.1016/j.micron.2015.05.012.
437 Malakhov, V. V. (1994). *Nematodes. Structure, development, classification and phylogeny*.
438 Washington, USA: Smithsonian Institution Press.
439 Malakhov, V. V. (1998). Embryological and histological peculiarities of the order Enoplida, a
440 primitive group of nematodes. *Russian Journal of Nematology*, 6(1), 41-46.
441 Marcello, M. R., Singaravelu, G., & Singson, A. (2012). Fertilization. *Advances in Experimental
442 Medicine and Biology*, 757, 321-350, doi:10.1007/978-1-4614-4015-4_11.

443 Miyata, M., Robinson, R. C., Uyeda, T. Q. P., Fukumori, Y., Fukushima, S. I., Haruta, S., et al.
1 444 (2020). Tree of motility - A proposed history of motility systems in the tree of life. *Genes*
2 445 to *Cells*, 25(1), 6-21, doi:10.1111/gtc.12737.
3
4 446 Morrow, E. H. (2004). How the sperm lost its tail: the evolution of aflagellate sperm. *Biological*
5 447 *Reviews of the Cambridge Philosophical Society*, 79(4), 795-814,
6 448 doi:10.1017/s1464793104006451.
7
8 449 Poinar, G. O., & Hess-Poinar, R. T. (1993). The fine-structure of *Gastromermis* sp (Nematoda,
9 450 Mermithidae) sperm. *Journal of Submicroscopic Cytology and Pathology*, 25(3), 417-
10 451 431.
11
12 452 Roberts, T. M., & Stewart, M. (2000). Acting like actin. The dynamics of the nematode major
13 453 sperm protein (msp) cytoskeleton indicate a push-pull mechanism for amoeboid cell
14 454 motility. *Journal of Cell Biology*, 149(1), 7-12, doi:10.1083/jcb.149.1.7.
15
16 455 Roberts, T. M., & Stewart, M. (2012). Role of major sperm protein (MSP) in the protrusion and
17 456 retraction of *Ascaris* sperm. *International Review of Cell and Molecular Biology*, 297,
18 457 265-293, doi:10.1016/b978-0-12-394308-8.00007-8.
19
20 458 Rusin, L. Y., & Malakhov, V. V. (1998). Free-living marine nematodes possess no eutely.
21 459 *Doklady Biological Sciences*, 361, 331-333.
22
23 460 Ryan, G. L., Petroccia, H. M., Watanabe, N., & Vavylonis, D. (2012). Excitable actin dynamics
24 461 in lamellipodial protrusion and retraction. *Biophysical Journal*, 102(7), 1493-1502,
25 462 doi:10.1016/j.bpj.2012.03.005.
26
27 463 Schmidt-Rhaesa, A. (1997/98). Phylogenetic relationships of the Nematomorpha - a discussion
28 464 of current hypotheses. *Zoologischer Anzeiger*, 236, 203-216.
29
30 465 Schulze, J., & Schierenberg, E. (2011). Evolution of embryonic development in nematodes.
31 466 *EvoDevo*, 2(1), 18, doi:10.1186/2041-9139-2-18.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

467 Scott, A. L., Dinman, J., Sussman, D. J., & Ward, S. (1989). Major sperm protein and actin
468 genes in free-living and parasitic nematodes. *Parasitology*, 98 Pt 3, 471-478,
469 doi:10.1017/s0031182000061564.

470 Sepsenwol, S., Ris, H., & Roberts, T. M. (1989). A unique cytoskeleton associated with crawling
471 in the amoeboid sperm of the nematode, *Ascaris suum*. *Journal of Cell Biology*, 108(1),
472 55-66, doi:10.1083/jcb.108.1.55.

473 Shepherd, A. M. (1981). Interpretation of sperm development in nematodes. *Nematologica*,
474 27(1), 122, doi:10.1163/187529281X00151.

475 Singaravelu, G., & Singson, A. (2011). New insights into the mechanism of fertilization in
476 nematodes. *International Review of Cell and Molecular Biology*, 289, 211-238,
477 doi:10.1016/b978-0-12-386039-2.00006-7.

478 Slos, D., Yushin, V. V., Claeys, M., Ivanova, E. S., Kosaka, H., & Bert, W. (2020). Structure,
479 development, and evolutive patterns of spermatozoa in rhabditid nematodes (Nematoda:
480 Rhabditida). *Journal of Morphology*, 281(11), 1411-1435, doi:10.1002/jmor.21255.

481 Smith, H. E. (2014). Nematode sperm motility. *WormBook*, 1-15, doi:10.1895/wormbook.1.68.2.

482 Smythe, A. B., Holovachov, O., & Kocot, K. M. (2019). Improved phylogenomic sampling of
483 free-living nematodes enhances resolution of higher-level nematode phylogeny. *BMC
484 Evolutionary Biology*, 19(1), 121, doi:10.1186/s12862-019-1444-x.

485 Strube, C., Buschbaum, S., & Schnieder, T. (2009). Molecular characterization and real-time
486 PCR transcriptional analysis of *Dictyocaulus viviparus* major sperm proteins.
487 *Parasitology Research*, 104(3), 543-551, doi:10.1007/s00436-008-1228-5.

488 Tarr, D. E. K., & Scott, A. L. (2005). MSP domain proteins. *Trends in Parasitology*, 21(5), 224-
489 231, doi:10.1016/j.pt.2005.03.009.

490 van Meegen, H., van den Elsen, S., Holterman, M., Karssen, G., Mooyman, P., Bongers, T., et al.
491 (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit
492 ribosomal DNA sequences. *Nematology*, 11, 927-S927, doi:10.1163/156854109x456862.

493 Voronov, D. A. (1999). The embryonic development of Pontonema vulgare (Enoplida :
494 Oncholaimidae) with a discussion of nematode phylogeny. *Russian Journal of*
495 *Nematology*, 7(2), 105-114.

496 Voronov, D. A., & Panchin, Y. V. (1998). Cell lineage in marine nematode Enoplus brevis.
497 *Development*, 125(1), 143-150.

498 Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview
499 Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*,
500 25(9), 1189-1191, doi:10.1093/bioinformatics/btp033.

501 Yushin, V. V., Afanasiev-Grigoriev, A. G., & Malakhov, V. V. (2014). The male gonad of the
502 marine nematode Enoplus: no single distal tip cell but multiple uniform epithelial cells.
503 *Invertebrate Zoology*, 11(2), 361-372, doi:10.15298/invertzool.11.2.07.

504 Yushin, V. V., Claeys, M., & Bert, W. (2016). Ultrastructural immunogold localization of major
505 sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus
506 (Nematoda, Rhabditida). [Article]. *Micron*, 89, 43-55, doi:10.1016/j.micron.2016.07.004.

507 Yushin, V. V., & Malakhov, V. V. (1994). Ultrastructure of sperm cells in the female gonoduct
508 of free-living marine nematodes from genus Enoplus (Nematoda: Enoplida).
509 *Fundamental and Applied Nematology*, 17(6), 513-520.

510 Yushin, V. V., & Malakhov, V. V. (2004). Spermatogenesis and nematode phylogeny. In R. C.
511 Cook, & D. J. Hunt (Eds.), *Proceeding of the Fourth International Congress of*
512 *Nematology* (Vol. 2, pp. 655-665, Nematology Monographs and Perspectives).

513 Yushin, V. V., & Malakhov, V. V. (2014). The origin of nematode sperm: Progenesis at the
514 cellular level. *Russian Journal of Marine Biology*, 40(2), 71-81,
515 doi:10.1134/S1063074014020114.

516 Zograf, J. K. (2014). Ultrastructure of spermatogenesis and sperm of the free-living soil
517 nematode Panagrellus redivivus (Rhabditida: Panagrolaimidae). *Russian Journal of*
518 *Nematology*, 22(1), 39-48.

520 **Figure legends**

1
2
3 **Fig. 1** Phylogeny of nematodes and MSP-based sperm motility. Phylogenetic relationships within
4 phylum Nematoda derived primarily from SSU rDNA sequence data are given according to De
5 Ley and Blaxter (De Ley and Blaxter 2002). Suborders of Rhabditida order, in which
6 representatives highly homologous MSPs are found at DNA, RNA or protein levels, are marked
7 by underlining. Taxa whose species used in this study are marked with asterisks. Orders Trefusiida,
8 Isolaimida, Dioctophymatida, Muspiceida, Marimermithida and Desmoscolecida are not shown in
9 this tree.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

528

529 **Fig. 2** Western blot analysis of MSP in *P. redivivus*. In adult animals, MSP is detected as double
530 band with approximate weight 15 and 16 kDa. Both male and female samples reveal MSP signal,
531 because the latter include mated females. α -Tubulin was used as a loading control (approximate
532 weight 55 kDa).
533

534 **Fig. 3** Immunolocalization of MSP in *P. redivivus* sperm. **a** Immature spermatozoa extracted from
535 male. MSP localizes in granules. In some cells, MSP has strongest signals in the periphery
536 (arrowheads) (scale bar 10 μ m). **b** Chain of activated spermatozoa extracted from female. MSP
537 has punctate and fibrillar pattern of distribution in pseudopodia that marked by arrows. Selected
538 area is given in higher magnification (scale bar 10 μ m, magnified area 2 μ m).
539

540 **Fig. 4** Western blot analysis of MSP in *E. brevis*. **a** MSP has unusual mobility in gel and is found
541 as protein with weight 36-38 kDa. Both male and female samples reveal MSP signal, because the
542 latter include inseminated females. α -Tubulin was used as a loading control (approximate weight
543 55 kDa). **b** Peptide competition assay confirms reactivity of anti-MSP antibodies with protein band
544 of 36-38 kDa.
545

545

546 **Fig. 5** Immunolocalization of MSP in *E. brevis* sperm. **a** Immature spermatozoon from male. MSP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

547 concentrates in large granules (scale bar 10 μ m). **b** Spermatozoon recovered from male and
548 partially activated by 10 min incubation in sea water. MSP revealed more diffuse pattern with
549 appearance of longitudinal fibrillar structures. Selected area is given in higher magnification (scale
550 bar 10 μ m, magnified area 2 μ m). **c** Mature spermatozoon from female. Most of MSP signal is
551 found in pseudopod (scale bar 10 μ m).

552

553 **Fig. 6** Putative MSPs that are most similar to peptide antigen. **a** *P. redivivus* MSPs aligned with
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

554 peptide antigen. Protein sequences (Pan_g61.t1, Pan_g6018.t1, Pan_g6424.t1, Pan_g9068.t1,
555 Pan_g19433.t1 and Pan_g21178.t1) were found by Blast using peptide antigen as query in
556 WormBase Parasite (<https://parasite.wormbase.org>). **b** *E. brevis* MSPs aligned with peptide
557 antigen. Multiple alignment was performed using ProbCons and visualized in Jalview with
558 BLOSUM62 color scheme.

559

560 **Fig. 7** Multiple alignment and phylogenetic relationships of MSPs. **a** Multiple alignment of MSPs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

561 from 13 taxa of three subclasses of Nematoda. MSPs of six Rhabditida, four Dorylaimia and one
562 Enoplia species were used. Multiple alignment was performed using ProbCons and visualized in
563 Jalview with BLOSUM62 color scheme. MSP sequences of nematodes and MSP domains of
564 *Saccharomyces cerevisiae* and *Homo sapiens* used in multiple alignment were downloaded from
565 following databases, GenBank (<https://www.ncbi.nlm.nih.gov>) (A. suum: CAA63933.1,
566 *Dictyocaulus viviparus*: AAB27962.2, *Strongyloides ratti*: XP_024503659.1, *Trichuris trichiura*:
567 CDW57515.1, *Trichinella nativa*: OUC40810.1, *Trichinella pseudospiralis*: KRX99722.1,
568 *Trichinella papuae*: KRZ74366.1, *S. cerevisiae* MSP domain of Scs22p: AJP97989.1), WormBase
569 Parasite (<https://parasite.wormbase.org>) (*P. redivivus*: Pan_g9068.t1) and UniProt
570 (<https://www.uniprot.org>) (*C. elegans*: P53017, *Onchocerca volvulus*: P13262.3, *H. sapiens* MSP

571 domain of VAPA: Q9P0L0). **b** Maximum likelihood tree with SH-aLRT branch support. Only
1 572 significant values (≥ 0.8) are shown. MSP domains of *S. cerevisiae* (Scs22p) and *H. sapiens*
2 573 (VAPA) proteins were chosen as an outgroup.
3
4 574
5
6 575
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1

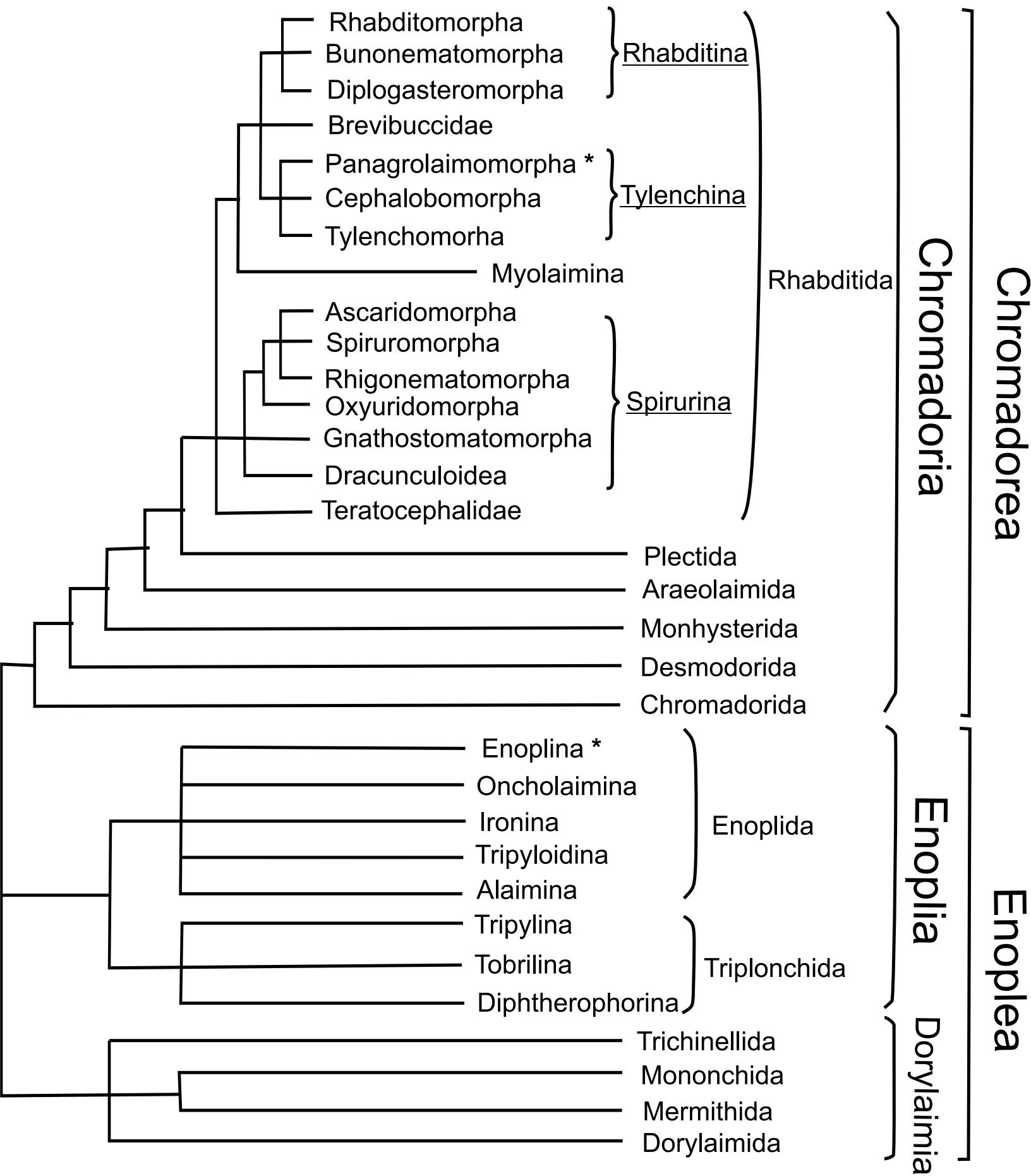


Figure 2

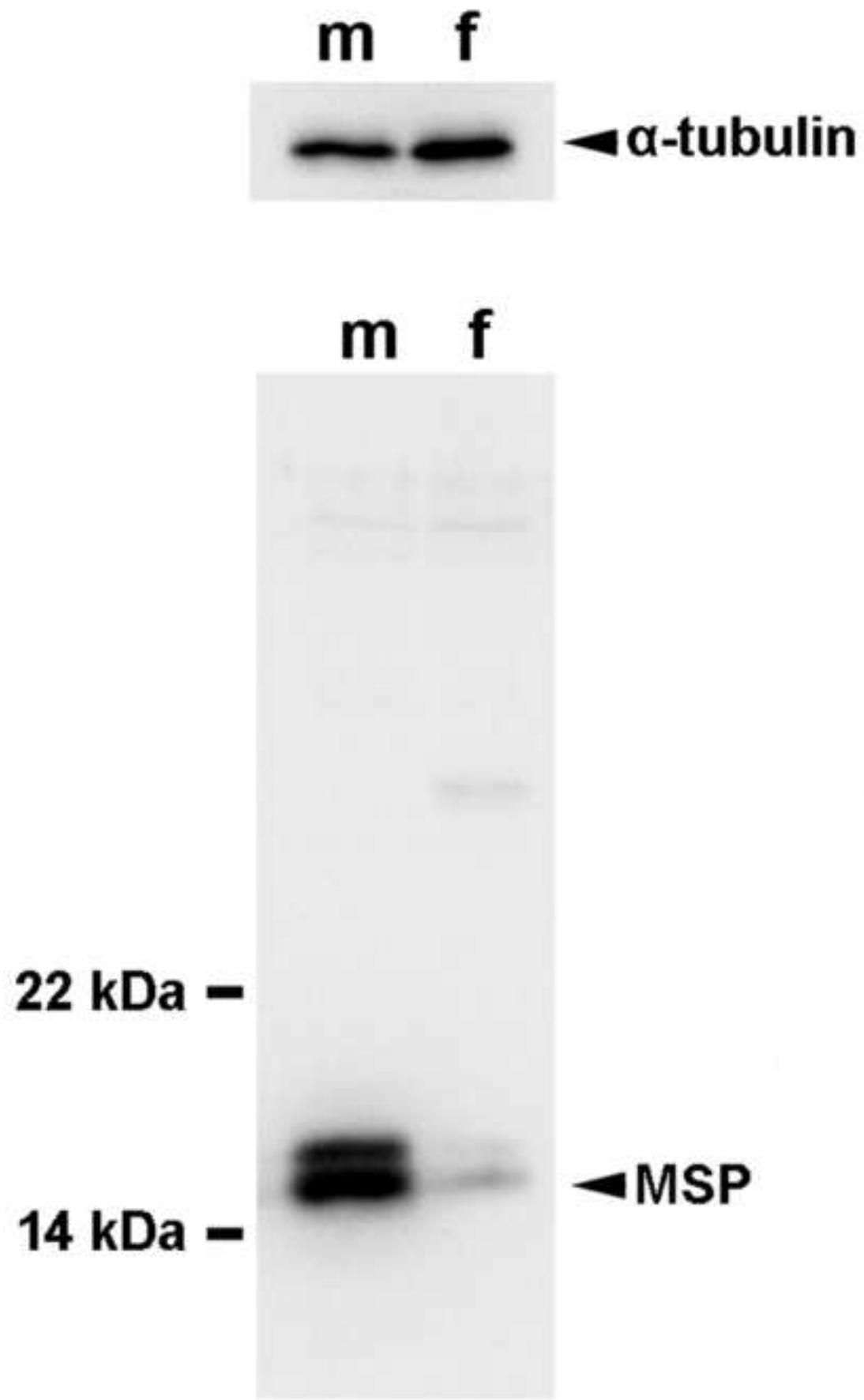


Figure 3

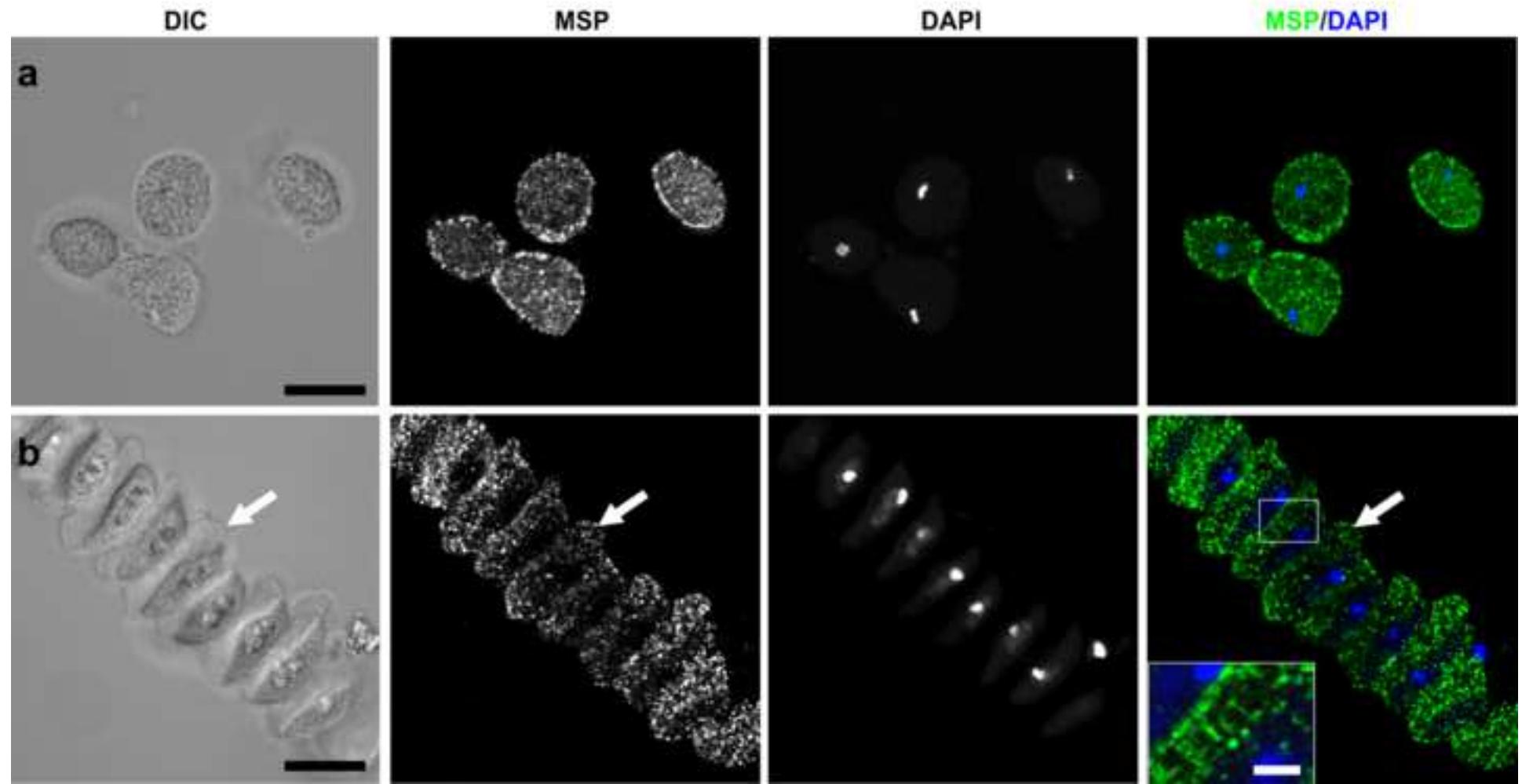


Figure 4

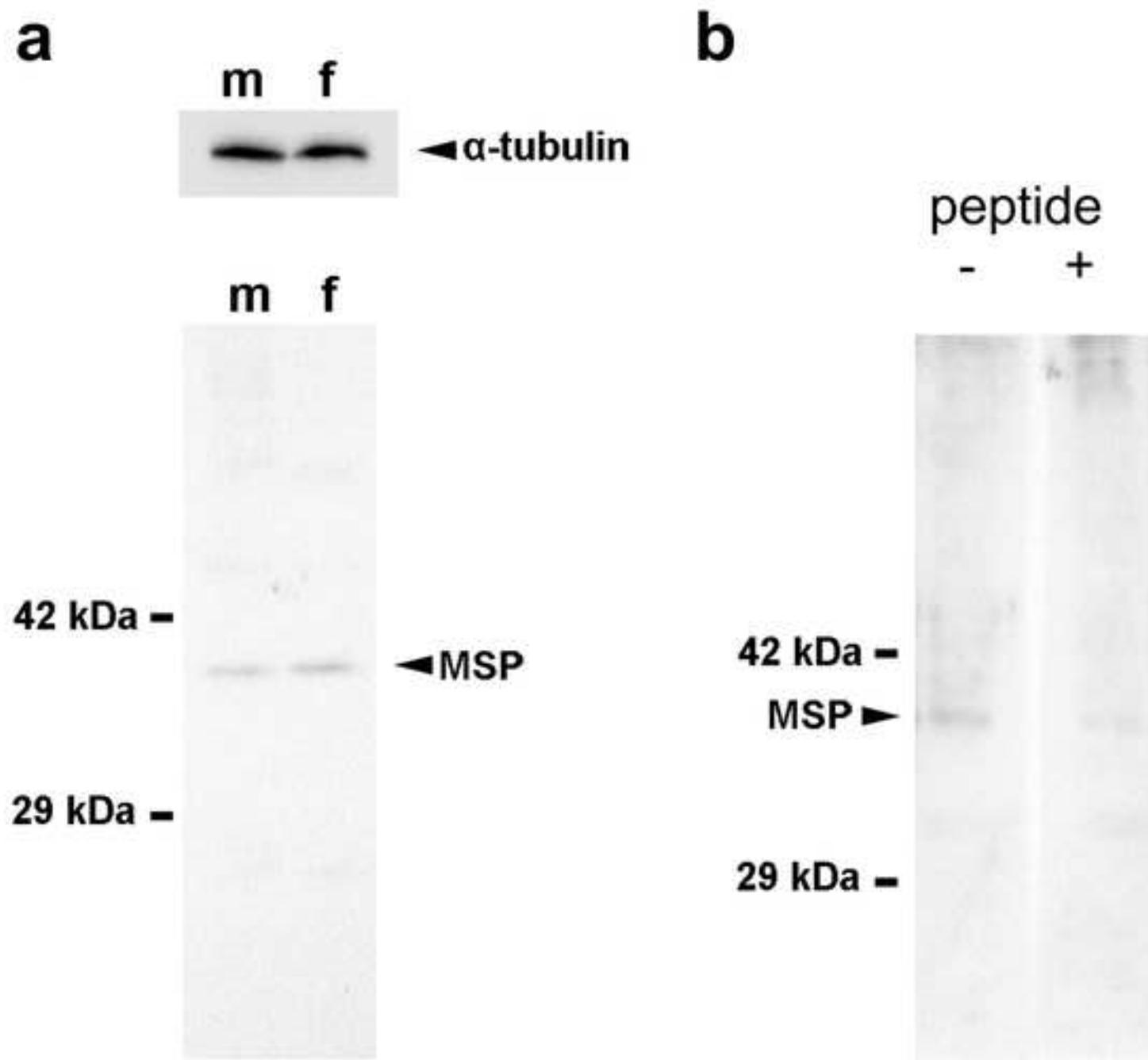
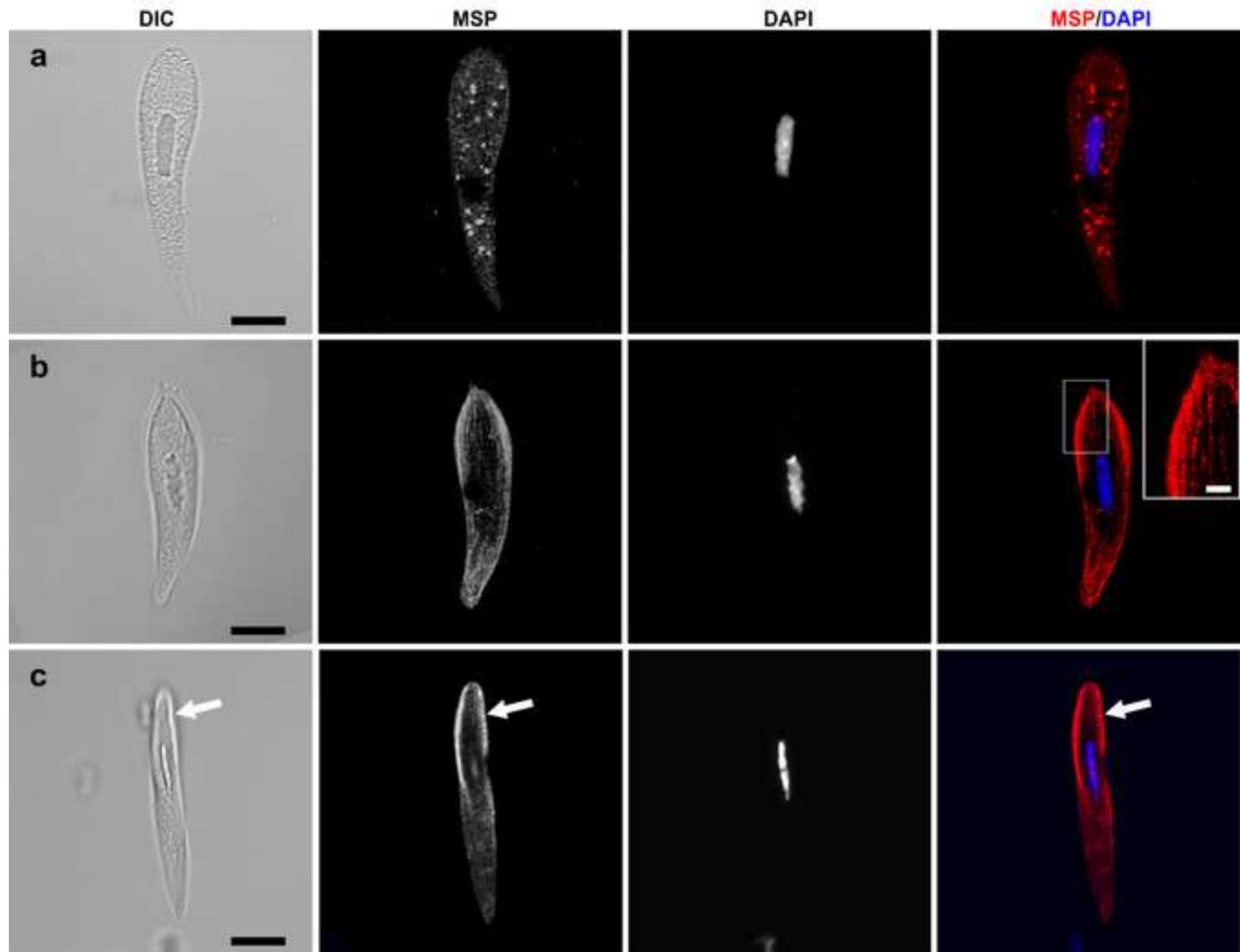
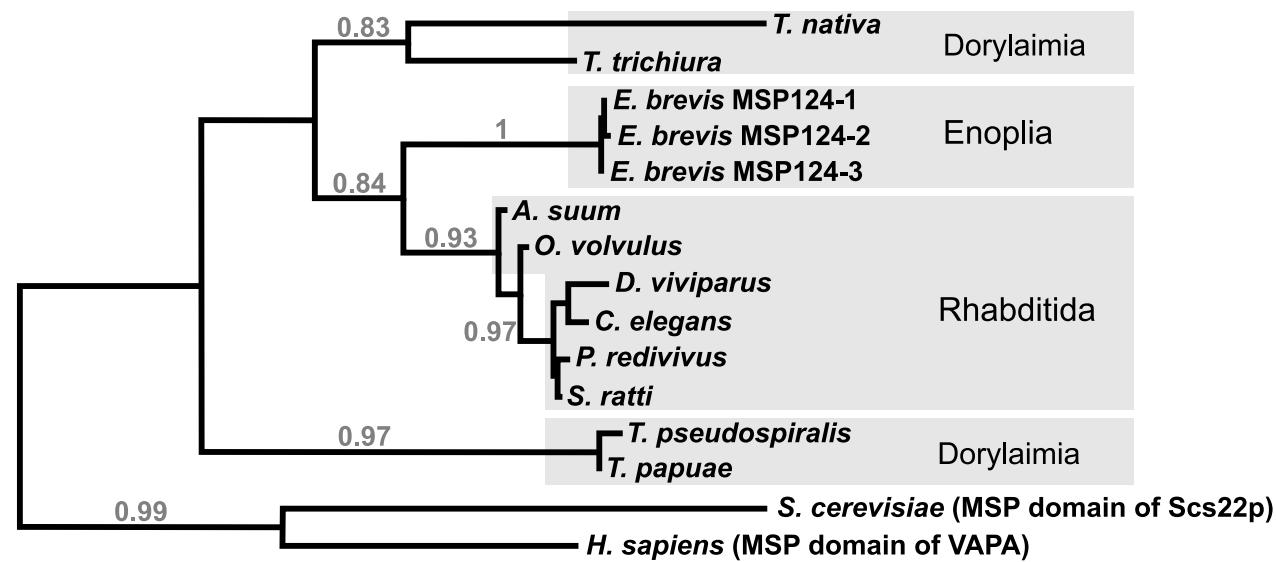


Figure 5




Figure 6

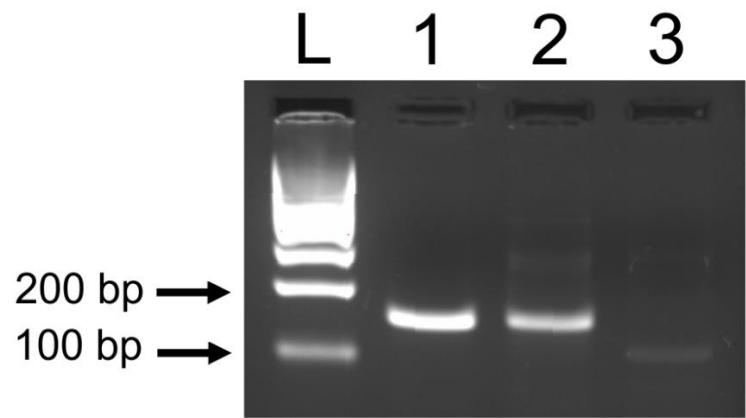

a	peptide antigen	1	MAQSVPPGDIGTQPGTK VFNAPYDDKHTYH KITNSGGRR GWA KTTNMKRLGVDP	20
	Pan_g61.t1	1	MAQSVPPGDIGTQPGTK VFNAPYDDKHTYH KITNAGGRR GWA KTTNMKRLGVDP	65
	Pan_g6018.t1	1	MAQSVPPGDIGTQPGTK VFNAPYDDKHTYH KITNSGGRR GWA KTTNMKRLGVDP	65
	Pan_g6424.t1	1	MAQSVPPGDIGTQPGTK VFNAPYDDKHTYH KITNSGGRR GWA KTTNMKRLGVDP	65
	Pan_g9068.t1	1	MAQSVPPGDIGTQPGTK VFNAPYDDKHTYH KITNSGGRR GWA KTTNMKRLGVDP	65
	Pan_g19433.t1	1	MAQSIIPPGDIGTQPGTK VFNAPYDDKHTYH KIINSGGRR GWA KTTNMKRLGVDP	65
	Pan_g21178.t1	1	MAQSVPPGDIGTQPGTK VFNAPYDDKHTYH KITNSGGRR GWA KTTNMKRLGVDP	65
	peptide antigen	21	KE KENVLMAVSCDAFDAAAEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	22
	Pan_g61.t1	66	KENVLMAVSCDSFKYGEEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	127
	Pan_g6018.t1	66	KENVLMAVSCDAFDPAAEEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	127
	Pan_g6424.t1	66	KENVLMAVSCDAFKFGEEEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	127
	Pan_g9068.t1	66	KENVLMAVSCDAFKFGQEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	127
	Pan_g19433.t1	66	KENVLMAVSCDAFQFGQEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	127
	Pan_g21178.t1	66	KENVLMAVSCDAFKFGEEEDTNNDRIT EWTNTPDGAAKT FRRWFQGDDGMVRRKNLPIEYNP	127
b	peptide antigen	1	I KTTNMKRLGVDP PCGVLDPKE -	22
	MSP124-1	1	M T M P G E I K T Q P E N K L F G A P F D A P V T V S L R A T N A G G K K G W A K T T N M R R F S V E P G M G T M E P K A H	65
	MSP124-2	1	M T M P G D V K T Q P E N K L F G A P F D A P V T V S L R A T N A G G K K G W A K T T N M R R F S V E P G M G T M E P K A H	65
	MSP124-3	1	M T M P G E I K T Q P E N K L F G A P F D A P V T V S L R A T N A G G K K G W A K T T N M R R F S V E P G M G T M E P K A H	65
	peptide antigen	1	VNL S V T C N P F D I G N E D I S N D R I T E W T D T P A G A G D K F Q R E W F Q G G S G I R R K V I N C E Y N V	124
	MSP124-1	66	VNL S V T C N P F D I G N E D I S N D R I T E W T D T P A G A G D K F Q R E W F Q G G S G I R R K V I N C E Y N V	124
	MSP124-2	66	VNL S V T C N P F D I G N E D I S N D R I T E W T D T P A G A G N K F Q R E W F Q G G S G I R R K V I N C E Y N V	124
	MSP124-3	66	VNL S V T C N P F D I G N E D I S N D R I T E W T D T P A G A G N K F Q R E W F Q G G S G I R R K V I N C E Y N V	124

Figure 1

a

<i>S. cerevisiae</i> MSP domain of Scs22p	1	MR - - - - - I VP - E K L L F K A P L N K Q S T E Y I K L E N D G E K R V I F K V R T S	39
<i>H. sapiens</i> MSP domain of VAPA	1	I L - - - - - V L D P P T D L K F K G P F T D V V T T N L K L R N P S D R K V C F K V K T T	41
<i>T. pseudospiralis</i>	1	M R N E - I P H D I I I E P S T C L F F N G P F D E A K S Q S V R M R N P G G Q A V A W A I K T N	48
<i>T. papuae</i>	1	M R N E - I P H D I T I E P S T C L F F N G P F D E T K S Q A V R M R N P G G Q A I A W A I K T N	48
<i>T. nativa</i>	1	M P K P - I P S E L K T S P A E R I V F N A P F E E K K N Y P F S I I N N G K E K I A Y M I K L S	48
<i>T. trichiura</i>	1	M A K Q - M P A D I K T E P L D K L Y F N A P F K E K K N Y K I A V T N T G A K P L A W C V K S T	48
<i>E. brevis</i> MSP124-1	1	M T - - - M P G E I K T Q P E N K L I F G A P F D A P V T V S L R A T N A G G K K I G W A I K T T	46
<i>E. brevis</i> MSP124-2	1	M T - - - M P G D V K T Q P E N K L I F G A P F D A P V T V S L R A T N A G G K K I G W A I K T T	46
<i>E. brevis</i> MSP124-3	1	M T - - - M P G E I K T Q P E N K L I F G A P F D A P V T V S L R A T N A G G K K I G W A I K T T	46
<i>C. elegans</i>	1	M A Q S V P P G D I Q T Q P G T K I V F N A P Y D D K H T Y H I K V I N S A R R I G Y G I K T T	49
<i>D. viviparus</i>	1	M A S - V P P G D I N T Q P N S K I V F N A P Y D D K H T Y H I K I I N A S G R R I G W A I K T T	48
<i>P. redivivus</i>	1	M A Q S V P P G D I G T Q P G T K I V F N A P Y D D K H T Y H I K I T N S G G R R I G W A I K T T	49
<i>S. ratti</i>	1	M A Q S V P P G D I Q T Q P G T K I V F N A P Y D D K H T Y H I K I T N S G G R R I G W A I K T T	49
<i>O. volvulus</i>	1	M A Q S V P P G D I H T Q P G S K I V F N A P Y D D K H T Y H I N I T N A G G R R I G W A I K T T	49
<i>A. suum</i>	1	M A Q S V P P G D I N T Q P S Q K I V F N A P Y D D K H T Y H I K I T N A G G R R I G W A I K T T	49
<i>S. cerevisiae</i> MSP domain of Scs22p	40	A P T K Y C V R P N V A I I G A H E S V N V Q I V F L G L P K S T A D D E M D Q K R D K F L I V T	88
<i>H. sapiens</i> MSP domain of VAPA	42	A P R R Y C V R P N S G I I D P G S T V T V S V M L Q P F D Y D P N - - - E K S K H K F M V Q T	86
<i>T. pseudospiralis</i>	49	N R A R L N A E P P G G I I L Q A G T Q I I V V N I I S A P V R R A H Q V G - - - K Q E S D S I I F E W	95
<i>T. papuae</i>	49	N R A R L N A E P P G G I I L Q A G T Q I I V V N I I S A P V R R A H Q V G - - - K Q E N D S I I F E W	95
<i>T. nativa</i>	49	N E M R T M C E P S H G V L N P G E N I I W I R V H L E E F K P T V E - - - N T Q P N T L T I E Y	93
<i>T. trichiura</i>	49	N V S R I I S F D P S A G V L D A N E T F M F T A V T E V F E P T P E - - - N L K Q D Q I T I E W	93
<i>E. brevis</i> MSP124-1	47	N M R R F S V E P G M G T M E P K A H V N L S V T C N P F D I G N E - - - D I S N D R I T I E W	91
<i>E. brevis</i> MSP124-2	47	N M R R F S V E P G M G T M E P K A H V N L S V T C N P F D I G N E - - - D I S N D R I T I E W	91
<i>E. brevis</i> MSP124-3	47	N M R R F S V E P G M G T M E P K A H V N L S V T C N P F D I G N E - - - D I S N D R I T I E W	91
<i>C. elegans</i>	50	N M K R L G V D P P C G V L D P K E A V L L A V S C D A F A F G Q E - - - D T N N D R I T V E W	94
<i>D. viviparus</i>	49	N M K R L G V D P P C G V L D P K E A T L M A V S C D A F K F G E E - - - D T N N D R I T V E W	93
<i>P. redivivus</i>	50	N M K R L G V D P P C G V L D P K E N V L M A V S C D A F A Y G Q E - - - D T N N D R I T V E W	94
<i>S. ratti</i>	50	N M K R L G V D P P C G V L D P K E N V L M A V S C D A F A Y G Q E - - - D T N N D R I T V E W	94
<i>O. volvulus</i>	50	N M K R L G V D P P C G V L D P K E N V L M A V S C D T F D A T R E - - - D I N N D R I T I E W	94
<i>A. suum</i>	50	N M R R L S V D P P C G V L D P K E K V L M A V S C D T F N A A T E - - - D L N N D R I T I E W	94
<i>S. cerevisiae</i> MSP domain of Scs22p	89	L P I P A A Y Q N V - - - - - - - - - E D G E L L S D W	107
<i>H. sapiens</i> MSP domain of VAPA	87	I F A P P N T S D M - - - - - - - - - E A V W K E A K P	105
<i>T. pseudospiralis</i>	96	C Q V E S - - D I P F S I E L L K G D A L L R R R K I K I I Y N P	126
<i>T. papuae</i>	96	C Q V E S - - D I P F S I D L L K G D A L L R R R K I K I I Y N P	126
<i>T. nativa</i>	94	C F P P E G S D K N F N P S W F R L N V I I R R K H V A L E F N A	126
<i>T. trichiura</i>	94	I L A P D G E G R K F N R E W M Q R D V I V R R K H I T V F Y N P	126
<i>E. brevis</i> MSP124-1	92	T D T P A G A G D K F Q R E W F Q G S G I I R R K V I N C E Y N V	124
<i>E. brevis</i> MSP124-2	92	T D T P A G A G D K F Q R E W F Q G S G I I R R K V I N C E Y N V	124
<i>E. brevis</i> MSP124-3	92	T D T P A G A G N K F Q R E W F Q G S G I I R R K V I N C E Y N V	124
<i>C. elegans</i>	95	T N T P D G A A K Q F R R E W F Q G D G M V R R K N L P I E Y N P	127
<i>D. viviparus</i>	94	C N T P D G A A K Q F R R E W F Q G D G M V R R K N L P I E Y N P	126
<i>P. redivivus</i>	95	T N T P D G A A K T F R R E W F Q G D G M V R R K N L P I E Y N P	127
<i>S. ratti</i>	95	T N T P D G A A K T F R R E W F Q G D G M V R R K N L P I E Y N P	127
<i>O. volvulus</i>	95	T N T P D G A A K Q F R R E W F Q G D G M V R R K N L P I E Y N L	127
<i>A. suum</i>	95	T N T P D G A A K Q F R R E W F Q G D G M V R R K N L P I E Y N L	127

b

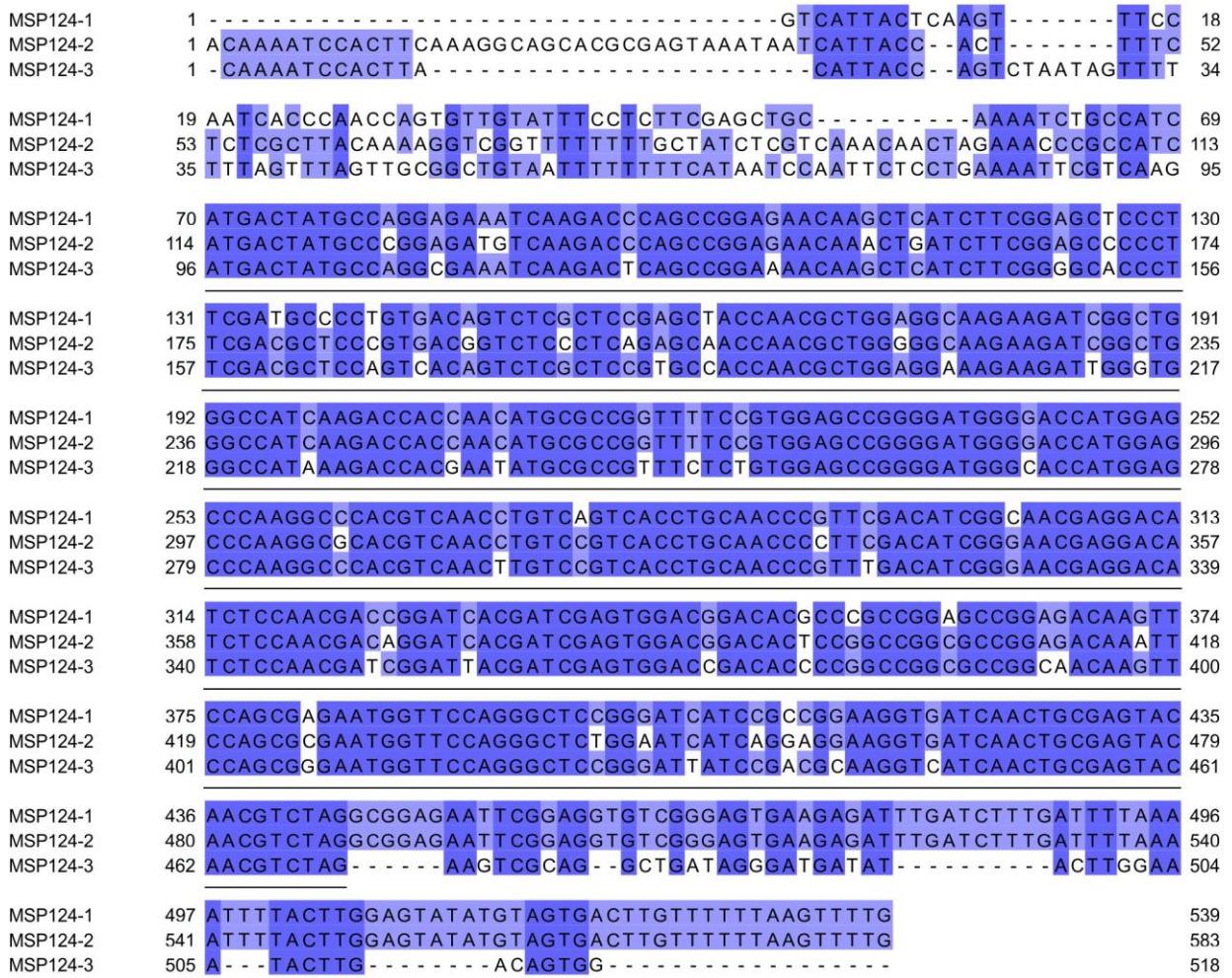


FIGURE S2 RT-PCR analysis of the presence of putative MSP-coding transcripts found in *E. brevis* transcriptome. Fragments corresponding to MSP mRNAs were amplified and then resolved in 3% SB gel, MSP124-1 (line 1, 162 bp), MSP124-2 (line 2, 166 bp) and MSP124-3 (line 3, 118 bp). Ladder is marked by L.

TABLE S1 Primers and conditions of amplification of MSP124 fragments by RT-PCR

transcript	Primer	Ta	cycles	size, bp
Msp124-1	F: AACTTGTCCGTCACCTGCAAC R: GCAGTTGATCACCTTCCGG	58	25	162
Msp124-2	F: AACTTGTCCGTCACCTGCAAC R: ATT CGCAGTTGATGACTTTCTC	55	35	166
Msp124-3	F: AACTTGTCCGTCACCTGCAAC R: ATTCCCGCTGGAACTTGTTG	55	35	118

Note: to amplify fragments of all fragments the same forward primer was used.

FIGURE S1 A group of *E. brevis* MSP transcripts called MSP124 that encode putative MSPs. Multiple alignment was done using MUSCLE and visualized in Jalview with Percentage Identity color scheme. Coding regions of the transcripts are underlined.

Figures

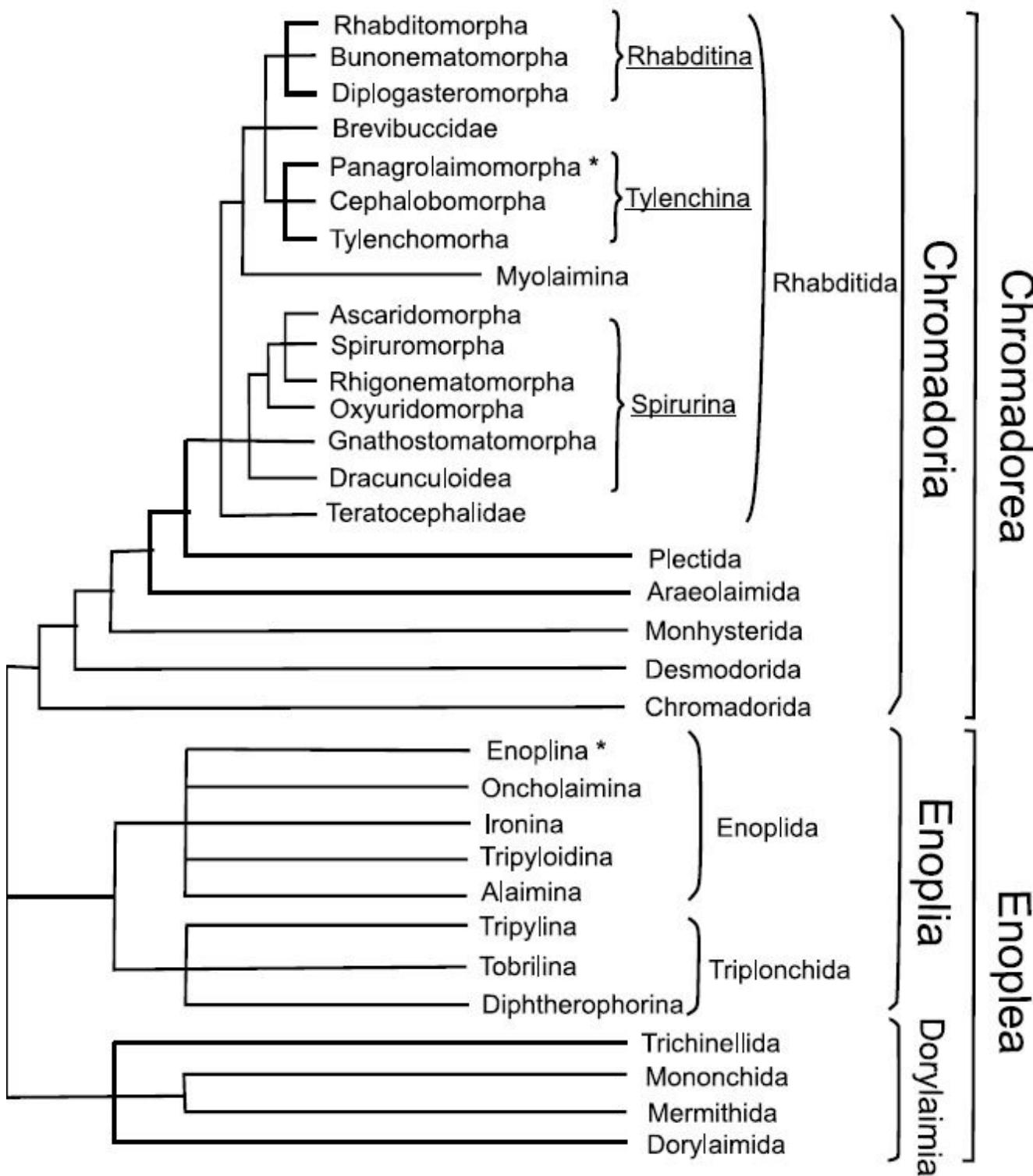
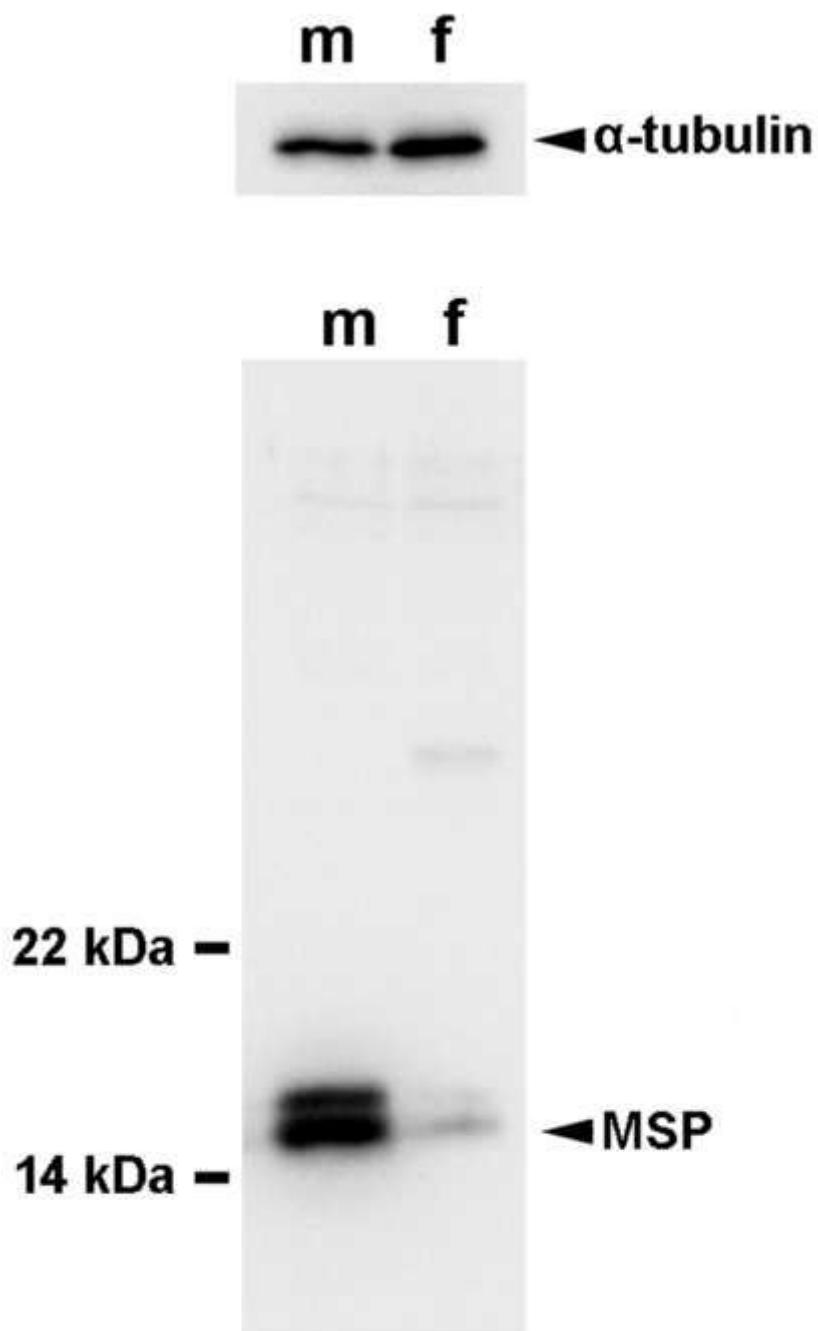
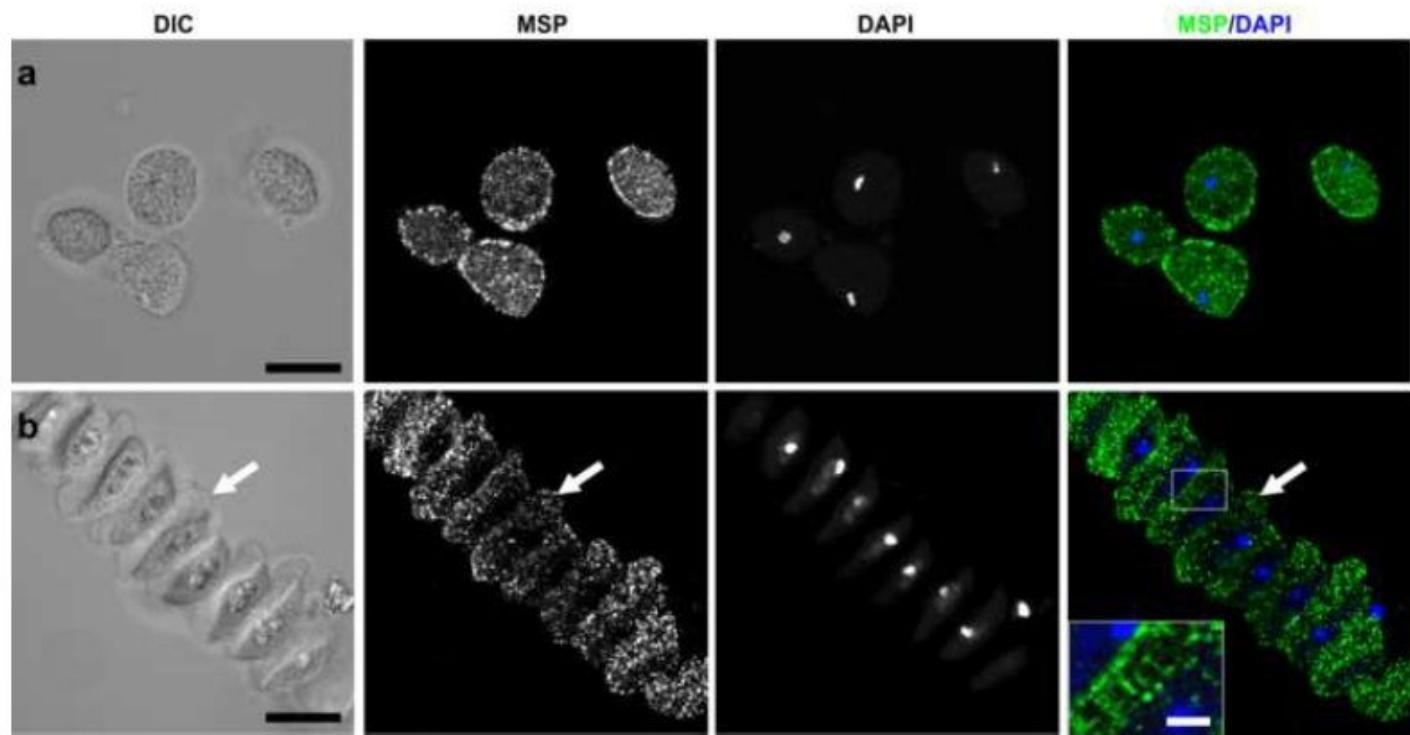
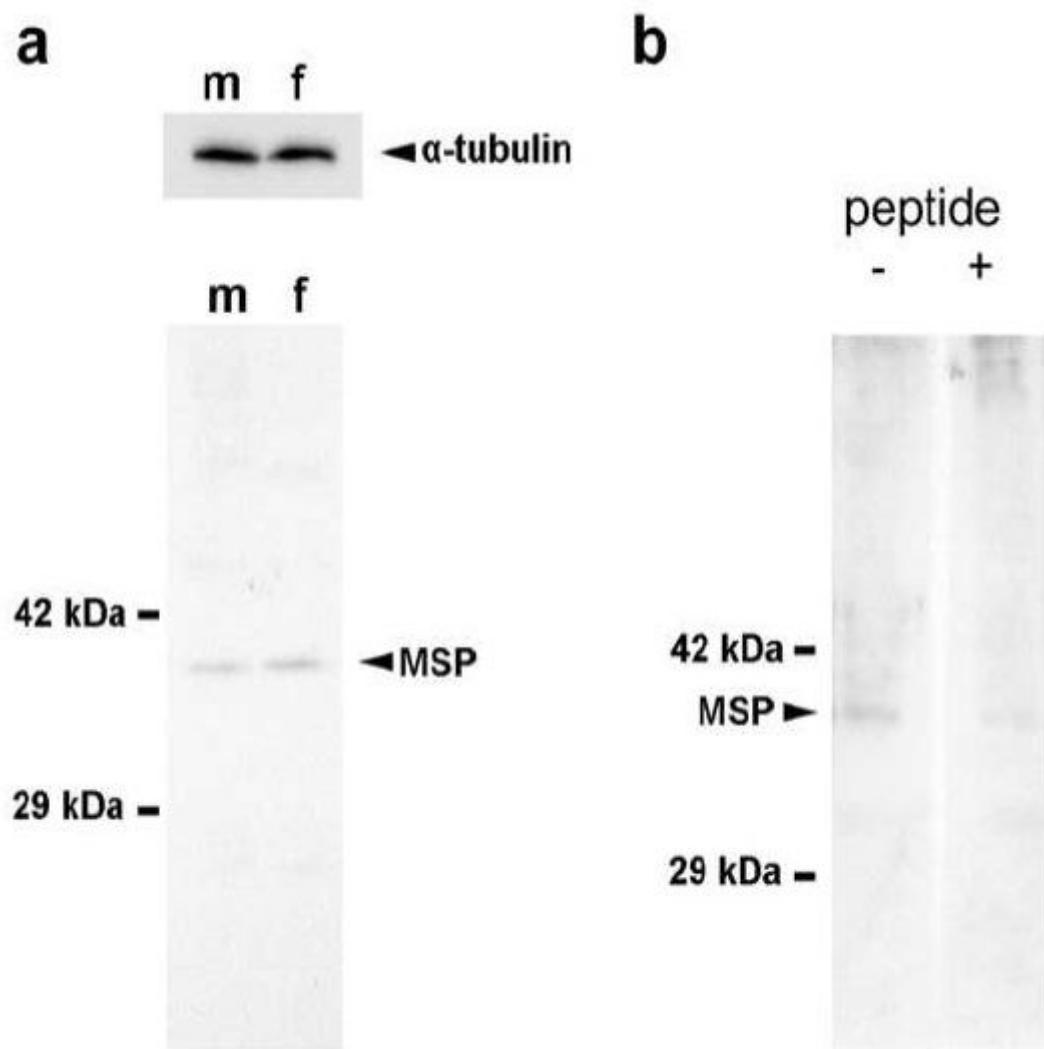



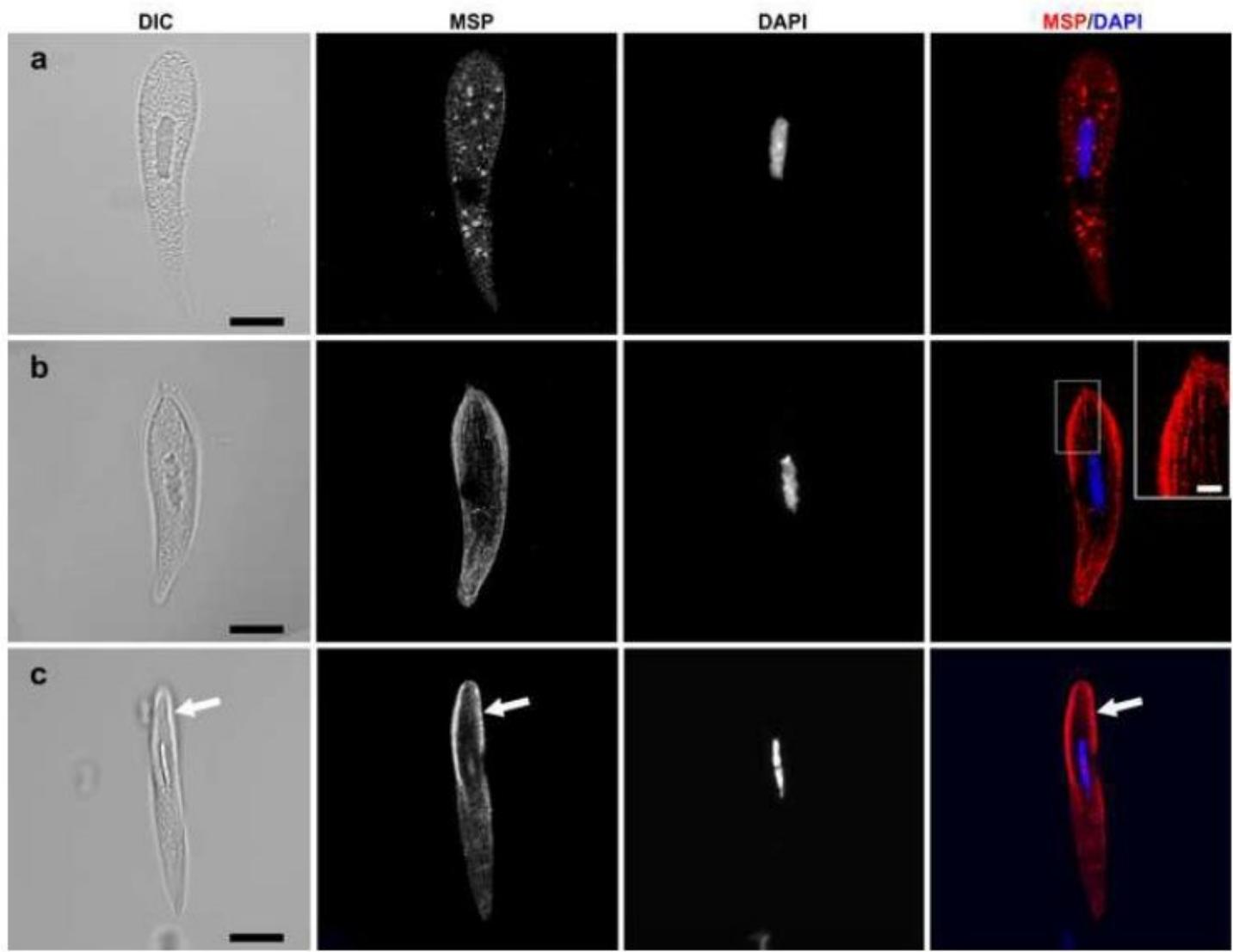
Figure 1


Phylogeny of nematodes and MSP-based sperm motility. Phylogenetic relationships within phylum Nematoda derived primarily from SSU rDNA sequence data are given according to De Ley and Blaxter (De Ley and Blaxter 2002). Suborders of Rhabditida order, in which representatives highly homologous MSPs

are found at DNA, RNA or protein levels, are marked by underlining. Taxa whose species used in this study are marked with asterisks. Orders Trefusiida, Isolaimida, Diocophyomatida, Muspiceida, Marimermithida and Desmoscolecida are not shown in this tree.


Figure 2

Western blot analysis of MSP in *P. redivivus*. In adult animals, MSP is detected as double band with approximate weight 15 and 16 kDa. Both male and female samples reveal MSP signal, because the latter include mated females. α -Tubulin was used as a loading control (approximate weight 55 kDa).


Figure 3

Immunolocalization of MSP in *P. redivivus* sperm. a Immature spermatozoa extracted from male. MSP localizes in granules. In some cells, MSP has strongest signals in the periphery (arrowheads) (scale bar 10 μ m). b Chain of activated spermatozoa extracted from female. MSP has punctate and fibrillar pattern of distribution in pseudopodia that marked by arrows. Selected area is given in higher magnification (scale bar 10 μ m, magnified area 2 μ m).

Figure 4

Western blot analysis of MSP in *E. brevis*. a MSP has unusual mobility in gel and is found as protein with weight 36-38 kDa. Both male and female samples reveal MSP signal, because the latter include inseminated females. α -Tubulin was used as a loading control (approximate weight 55 kDa). b Peptide competition assay confirms reactivity of anti-MSP antibodies with protein band of 36-38 kDa.

Figure 5

Immunolocalization of MSP in *E. brevis* sperm. a Immature spermatozoon from male. MSP concentrates in large granules (scale bar 10 μ m). b Spermatozoon recovered from male and partially activated by 10 min incubation in sea water. MSP revealed more diffuse pattern with appearance of longitudinal fibrillar structures. Selected area is given in higher magnification (scale bar 10 μ m, magnified area 2 μ m). c Mature spermatozoon from female. Most of MSP signal is found in pseudopod (scale bar 10 μ m).

a

peptide antigen	1	- - - - -	IKTTNMKRLGVVDPPCGVLDPE -	20
Pan_g61.t1	1	MAQSVP ₁ PGD GTQPGTK VFNA ₁ PYDDKHTYH K TNSGGRR GWA KTTNMKRLGVVDPPCGVLDPE	-	65
Pan_g6018.t1	1	MAQSVP ₁ PGD GTQPGTK VFNA ₁ PYDDKHTYH K TNAGGRR GWA KTTNMKRLGVVDPPCGVLDPE	-	65
Pan_g6424.t1	1	MAQSVP ₁ PGD GTQPGTK VFNA ₁ PYDDKHTYH K TNSGGRR GWA KTTNMKRLGVVDPPCGVLDPE	-	65
Pan_g9068.t1	1	MAQSVP ₁ PGD GTQPGTK VFNA ₁ PYDDKHTYH K TNSGGRR GWA KTTNMKRLGVVDPPCGVLDPE	-	65
Pan_g19433.t1	1	MAQSVP ₁ PGD GTQPGTK VFNA ₁ PYDDKHTYH K NSGGRR GWA KTTNMKRLGVDPPSGVLDPE	-	65
Pan_g21178.t1	1	MAQSVP ₁ PGD GTQPGTK VFNA ₁ PYDDKHTYH K TNSGGRR GWA KTTNMKRLGVDPPCGVLDPE	-	65
peptide antigen	21	KE - - - - -	- - - - -	22
Pan_g61.t1	66	KENVLMAVSCDAF ₁ DAAAEDTNNDRIT EWTNTPDGAAKTFRREWFQGDGMVRRKNLPIEYNP	-	127
Pan_g6018.t1	66	KENVLMAVSCDSFKY ₁ GEEDTNNDRIT EWTNTPDGAAKTFRREWFQGDGMVRRKNLPIEYNP	-	127
Pan_g6424.t1	66	KENVLMAVSCDAF ₁ DPAAEDTNNDRIT EWTNTPDGAAKTFRREWFQGDGMVRRKNLPIEYNP	-	127
Pan_g9068.t1	66	KENVLMAVSCDAFKFG ₁ GEEDTNNDRIT EWTNTPDGAAKTFRREWFQGDGMVRRKNLPIEYNP	-	127
Pan_g19433.t1	66	KENVLMAVSCDAFQFG ₁ QEDTNNDRIT EWTNTPDGAAKTFRREWFQGDGMVRRKNLPIEYNP	-	127
Pan_g21178.t1	66	KENVLMAVSCDAFKFG ₁ GEEDTNNDRIT EWTNTPDGAAKTFRREWFQGDGMVRRKNLPIEYNP	-	127

b

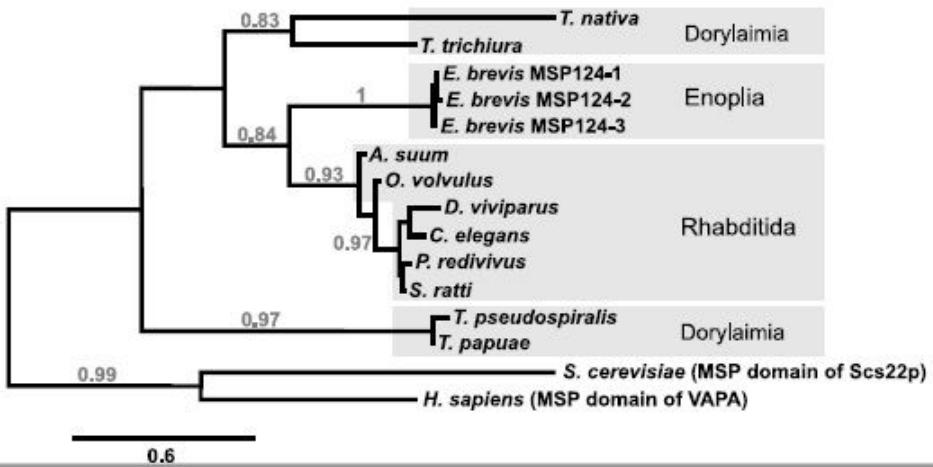

peptide antigen	1	- - - - -	IKTTNMKRLGVVDPPCGVLDPE -	22
MSP124-1	1	MTMPG ₁ E KTQ ₁ PENKL FGAPFDAPVTVSL RATNAGGKK GWA KTTNMRRFSVEPGMGTMEPKAH	-	65
MSP124-2	1	MTMPGD ₁ VKTQ ₁ PENKL FGAPFDAPVTVSL RATNAGGKK GWA KTTNMRRFSVEPGMGTMEPKAH	-	65
MSP124-3	1	MTMPG ₁ E KTQ ₁ PENKL FGAPFDAPVTVSL RATNAGGKK GWA KTTNMRRFSVEPGMGTMEPKAH	-	65
peptide antigen	66	- - - - -	- - - - -	124
MSP124-1	66	VNL ₁ SVTCNPFD ₁ GNED SNDRIT EWTDT ₁ PAGAGDKFQREWFQGSG IRRKV ₁ NCEYNV	-	124
MSP124-2	66	VNL ₁ SVTCNPFD ₁ GNED SNDRIT EWTDT ₁ PAGAGDKFQREWFQGSG IRRKV ₁ NCEYNV	-	124
MSP124-3	66	VNL ₁ SVTCNPFD ₁ GNED SNDRIT EWTDT ₁ PAGAGNKFQREWFQGSG IRRKV ₁ NCEYNV	-	124

Figure 6

Putative MSPs that are most similar to peptide antigen. a *P. redivivus* MSPs aligned with peptide antigen. Protein sequences (Pan_g61.t1, Pan_g6018.t1, Pan_g6424.t1, Pan_g9068.t1, Pan_g19433.t1 and Pan_g21178.t1) were found by Blast using peptide antigen as query in WormBase Parasite (<https://parasite.wormbase.org>). b *E. brevis* MSPs aligned with peptide antigen. Multiple alignment was performed using ProbCons and visualized in Jalview with BLOSUM62 color scheme.

a

<i>S. cerevisiae</i> MSP domain of Scs22p	1 M R - - - - - I V P - E K L L F K A P L N K Q S T E Y I K L E N D G E K R V I F K V R T S	39
<i>H. sapiens</i> MSP domain of VAPA	1 I L - - - - - V L D P P T D L K F K G P F T D V V T T N L K L R N P S D R K V C F K V K T T	41
<i>T. pseudospiralis</i>	1 M R N E - - I P H D I I I E P S T C L F F N G P F D E A K S Q S V R M R N P G G Q A V A W A I K T N	48
<i>T. papuae</i>	1 M R N E - - I P H D I I I E P S T C L F F N G P F D E T K S O A V R M R N P G G Q A V A W A I K T N	48
<i>T. nativa</i>	1 M P K P - - I P S E L K T S P A E R I V F N A P F E E K K N Y P F S I I N N G K E K I A Y M I K L S	48
<i>T. trichiura</i>	1 M A K Q - - M P A D I K T E P L D K L Y F N A P F K E E K K N Y K I A V T N T G A K P L A W C V K S T	48
<i>E. brevis</i> MSP124-1	1 M T - - - M P G E K T Q P E N K L F G A P F D A P V T V S L R A T N A G G K K I G W A I K T T	48
<i>E. brevis</i> MSP124-2	1 M T - - - M P G D V K T Q P E N K L F G A P F D A P V T V S L R A T N A G G K K I G W A I K T T	48
<i>E. brevis</i> MSP124-3	1 M T - - - M P G E K T Q P E N K L F G A P F D A P V T V S L R A T N A G G K K I G W A I K T T	48
<i>C. elegans</i>	1 M A Q S V P P G D Q T Q P G T K V F N A P Y D D K H T Y H I K V I N S S A R I G Y G K T T	49
<i>D. viviparus</i>	1 M A S - V P P G D N T Q P N S K I V F N A P Y D D K H T Y H I K I N A S G R R G W A I K T T	48
<i>P. redivivus</i>	1 M A Q S V P P G D Q T Q P G T K V F N A P Y D D K H T Y H I K I T N S G G R R G W A I K T T	49
<i>S. ratti</i>	1 M A Q S V P P G D Q T Q P G T K V F N A P Y D D K H T Y H I K I T N S G G R R G W A I K T T	49
<i>O. volvulus</i>	1 M A Q S V P P G D H T Q P G S K I V F N A P Y D D K H T Y H I N I T N A G G R R G W A I K T T	49
<i>A. suum</i>	1 M A Q S V P P G D N T Q P S Q K I V F N A P Y D D K H T Y H I K I T N A G G R R G W A I K T T	49
<i>S. cerevisiae</i> MSP domain of Scs22p	40 A P T K Y C V R P N V A I I G A H E S V N V Q V F L G L P K S T A D D E M Q K R D K F L I V T	88
<i>H. sapiens</i> MSP domain of VAPA	42 A P R R Y C V R P N S G I D R G S T V T V S V M L Q P F D Y D P N - - - E K S K H K F M V Q T	86
<i>T. pseudospiralis</i>	43 N R A R L N A E P P G G I L Q A G T Q I A V N I I S A P V R R A H Q V G - - - K Q E S D S I I F E W	95
<i>T. papuae</i>	44 N R A R L N A E P P G G I L Q A G T Q I V V N I I S A P V R R A H Q V G - - - K Q E N D S I I F E W	95
<i>T. nativa</i>	45 N E M R T M C E P S H G V L N B G E N W I R V H L E E F K P T V E - - - - N T Q P N T L T I E Y	93
<i>T. trichiura</i>	46 N V S R I S F D P S A G V L D A N E T F M F T A V T E V F E P T P E - - - - N L K O D Q I T I E W	93
<i>E. brevis</i> MSP124-1	47 N M R R I S V E P G M G T M E P K A H V N L S V T C N P F D I G N E - - - - D I S N D R I T I E W	91
<i>E. brevis</i> MSP124-2	47 N M R R I S V E P G M G T M E P K A H V N L S V T C N P F D I G N E - - - - D I S N D R I T I E W	91
<i>E. brevis</i> MSP124-3	47 N M R R I S V E P G M G T M E P K A H V N L S V T C N P F D I G N E - - - - D I S N D R I T I E W	91
<i>C. elegans</i>	50 N M K R L G V D P P C G V L D P K E A V L L A V S C D A F A F G Q E - - - - D T N N D R I T V E W	94
<i>D. viviparus</i>	49 N M K R L G V D P A C G V L D P K E A T L M A V S C D T F E Y G R E - - - - D T N N D R I T V E W	93
<i>P. redivivus</i>	50 N M K R L G V D P P C G V L D P K E N V L M A V S C D A F K F G E E - - - - D T N N D R I T I E W	94
<i>S. ratti</i>	50 N M K R L G V D P P C G V L D P K E N V L M A V S C D T F A D T R E - - - - D I N N D R I T I E W	94
<i>O. volvulus</i>	50 N M K R L G V D P P C G V L D P K E K V L M A V S C D T E N A A T E - - - - D I N N D R I T I E W	94
<i>A. suum</i>	50 N M R R I S V D P P C G V L D P K E K V L M A V S C D T E N A A T E - - - - D I N N D R I T I E W	94
<i>S. cerevisiae</i> MSP domain of Scs22p	85 L P P A A Y Q N V - - - - - - - - - E D G E I L S D W	107
<i>H. sapiens</i> MSP domain of VAPA	87 I F A P P N T S D M - - - - - - - - - E A V W K E A K P	105
<i>T. pseudospiralis</i>	98 C Q V E S - - D I P F S I E L L K G D A L L R R R K I K I I Y N P	128
<i>T. papuae</i>	98 C Q V E S - - D I P F S I D L L K G D A L L R R R K I K I I Y N P	128
<i>T. nativa</i>	94 C F P P E G S D K N F N P S W E R L N V I I R R K H V A L E F N A	126
<i>T. trichiura</i>	94 I L A P D G E G R K F N R E W M O R D V I V R R K H I T M F Y N B	126
<i>E. brevis</i> MSP124-1	92 T D T P A G A G D K F Q R E W F Q Q S G I I I R R K V I N C E Y N V	124
<i>E. brevis</i> MSP124-2	92 T D T P A G A G D K F Q R E W F Q Q S G I I I R R K V I N C E Y N V	124
<i>E. brevis</i> MSP124-3	92 T D T P A G A G N K F Q R E W F Q Q S G I I I R R K V I N C E Y N V	124
<i>C. elegans</i>	95 T N T P D G A A K Q F R R E W F Q Q D G M V V R R K N L P I E Y N P	127
<i>D. viviparus</i>	94 C N T P D G A A K Q F R R E W F Q Q D G M V V R R K N L P I E Y N P	126
<i>P. redivivus</i>	95 T N T P D G A A K T F R R E W F Q Q D G M V V R R K N L P I E Y N P	127
<i>S. ratti</i>	95 T N T P D G A A K Q F R R E W F Q Q D G M V V R R K N L P I E Y N L	127
<i>O. volvulus</i>	95 T N T P D G A A K Q F R R E W F Q Q D G M V V R R K N L P I E Y N L	127
<i>A. suum</i>	95 T N T P D G A A K Q F R R E W F Q Q D G M V V R R K N L P I E Y N L	127

b**Figure 7**

Multiple alignment and phylogenetic relationships of MSPs. a Multiple alignment of MSPs from 13 taxa of three subclasses of Nematoda. MSPs of six Rhabditida, four Dorylaimia and one Enoplia species were used. Multiple alignment was performed using ProbCons and visualized in Jalview with BLOSUM62 color scheme. MSP sequences of nematodes and MSP domains of *Saccharomyces cerevisiae* and *Homo sapiens* used in multiple alignment were downloaded from following databases, GenBank

(<https://www.ncbi.nlm.nih.gov>) (A. suum: CAA63933.1, *Dictyocaulus viviparus*: AAB27962.2, *Strongyloides ratti*: XP_024503659.1, *Trichuris trichiura*: CDW57515.1, *Trichinella nativa*: OUC40810.1, *Trichinella pseudospiralis*: KRX99722.1, *Trichinella papuiae*: KRZ74366.1, *S. cerevisiae* MSP domain of *Scs22p*: AJP97989.1), WormBase Parasite (<https://parasite.wormbase.org>) (*P. redivivus*: Pan_g9068.t1) and UniProt (<https://www.uniprot.org>) (*C. elegans*: P53017, *Onchocerca volvulus*: P13262.3, *H. sapiens* MSP domain of *VAPA*: Q9P0L0). b Maximum likelihood 571 tree with SH-aLRT branch support. Only significant values (≥ 0.8) are shown. MSP domains of *S. cerevisiae* (*Scs22p*) and *H. sapiens* (*VAPA*) proteins were chosen as an outgroup.