author title publication_year outcome endpoint Classification Prediction patient subgroup Pat_num age sex race ethnicity SES No demo ai technique mri ct clinical other imaging input data details model data Num model data training percent training n testing percent testing n distribution reporting validation method hyper parameter AUC Sensitvity Specificity Dice No common No comparator Human comp Auto comp DWI / FLAIR
Bagher-Ebadian, Hassan; Jafari-Khouzani, Kourosh; Mitsias, Panayiotis D.; Lu, Mei; Soltanian-Zadeh, Hamid; Chopp, Michael; Ewing, James R. Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric MRI in patients with stroke. 2011 final infarct x ns 12 x x x x multilayer perceptions x x x T1, T2, DWI, Proton-density weighted imaging Per voxel: 4 ns 11 ns ns not reported leave-1-out none 0.89 0.85 0.84 x x x x x
Dharmasaroja, Permphan; Dharmasaroja, Pornpatr A. Prediction of intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke using multiple artificial neural networks. 2012 sICH x tPA 194 x x x x x Probabilistic Neural Networks x x Gender, Age, HTN, DM, Hyperlipidemia, Coronary artery disease, Previous ischemic stroke, Previous ICH, History of TIA, Peripheral artery disease, AFib, Smoking, Valvular heart disease, Alcohol use, Statin use, Antiplatelet use, Systolic BP, Diastolic BP, Platelet counts, Prothrombin time, INR, Blood sugar, LDL-C, Stroke subtype, Stroke location, CT findings, ASPECTS, NIHSS, Onset-to-treatment time 29 90 ns 10 ns ratio cross-validation none 0.7875 0.3529 1 0.5217 x x x x
Ho, King C.hung; Speier, William; El-Saden, Suzie; Liebeskind, David S.; Saver, Jeffery L.; Bui, Alex A. T; Arnold, Corey W. Predicting discharge mortality after acute ischemic stroke using balanced data 2014 discharge mortality x ns 229 x x x x svm x x x pre-NIHSS, age, platelet count, serum glucose, congestive heart failure, myocardial infarction 6 90 ns ns 39 absolute n cross-validation none x x x 0.5 x x x x
Bentley, Paul; Ganesalingam, Jeban; Carlton Jones, Anoma Lalani; Mahady, Kate; Epton, Sarah; Rinne, Paul; Sharma, Pankaj; Halse, Omid; Mehta, Amrish; Rueckert, Daniel Prediction of stroke thrombolysis outcome using CT brain machine learning 2014 sICH x tPA 116 x x x x svm x x NCCT voxels, NIHSS per voxel: 1 + per patient: 1 ns 106 ns ns not reported cross-validation none 0.744 x x x x x x x
Seiffge, D.J.; Gensicke, H.; Peters, N.; Bonati, L.H.; Kejda-Scharler, J.; Tranka, C.; Lyrer, P.A.; Engelter, S.T.; Karagiannis, A.; Strbian, D.; Kotisaari, K.; Leppa, M.; Tatlisumak, T.; Ginsbach, P. Simple variables predict miserable outcome after intravenous thrombolysis 2014 90 day mrs x tPA 1984 x x x x logistic regression x x age, independence before stroke, normal Glasgow coma verbal score, able to lift arms and able to walk 4 ns 1346 ns 638 absolute n none none 0.786 x x x x x x x
Ho, King Chung; Speier, William; El-Saden, Suzie; Arnold, Corey W. Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features. 2017 onset time x MCA 105 x x x x stepwise multilinear regression x x x DWI, ADC, FLAIR, PWI avg intensity in ROI of DWI, ADC, FLAIR, CBF, CBV, TTP, MTT + deep AE features Per voxel: 16 ns ns ns ns not reported nested cross-validation none 0.683 0.687 0.591 0.765 x x x
McKinley, Richard; Hani, Levin; Gralla, Jan; El-Koussy, M.; Mattmann, Kaspar; Wiest, Roland; Bauer, S.; Reyes, Mauricio; Arnold, M.; Fischer, U.; Jung, S. Fully automated stroke tissue estimation using random forest classifiers (FASTER) 2017 final infarct w or w/o reperfusion x MCA 80 x x x x random forest x x x DWI, ADC, GRE, Standard dynamic susceptibility contrast-enhanced perfusion MRI, T2, Gd-MRA, T1C, TOF angiography ADC, Tmax, CBV, CBF, TTP, T1c, T2 Per voxel: 274 ns 25 ns 55 absolute n none none 0.94/0.96 x x x x x x x
Yu, Yannan; Guo, Danfeng; Liebeskind, David; Scalzo, Fabien; Lou, Min Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI 2018 sICH x < 6h 155 x x x x Kernel spectral regression x x x PWI, DWI Per voxel: PWI, AIF, DWI ns ns ns ns ns not reported nested cross-validation none 0.837 x x 0.717 x x x x
Livne, Michelle; Fiebach, Jochen B.; Sobesky, Jan; Boldsen, Jens K.; Mikkelsen, Irene K.; Mouridsen, Kim Boosted tree model reforms multimodal magnetic resonance imaging infarct prediction in acute stroke 2018 final infarct x ns 170 x x x x xgboost x x x DSC-MRI for perfusion-weighted imaging, T2-FLAIR, and DWI DWI, T2-FLAIR, pMTT, oTmax, pTmax, oCBF, pCBF, CTH, TTP, oMTT, RTH, pCBV Per voxel: 12 80 ns ns ns not reported cross-validation none 0.92 x x x x x x x
Nielsen, Anne; Hansen, Mikkel Bo; Tietze, Anna; Mouridsen, Kim Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning. 2018 final infarct x tPA 222 x x x x x cnn x x x PWI, T2-FLAIR, DWI mean capillary transit time, cerebral blood volume, cerebral blood flow, cerebral metabolism of oxygen, relative transit time heterogeneity, delay, TRACE DWI, ADC, and T2-FLAIR 64x64x9 85 158 15 29 ratio, absolute n none none 0.88 x x x x x x x
Giacalone, Mathilde; Rasti, Pejman; Debs, Noelie; Frindel, Carole; Cho, Tae-Hee; Grenier, Emmanuel; Rousseau, David Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. 2018 final infarct x anterior 4 x x x x x svm x x x PWI DSC-PWI (60/3)x59 = 1180 99 ns ns ns not reported cross-validation none x 0.96 0.947 x x x x x
Bouteldja, Nassim; Heinrich, Mattias P.; Lucas, Christian; Kemmling, Andre; Aulmann, Linda F.; Mamlouk, Amir Madany Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low -dimensional shape representations 2018 final infarct x thrombectomy 29 x x x x cnn x x x CT perfusion CBV, Time To Drain (TTD) maps 64x64x28x2 80 ns 20 ns ratio cross-validation none x x x 0.43 x x x x
Van Os, Hendrikus J.A.; Kruyt, Nyika D.; Wermer, Marieke J.H.; Hilbert, Adam; Marquering, Henk A.; Ramos, Lucas A.; Olabarriaga, Silvia D.; Zwinderman, Koos H.; Van Leeuwen, Matthijs; Van Walderveen, Marianne A.A.; Dippel, Diederik W.J.; Steyerberg, Ewout W.; Lingsma, Hester F.; Venema, Esmee; Van Der Schaaf, Irene C.; Schonewille, Wouter J.; Majoie, Charles B.L.M. Predicting outcome of endovascular treatment for acute ischemic stroke: Potential value of machine learning algorithms 2018 successful recan, 90 day mrs x thrombectomy, anterior 1383 x x x x random forest x x NIHSS, GCS, medical history (TIA, ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, myocardial infarction, peripheral artery disease, DM, HTN, hypercholesterolemia), smoking, laboratory tests (blood glucose, INR, creatinine, thrombocyte count, CRP), blood pressure, medication (thrombocyte aggregation inhibitors, oral anticoagulant drugs, anti-hypertensive drugs, statins), modified Rankin Score (mRS) before stroke onset, administration of intravenous tPA (yes/no), stroke onset to groin time, transfer from another hospital, admitted during weekend or off hours clot burden score, clot location, collaterals, and presence of intracranial atherosclerosis 53 80 ns 20 ns ratio nested cross-validation grid 0.55/0.79 x x x x x x x
Monteiro, Miguel; Fonseca, Ana Catarina; Freitas, Ana Teresa; Pinho E Melo, Teresa; Francisco, Alexandre P.; Ferro, Jose M.; Oliveira, Arlindo L. Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients. 2018 90 day mrs x tPA 425 x x x x x random forest x x x demographic information, past history and risk factors, the time between stroke onset, arrival at the hospital and the start of treatment, NIHSS (discriminated by field, not just the final result), test results, type of treatment 49 90 ns ns ns not reported cross-validation grid 0.808 x x x x x x x
Ho, King Chung; Speier, William; Zhang, Haoyue; Scalzo, Fabien; El-Saden, Suzie; Arnold, Corey W. A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging. 2019 onset time x MCA 131 x x x x logistic regression x x x DWI, ADC, FLAIR, PWI perfusion parameters AE deep features, AIF 131 90 ns 10 ns ratio nested cross-validation none 0.765 0.788 0.609 0.788 x x x
Tozlu, Ceren; Maucort-Boulch, Delphine; Ozenne, Brice; Cho, Tae-Hee; Nighoghossian, Norbert; Derex, Laurent; Hermier, Marc; Mikkelsen, Irene Klaerke; Berthezene, Yves; Pedraza, Salvador; Fiehler, Jens; Ostergaard, Leif; Baron, Jean-Claude Comparison of classification methods for tissue outcome after ischaemic stroke 2019 final infarct x anterior, <6/12h, tPA/conservative treatment 55 x x x x Adaptive boosting x x x T2 FLAIR, DWI, ADC, PWI, CBV, CBF, TTP, MTT, TMAX T2 FLAIR, DWI, ADC, CBV, CBF, TTP, MTT, TMAX Per voxel: 8 ns 54 ns 1 absolute n nested cross-validation grid 0.88/0.29 0.49 0.97 0.28 x x x x
Ho, King Chung; Sarma, Karthik V.; Scalzo, Fabien; Speier, William; El-Saden, Suzie; Arnold, Corey Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images 2019 final infarct x MCA 48 x x x x cnn x x x FLAIR, PWI PWI source 2x25x25x64 90 ns ns ns not reported nested cross-validation none 0.871 0.799 x 0.347 x x x x
Kasasbeh, Aimen S.; Christensen, Soren; Albers, Gregory W.; Lansberg, Maarten G.; Parsons, Mark W.; Campbell, Bruce Artificial Neural Network Computer Tomography Perfusion Prediction of Ischemic Core 2019 Infarct core mapping x anterior, <8h 128 x x x x x multilayer perceptions x x CTP parameters (rCBF, CBV, MTT, and Tmax), clinical parameters available at time of presentation (NIHSS, age, sex, and time from symptom onset to CTP) CBF, CBV, TTP, Tmax + NIHSS, age, sex, and time from symptom onset to CTP ns 60 ns 20 ns ratio cross-validation none 0.87 0.91 0.66 0.43 x x x x
Lopez-Rivera, Victor; Lee, Songmi; Sheth, Sunil A.; Savitz, Sean I.; Barman, Arko; Grotta, James C.; Yoo, Albert J.; Inam, Mehmet E.; Giancardo, Luca Machine Learning-Enabled Automated Determination of Acute Ischemic Core From Computed Tomography Angiography 2019 LVO + Infarct Core mapping x anterior 224 x x x cnn x x x CTA ns 90 ns ns ns not reported cross-validation none 0.88/0.9/0.844 x x x x x x x
Qiu, W.; Kuang, H.; Nair, J.; Assis, Z.; Najm, M.; McDougall, C.; McDougall, B.; Chung, K.; Wilson, A. T.; Goyal, M.; Hill, M. D.; Demchuk, A. M.; Menon, B. K. Radiomics-Based Intracranial Thrombus Features on CT and CTA Predict Recanalization with Intravenous Alteplase in Patients with Acute Ischemic Stroke. 2019 succesful lys x tPA, ICA/M1 MCA 67 x x x x x x svm x x x nCCT and CTA and manually extracted thrombus NCCT, CTA, and radiomics change features 12 80 ns ns ns not reported cross-validation none 0.85 x x x x x x x
Hilbert, A.; Barros, R.S.; Strijkers, G.J.; Ramos, L.A.; Olabarriaga, S.D.; Zwinderman, A.H.; van Os, H.J.A.; Wermer, M.J.H.; van der Schaaf, I.; Dippel, D.; Roos, Y.B.W.E.M.; van Zwam, W.H.; Yoo, A.J.; Tolhuisen, M.L.; Emmer, B.J.; Majoie, C.B.L.M.; Marquering, H.A.; Lycklama a Nijeholt, G.J. Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke 2019 successful recan, 90 day mrs x thrombectomy 1301 x x x x cnn x x x CTA Maximum Intensity Projections 368x432 75 ns ns ns not reported cross-validation none 0.71/0.65 x x x x x x x
Heo, JoonNyung; Yoon, Jihoon G.; Park, Hyungjong; Kim, Young Dae; Nam, Hyo Suk; Heo, Ji Hoe Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. 2019 90 day mrs x no recanalization therapy (not specified) 2604 x x x x multilayer perceptions x x x Age, Sex, Smoking status, Time from onset to admission, individual NIHSS, TOAST classification, Systolic BP, Diastolic BP, Pre-Stroke mRS, HTN, Diabetes, Hypercholesterolemia, Metabolic syndrome, AFib, Myocardial infarction, Chronic heart failure, Cancer, Previous stroke, Statin, Antiplatelet, Anticoagulation, Hemoglobin, White blood cell count, Platelet count, Prothrombin time, Glucose level 38 67 1744 ns ns not reported single split none 0.888 0.367 0.984 x x x x x
Winder, Anthony J.; Siemonsen, Susanne; Flottmann, Fabian; Fiehler, Jens; Thomalla, Gotz; Forkert, Nils D. Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients 2019 final infarct x thrombectomy, tPA, distal ICA/M1 of MCA 100 x x x x random forest x x PWI, DWI, Clinical: NIHSS, age, sex, time from symptom onset ADC, distance to ischemic core, tissue type, anatomical location, CBV, MTT, Tmax, CBF, NIHSS, age, sex, time from symptom onset Per voxel: 8 + per patient: 4 ns 99 ns ns not reported leave-1-out none x 0.544 0.997 0.464 x x x x
Xie, Yuan; Jiang, Bin; Li, Ying; Zhu, Guangming; Wintermark, Max; Zaharchuk, Greg; Gong, Enhao; Michel, Patrik Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information 2019 90 day mrs x anterior 512 x x x x x Gradient Boosting Machines x x Sex, Age, Total ASPECTS, Specific ASPECTS, Collaterals status, Hyperdense MCA sign present, Infarct volume on CTP, penumbra volume on CTP, Side of stroke, Occluded vessels, Baseline TIMI score, NASCET degree of stenosis (left/right), NIHSS baseline 23 80 ns ns ns not reported cross-validation none 0.748 0.655 0.692 x x x x x
Alawieh, Ali; Zaraket, Fadi; Alawieh, Mohamed Baker; Chatterjee, Arindam Rano; Spiotta, Alejandro Using machine learning to optimize selection of elderly patients for endovascular thrombectomy. 2019 90 day mrs x thrombectomy, elderly 146 x x x M5P - regression decision tree x x age, gender, race, pre-stroke modified Rankin Scale (mRS) score, presence of diabetes, hyperlipidemia, HTN, AFib, ASPECT, ivtPA 10 ns 110 ns 36 absolute n cross-validation none x x x x x x x
Smith, Wade S.; Keenan, Kevin J.; Lovoi, Paul A. A Unique Signature of Cardiac-Induced Cranial Forces During Acute Large Vessel Stroke and Development of a Predictive Model 2020 LVO x ns 42 x x x x Unknown x x x headpulse from cranial accelerometer, electrocardiogram outputs measures of trace-by-trace variation from the ECG-signal-averaged mean 156 80 ns ns ns not reported cross-validation none 0.79 0.737 0.87 x x x x x
Chan, Lung; Hong, Chien-Tai; Chung, Chen-Chih; Bamodu, Oluwaseun Adebayo; Chiu, Hung-Wen Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death 2020 sICH, 90-day-mortality x tPA 331 x x x x multilayer perceptions x x x Diastolic BP, LDL, Hyperlipidemia, AFib, Heart disease, Age, tPA total dose (mg), Baseline NIHSS, DM, Ischemic heart disease pre-treatment parameters 5/6 80 326/285 ns ns not reported cross-validation none 0.941/0.976 0.857/0.944 0.925/0.955 x x x x x
Chiu, Hung-Wen; Chung, Chen-Chih; Chen, You-Chia; Hong, Chien-Tai; Hu, Chaur-Jong; Hu, Han-Hwa; Chan, Lung; Chi, Nai-Fang Artificial neural network-based analysis of the safetand efficacy of thrombolysis for ischemic stroke in older adults in Taiwan 2020 successful lys, 90 day mrs x elderly, <3h 80 x x x x multilayer perceptions x x x age, sex, history of HTN, history of T2DM, AF status, history of previous stroke, initial NIHSS score, onset-to-hospital time, tPA received 9 80 ns ns ns not reported cross-validation none 0.974 0.667 0.875 x x x x x
You, Jia; Yu, Philip L. H.; Tsang, Anderson C. O.; Leung, Gilberto K. K.; Tsui, Eva L. H.; Woo, Pauline P. S.; Lui, Carrie S. M. Automated Hierarchy Evaluation System of Large Vessel Occlusion in Acute Ischemia Stroke 2020 LVO x ns 300 x x x x xgboost x x demographic information, clinical symptoms, vital signs, imaging features obtained from NCCT scans extracted by U-Net clinical data, NCCT features 1049 ns 200 ns 100 absolute n cross-validation none 0.847 0.953 0.684 0.804 x x x x
Qiu, W.; Kuang, H.; Ospel, J.; Hill, M. D.; Demchuk, A.; Goyal, M.; Menon, B. Automated prediction of ischemic brain tissue fate from multi-phase CT-Angiography in patients with acute ischemic stroke using machine learning 2020 final infarct x ns 284 x x x x random forest x x x multiphase CT angiography Per voxel: (1) average and standard deviation of HUs across 3-phase CTA images; (2) coefficient of variance of HUs in 3-phase CTA images; (3) changing slopes of HUs between any two phases; (4) peak of 6 ns 140 ns 144 absolute n cross-validation none x x x 0.225 x x x x
Stib, Matthew T.; Yao, Anthony D.; Boxerman, Jerrold L.; Baird, Grayson L.; Vasquez, Justin; Dong, Mary P.; Kim, Yun Ho; Subzwari, Sumera S.; Triedman, Harold J.; Wang, Amy; Wang, Hsin-Lei Charlene; Eickhoff, Carsten; Cetintemel, Ugur; Jayaraman, Mahesh; McTaggart, Ryan A. Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network 2020 LVO x ns 540 x x x x cnn x x x multiphase CT angiography 3 phase MIP ns 80 ns 10 ns ratio single split none 0.89 1 0.77 x x x x x
Meijs, Midas; Meijer, Frederick J.A.; Prokop, Mathias; Ginneken, Bram van; Manniesing, Rashindra Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning 2020 LVO x anterior 584 x x x x cnn x x x NCCT, CTA, 4D-CTA, derived perfusion maps 3D normalized TTS map 68x68x68 ns 184 ns 279 absolute n single split none 0.98 0.95 0.92 x x x x x
Wang, Feng; Huang, Yuanhanqing; Zhang, Wei; Xia, Yong; Fang, Kun; Cheng, Xin; Zhou, Xiaoyu; Liu, Xueyuan; Yu, Xiaofei; Li, Gang; Wang, Xiaoping; Luo, Guojun; Wu, Danhong; Campbell, Bruce C.V.; Dong, Qiang; Zhao, Yuwu Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model 2020 sICH x tPA 2237 x x x x multilayer perceptions x x x age, AFib, glucose level, NIHSS score, door to needle time 5 70 ns 30 ns ratio cross-validation none 0.82 x x x x x x x
Wang, Kai; Shou, Qinyang; Ma, Samantha J.; Liebeskind, David; Qiao, Xin J.; Saver, Jeffrey; Salamon, Noriko; Kim, Hosung; Yu, Yannan; Xie, Yuan; Zaharchuk, Greg; Scalzo, Fabien; Wang, Danny J. J. Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke. 2020 Penumbral Tissue Mapping x thrombectomy, anterior 149 x x x x x cnn x x x 3-dimensional pseudo-continuous arterial spin labeling (pCASL), DWI CBF, ADC 2x48x48x48 90 ns ns 12 ratio cross-validation none 0.958/0.957/0.942 x x 0.47/0.43 x x x x
Yu, Yannan; Xie, Yuan; Thamm, Thoralf; Gong, Enhao; Ouyang, Jiahong; Huang, Charles; Christensen, Soren; Marks, Michael P.; Lansberg, Maarten G.; Albers, Gregory W.; Zaharchuk, Greg Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging. 2020 final infarct x thrombectomy, anterior 182 x x x x cnn x x x DWI, PWI, ADC, Tmax, CBF, CBV, MTT image dim (not specified) x5x8 60 ns 20 ns ratio cross-validation none 0.92 0.66 0.97 0.53 x x x x
Rava, Ryan A.; Ionita, Ciprian N.; Mokin, Maxim; Snyder, Kenneth V.; Waqas, Muhammad; Siddiqui, Adnan H.; Levy, Elad I.; Davies, Jason M. Performance of angiographic parametric imaging in locating infarct core in large vessel occlusion acute ischemic stroke patients 2020 Infarct core mapping x thrombectomy, successful reca 25 x x x x svm x x x DSA (anterior-posterior, lateral) MTT, AUC Per voxel: 2 ns 24 ns 1 absolute n cross-validation none 0.9038 x x x x x x x
Suetens, Paul; Robben, David; Boers, Anna M.M.; Marquering, Henk A.; Roos, Yvo B.W.E.M.; Majoie, Charles B.L.M.; van Oostenbrugge, Robert J.; van Zwam, Wim H.; Dippel, Diederik W.J.; van der Lugt, Aad; Langezaal, Lucianne L.C.M.; Lemmens, Robin Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning 2020 final infarct x thrombectomy, anterior, <=6h 188 x x x x cnn x x x Time-attenuation curves and manual AIF + time between stroke onset and CTP imaging CTP image, downsampled CTP, arterial input function, metadata CTP dim (not specified), +1+1 80 ns ns ns not reported cross-validation experimentally set on single split 0.54 x x 0.47 x x x x
Li, X.; Sun, C.; Zhao, Z.; Wang, F.; Zheng, X.; Zou, J.; Wu, M.; Ge, W.; Zhou, J. Using machine learning to predict stroke-associated pneumonia in Chinese acute ischaemic stroke patients 2020 post-stroke pneumonia x ns 3160 x x x x xgboost x x x age, premorbid mRS, NIHSS at admission, FBG, sex, and history of AF 6 80 ns 20 ns ratio cross-validation grid 0.841 0.81 0.733 x x x x x
Burgermeister, Simon; Bernava, Gianmarco; Rosi, Andrea; Carrera, Emmanuel; Hofmeister, Jeremy; Vargas, Maria Isabel; Montet, Xavier; Poletti, Pierre-Alexandre; Platon, Alexandra; Lovblad, Karl-Olof; MacHi, Paolo Clot-Based Radiomics Predict a Mechanical Thrombectomy Strategy for Successful Recanalization in Acute Ischemic Stroke 2020 first time reca, num passages x thrombectomy 136 x x x x svm x x x NCCT, CT-angiography thrombus-related radiomic features 9 ns 109 ns 47 absolute n nested cross-validation none 0.88 0.5 0.971 x x x x x
Nishi, Hidehisa; Ishii, Akira; Ono, Isao; Okawa, Masakazu; Miyamoto, Susumu; Oishi, Naoya; Ogura, Takenori; Chihara, Hideo; Sunohara, Tadashi; Fukumitsu, Ryu; Imamura, Hirotoshi; Sadamasa, Nobutake; Nakahara, Ichiro; Sakai, Nobuyuki; Yamana, Norikazu; Hatano, Taketo Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion 2020 90 day mrs x thrombectomy, anterior 324 x x x x cnn x x x DWI 128×128×32 ns 200 ns 74 absolute n cross-validation none 0.73 0.722 0.602 x x x x x
Alaka, Shakiru A.; Brobbey, Anita; Williamson, Tyler; Demchuk, Andrew M.; Sajobi, Tolulope T.; Menon, Bijoy K.; Goyal, Mayank; Hill, Michael D. Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models 2020 90 day mrs x ns 1121 x x x x svm x x x age, sex, NIHSS, treatment received, blood glucose, systolic blood pressure, diastolic blood pressure, HTN, diabetes, AFib, international normalize ratio, creatinine, platelet count, hematocrit 14 ns 614 ns 507 absolute n cross-validation grid 0.71 0.65 0.77 x x x x x
Fu, Bowen; Qi, Shouliang; Tao, Lin; Xu, Haibin; Kang, Yan; Yao, Yudong; Chen, Huisheng; Yang, Benqiang; Duan, Yang Image Patch-Based Net Water Uptake and Radiomics Models Predict Malignant Cerebral Edema After Ischemic Stroke 2020 edema x MCA 116 x x x x random forest x x NCCT + age, gender, and NIHSS score Image patch-based net water uptake + standard deviation, slope, entropy, skewness, kurtosis + age, gender, and NIHSS score 16 ns 115 ns ns not reported cross-validation grid 0.96 0.85 0.95 0.91 x x x x
Grosser, Malte; Gellißen, Susanne; Borchert, Patrick; Sedlacik, Jan; Nawabi, Jawed; Fiehler, Jens; Forkert, Nils Daniel Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features. 2020 final infarct x first time, anterior, NIHSS > 4, <12hrs 99 x x x x xgboost x x x DWI, PWI ADC, CBF, CBV, MTT, Tmax, MNI x,y,z coordinates Per voxel: 8 ns 98 ns ns not reported leave-one-out grid 0.893 x x 0.387 x x x x
Lee, Hyunna; Lee, Eun-Jae; Ham, Sungwon; Lee, Han-Bin; Lee, Ji Sung; Kwon, Sun U.; Kim, Jong S.; Kim, Namkug; Kang, Dong-Wha Machine Learning Approach to Identify Stroke Within 4.5 Hours. 2020 onset time x ns 355 x x x x random forest x x x MRI DWI and FLAIR, infarct segmentation infarct volume, ADC, DWI, FLAIR: intensity, gradient, texture information, local binary patterns within the infarct regions, statistical measurements (ie, mean, SD, skewness, and kurtosis) 3x89 85 ns ns ns not reported single split none 0.851 0.758 0.826 x x x x
Bacchi, Stephen; Patel, Sandy; Zerner, Toby; Kleinig, Timothy; Jannes, Jim; Oakden-Rayner, Luke Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes: A Pilot Study 2020 90 day mrs, dichotomized NIHSS at 24h x ns 204 x x x x x x cnn x x NCCT and clinical (not specified) 128x128x12 + (not specified) 85 ns 15 ns ratio cross-validation grid 0.75/0.7 0.56/0.93 0.93/0.53 0.69/0.74 x x x x
Brugnara, Gianluca; Neuberger, Ulf; Mahmutoglu, Mustafa A.; Foltyn, Martha; Herweh, Christian; Heiland, Sabine; Ulfert, Christian; Bendszus, Martin; Mohlenbruch, Markus A.; Pfaff, Johannes A.R.; Vollmuth, Philipp; Nagel, Simon; Schonenberger, Silvia; Ringleb, Peter Arthur Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning 2020 90 day mrs x thrombectomy, anterior 246 x x x x Gradient Boosting x x Clinical variables (sex, age, premorbid mRS score, NIHSS score on admission, presence of wake-up stroke, interval from symptom onset to imaging and to groin puncture, concomitant treatment with intravenous r-tPA, comorbidities [HTN, hyperlipidemia, coronary heart disease, diabetes including Hba1c and glucose level]), NCCT (acute ischemic volume, eASPECTS), CTA (site of vessel occlusion on CTA, e-CTA collateral score), CTP parameters (volumes of ischemic penumbra, infarct core, and penumbra to core ratio) 20 ns ns ns ns not reported .632 bootstrap .632 bootstrap 0.747 x x x x x x x
Ramos, Lucas A.; Zwinderman, Aeilko H.; Olabarriaga, Silvia D.; Kappelhof, Manon; Van Kranendonk, Katinka; Strijkers, Gustav J.; Majoie, Charles B. L. M.; Marquering, Henk A.; van Os, Hendrikus J. A.; Kruyt, Nyika D.; Wermer, Mariekke J. H.; Chalos, Vicky; van der Lugt, Aad; Roos, Yvo B. W. E. M.; van Zwam, Wim H.; van der Schaaf, Irene C.; van Walderveen, Marianne A. A. Predicting Poor Outcome Before Endovascular Treatment in Patients With Acute Ischemic Stroke 2020 90 day mrs x thrombectomy, anterior 1526 x x x x multilayer perceptions x x previous stroke, myocardial infarction, peripheral artery disease, DM, HTN, AFib, Hypercholesterolemia, Antiplatelet use, DOAC use, Coumarin use, Heparin use, Blood pressure medication, Statin use, HAS on baseline NCCT, Relevant (new) ischemia/hypodensity, hemorrhagic transformation, Leukoaraiosis, Old infarcts in same ASPECTS region, Intracranial atherosclerosis on CTA scored by core lab, Sex, Most proximal occlusion segment on CTA scored by core lab, based on CBS, Smoking, Inclusion on weekday or weekend, Admission between 17.00-08-00 (weekday)/ weekend or holiday, Transfer from other hospital, Intravenous alteplase treatment, No abnormalities at symptomatic carotid bifurcation, 50% or more atherosclerotic stenosis at symptomatic carotid bifurcation, Atherosclerotic occlusion/Floating thrombus/Pseudo-occlusion/Carotid dissection/Occlusion side on CTA scored by core lab, In-hospital stroke, Contraindications for IVT, Second occlusion in other territory present, Collateral score, Pre-stroke mRS, ASPECTS, CBS, NIHSS; GLucose level, Systolic BP, Diastolic BP, INR, Thrombocyte count, CRP, Age, Total Glasgow Coma Scale, Onset-to-groin-time, onset-two-IVT 51 90 ns 10 ns ratio nested cross-validation grid 0.81 0.53 0.89 x x x x x
Kim, Yoon-Chul; Kim, Hyung Jun; Chung, Jong-Won; Kim, In Gyeong; Seo, Woo-Keun; Kim, Gyeong-Moon; Bang, Oh Young; Seong, Min Jung; Kim, Keon Ha; Jeon, Pyoung; Nam, Hyo Suk Novel estimation of Penumbra zone based on infarct growth using machine learning techniques in acute ischemic stroke 2020 final infarct with and without successful recanalization x MCA, thrombectomy 92 x x x x random forest x x x DWI, PWI, ADC ADC and rTTP features per voxel: 48 ns 53 ns 39 absolute n cross-validation random x x x 0.49 x x x x
Zihni, Esra; Madai, Vince Istvan; Livne, Michelle; Galinovic, Ivana; Khalil, Ahmed A.; Fiebach, Jochen B.; Frey, Dietmar Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. 2020 90 day mrs x supratentorial 314 x x x x multilayer perceptions x x x Age, Sex, NIHSS, Cardiac history, DM, Hypercholesterolemia, Thrombolysis 7 75 ns 25 ns ratio nested cross-validation grid 0.83 x x x x x x x
Wu, MingRu; Li, Xiang; Wang, FuSang; Zheng, XiaoHan; Sun, Chao; Zou, JianJun; Pan, XiDing; Zhu, YuBing; Zhao, Zheng; Jiang, ChunLian; Liu, YuKai; Zhou, JunShan; Yang, Jie; Wang, ShiHao Predicting 6-Month Unfavorable Outcome of Acute Ischemic Stroke Using Machine Learning 2020 six-month dichotomized mRS x ns 1735 x x x x random forest x x x age, sex, onset-to-admission delay > 4,5h, HTN, DM, hyperlipidemia, coronary artery disease, AFib, previous cerebral infarction, valvular heart disease, smoking (never, former, current), drinking (never, former, current), premorbid mRS, NIHSS at admission, BMI, pulse, systolic BP, diastolic BP, platelet count, urea nitrogen, creatinine, blood fasting glucose, triglycerides, total cholesterol, LDL-cholesterol, HDL cholesterol, IV thrombolysis 21 80 ns 20 ns ratio cross-validation grid 0.874 0.5 0.95 x x x x x
Nishi, Hidehisa; Ono, Isao; Okawa, Masakazu; Miyamoto, Susumu; Ishii, Akira; Oishi, Naoya; Ogura, Takenori; Chihara, Hideo; Hatano, Taketo; Sunohara, Tadashi; Fukumitsu, Ryu; Imamura, Hirotoshi; Sakai, Nobuyuki; Nakahara, Ichiro; Yamana, Norikazu; Sadamasa, Nobutake Predicting Clinical Outcomes of Large Vessel Occlusion before Mechanical Thrombectomy Using Machine Learning 2020 90 day mrs x thrombectomy, anterior 502 x x x x regularized LR x x age, sex, premorbid mRS, HTN, DM, AFib, antithrombotic drug intake, stroke onset pattern, NIHSS, blodd glucose level on arrival, site of occlusion pretreatment, side of occlusion, ASPECTS, iv-tPA administration, last-seen-well-time, time at hospital arrival 16 ns 387 ns 115 absolute n cross-validation grid 0.9 x x x x x x x
Su, Emily Chia-Yu; Chiu, Hung-Wen; Chung, Chen-Chih; Hong, Chien-Tai; Huang, Yao-Hsien; Chan, Lung; Hu, Chaur-Jong Predicting major neurologic improvement and long-term outcome after thrombolysis using artificial neural networks 2020 90 day mrs, >=8 point NIHSS improvement at 24h x tPA, age 18-80, NIHSS 4-25 196 x x x x multilayer perceptions x age, baseline systolic BP, diastolic BP, heart rate, glucose level at admission, GCS, NIHSS score, DM, HbA1c level, stroke subtype 10 80 ns ns 54 absolute n cross-validation none x 0.824/0.783 0.533/0.583 x x x x x
Kang, Yoon Jung; Cho, Han Jin; Kim, Nae Ri; Lee, Suk Min; Choi, Byung Kwan; Sung, Sang Min; Cho, Giphil Prediction of early neurological deterioration in acute minor ischemic stroke by machine learning algorithms 2020 worsening of NIHSS within 3 days x NIHSS => 3 739 x x x x tree boosting x age, sex, HTN, diabetes, hyperlipidemia, smoking, coronary heart disease, AFib, previous TIA/ischemic stroke/hemorrhagic stroke, location and arterial territory, stroke subtypes, hemorrhagic transformation, NIHSS, relevant arterial steno-occlusive lesions 17 ns ns ns ns not reported none none 0.934 0.833 x 0.8 x x x x
Heo, Tak Sung; Kim, Yu Seop; Choi, Jeong Myeong; Jeong, Yeong Seok; Seo, Soo Young; Lee, Jun Ho; Jeon, Jin Pyeong; Kim, Chulho Prediction of stroke outcome using natural language processing-based machine learning of radiology report of brain MRI 2020 90 day mrs x first time 1840 x x x x cnn x x x MRI Radiology Reports ns 70 ns 30 ns ratio cross-validation grid 0.805 x x x x x x x
Matsumoto, Koutarou; Kamouchi, Masahiro; Soejima, Hidehisa; Yonehara, Toshiro; Nohara, Yasunobu; Nakashima, Naoki Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes after Acute Ischemic Stroke 2020 90 day mrs, in-hospital mortality x ns 3445 x x x x Gradient boosting x Clinical data: Age, Men, HTN, DM, Dyslipidemia, AFib, Current smoker, BMI, Peripheral artery disease, coronary artery disease, Congestive heart failure, Kidney disease on dialysis, Stroke, Cancer, pre-admission mRS, Onset-to-admission time, stroke subtype (Small vessel occlusion, Large artery atherosclerosis, Cardioembolic, Other undetermined, Tranisent ischemic attack, Systolic BP, Diastolic BP, Heart rate, Body temperature, NIHSS score\n\nLaboratory data: Hemoglobin, White Blood Cell Count, Albumin, Albumin/globulin ratio, ALT, AST, Lactate dehydrogenase, gamma-GT, total Bilirubin, BNP, CK, CRP, D-Dimers, HbA1c, Glucose, BUN, Creatinine, HDL, LDL, Triglycerides, Uric acid, Potassium, Sodium, Chloride 49 80 ns 20 ns ratio nested cross-validation none 0.84/0.92 x x x x x x x
Grosser, Malte; Gellißen, Susanne; Borchert, Patrick; Sedlacik, Jan; Nawabi, Jawed; Fiehler, Jens; Forkert, Nils D. Localized prediction of tissue outcome in acute ischemic stroke patients using diffusion- and perfusion-weighted MRI datasets. 2020 final infarct x anterior, <12h 99 x x x x x logistic regression x x x DWI, PWI ADC, CBV, CBF, MTT, Tmax + lesion probabilites Per voxel: 6 ns 98 ns ns not reported leave-one-out none 0.872 0.444 0.955 0.348 x x x x
Velagapudi, Lohit; Mouchtouris, Nikolaos; Schmidt, Richard F.; Khanna, Omaditya; Sweid, Ahmad; Al Saiegh, Fadi; Gooch, M. Reid; Jabbour, Pascal; Rosenwasser, Robert H.; Tjoumakaris, Stavropoula; Vuong, David; Sadler, Bryan A Machine Learning Approach to First Pass Reperfusion in Mechanical Thrombectomy: Prediction and Feature Analysis 2021 first time reca x thrombectomy 220 x x x x x random forest x x age > 65, age > 80, BMI (categorical low, medium, high based on standard deviation), sex, history of Cerebrovascular accident, Coronary Artery Disease, HTN, T2DM, Hhyperlipidemia, or AFib, smoking status, blood thinner use, statin use, NIHSS on presentation, anterior or posterior stroke, proximal or distal stroke, use of tPA before procedure, time between symptom onset to catheterization, use of stent retriever, and use of aspiration 20 66 ns 33 ns ratio cross-validation none 0.659 0.615 0.702 x x x x x
Zhang, Haoyue; Polson, Jennifer S.; Nael, Kambiz; Salamon, Noriko; Yoo, Bryan; El-Saden, Suzie; Scalzo, Fabien; Speier, William; Arnold, Corey W. Intra-Domain Task-Adaptive Transfer Learning to Determine Acute Ischemic Stroke Onset Time 2021 onset time x ns 422 x x x x cnn x x x FLAIR, DWI, ADC, T2 stacked (flair, dwi, t2) slices ns 64 ns 20 ns ratio single split none 0.74 0.7 0.81 x x x x
Silva, Carlos A.; Pinto, Adriano; Pereira, Sergio; Alves, Victor; Reyes, Mauricio; Meier, Raphael; Wiest, Roland Combining unsupervised and supervised learning for predicting the final stroke lesion 2021 final infarct x thrombectomy 75 x x x x x Restricted Boltzmann Machines + CNN x x x ADC, MTT, TTP, Tmax, rCBF, rCBV ADC, MTT, TTP, Tmax, rCBF, rCBV 6x84x84 ns 36 ns 32 absolute n cross-validation none x x x 0.38 x x x x
Debs, Noelie; Frindel, Carole; Cho, Tae-Hee; Nighoghossian, Norbert; Rousseau, David; Berthezene, Yves; Eker, Omer; Ovize, Michel; Buisson, Marielle; Mechtouff, Laura Impact of the reperfusion status for predicting the final stroke infarct using deep learning 2021 final infarct x thrombectomy 109 x x x x cnn x x x DWI, FLAIR, PWI, CBF, CBV, MTT, Tmax, TTP DWI, ADC, CBV, CBF, TMAX 5x192x192 80 ns ns ns not reported cross-validation independently in fixed search space 0.87/0.81 0.43/0.63 x 0.43/0.44 x x x x
Hakim, Arsany; Wiest, Roland; Lansberg, Maarten G.; Winzeck, Stefan; Parsons, Mark W.; Lucas, Christian; Robben, David; Reyes, Mauricio; Zaharchuk, Greg; Christensen, Soren Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge 2021 Infarct Core Mapping x thrombectomy, anterior 103 x x x x x cnn x x x dynamic CTP, postprocessed perfusion maps (CBF, CBV, MTT, Tmax) calculated by conventional thresholding method (RAPID) ns ns 63 ns 40 absolute n none none x 0.55 x 0.51 x x x x
Yu, Y.; Xie, Y.; Thamm, T.; Gong, E.; Ouyang, J.; Christensen, S.; Marks, M.P.; Lansberg, M.G.; Zaharchuk, G.; Albers, G.W. Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke 2021 Tissue at risk, ischemic core x ns 237 x x x x cnn x x x DWI, ADC, Tmax, MTT, CBF, CBV, and thresholded masks of Tmax and ADC image dim (not specified) x5x8 60 ns 20 ns ratio cross-validation none 0.92/0.94 x x 0.6/0.57 x x x x
Kappelhof, N.; Ramos, L.A.; Kappelhof, M.; van Kranendonk, K.R.; Majoie, C.B.L.M.; Marquering, H.A.; van Os, H.J.A.; Kruyt, N.D.; Wermer, M.J.H.; Dippel, Diederik; Lingsma, Hester; Chalos, V.; Roos, Y.B.W.E.M.; van Zwam, W.H.; van der Schaaf, I.C.; van Walderveen, M.A.A.; van Oostenbrugge, R.J. Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke 2021 90 day mrs, dichotomized mRS after recanalization x thrombectomy 1363 x x x x x fuzzy decision tree x x age, sex, ASPECTS, Clot Burden Score, Creatinine, CRP, GCS, Glucose, INR, thrombolysis, prior use of antiplatelets/coumarin/antihypertensive, heparin use, NOAC use, statin use, NIHSS, pre-stroke-mRS, history of AFib/Diabetes/Hypercholesterinemia/HTN/Myocardial infarction/peripheral artery disease/previous stroke/previos stroke in the same vascular area, transfer from other hospital, BP at baseline, smoking, onset-to-thrombolysis,imaging-to-puncture, imaging-to-thrombolysis, ER-to-imaging, ER-to-puncture, onset-to-imaging, onset-to-intervention, hospital-to-intervention-hospital (intervention hospital, first hospital, referral hospital), off-hours/weekend admission, onset-to-groin/CTA (scored by radiologist): occluded segment, collateral score, hyperdense artery sign, hemorrhagic transformation, new ischemia, Leukoaraiosis, previous infarctions, carotid dissection, floating thrombus, normal carotid bifurcation, amount of aortic stenosis, atherosclerotic occlusion, lesions at bifurcation, carotid pseudo-occlusion, carotid web, intracranial atherosclerosis, intracranial vascular malformation, most proximal occluded segment, occlusion side, 86 ns 1090 ns ns not reported cross-validation none x x x x x x x
Hamann, Janne; Luft, Andreas R.; Wegener, Susanne; Herzog, Lisa; Sick, Beate; Wehrli, Carina; Bink, Andrea; Piccirelli, Marco; Stippich, Christoph; Dobrocky, Tomas; Gralla, Jan; Wiest, Roland; Panos, Leonidas; Fischer, Urs; Arnold, Marcel; Kaesmacher, Johannes Machine-learning-based outcome prediction in stroke patients with middle cerebral artery-M1 occlusions and early thrombectomy 2021 90 day mrs x MCA, thrombectomy, M1, <6 hrs 222 x x x x random forest x x rCBV, rCBF, Tmax, time-to-peak, temporal maximum intensity projections, manually drawn regions of interest, automated ROI segmentations, patient characteristics (Age, Sex, Risk factors, Previous medication, On admission NIHSS, On admission vital signs, on admission lab parameters, infarct side, IVT, Onset to imaging, Onset to groin puncture, General anesthesia, Collateralization status, Perfusion imaging, After treatment TICI/NIHSS/ICH) age, NIHSS, systolic blood pressure, hypertension, diabetes, smoking, previous ischemic event, preceding IVT, onset to groin puncture time, collateralization status, perfusion value of the medial MCA 12 80 ns 20 ns ratio cross-validation none 0.684 x x x x x x x
Jiang, B.; Zhu, G.; Xie, Y.; Heit, J.J.; Chen, H.; Li, Y.; Zaharchuk, G.; Wintermark, M.; Ding, V.; Eskandari, A.; Michel, P. Prediction of clinical outcome in patients with large-vessel acute ischemic stroke: Performance of machine learning versus span-100 2021 90 day mrs x anterior 1431 x x x x xgboost x x baseline NIHSS, age, glucose at admission, ischemic core volume on CTP, penumbra volume on CTP, CTA clot burden score 6 80 ns ns ns not reported cross-validation none 0.8 0.722 0.74 x x x x x