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[bookmark: _Toc104452669][bookmark: _Toc104452796]Supplementary Discussion 1: A model to recapitulate TEV-driven invasive ductal carcinoma. 
It is now well established that TEVs provide autocrine and paracrine signals within the tumour ecosystem to activate an EMT programme in neoplastic epithelial cells1,2. This endows the recipient cells with the ability to invade the tissue surrounding the primary tumour, intravasate, and enter the circulation3 (Fig. 1). TEVs accomplish this by transferring functional cargo comprising transcriptional regulators4, EMT drivers1,5, and signalling molecules6 that influences signalling pathways, such as the canonical Wnt/β-catenin pathway7, and alters the transcriptome and proteome of recipient cells, thereby inducing a change in cell phenotype7. TEVs derived from TNBC cells were reported to promote proliferation and drug resistance in non-tumourigenic breast cells8, and TEVs from young women’s breast cancer patients were found to drive increased invasion of non-malignant cells9. In breast carcinomas, the proclivity for mesenchymal transition may be related to the high aggressiveness and characteristic metastatic spread of these tumours10. TNBC is a particularly aggressive and invasive breast cancer subtype11 with metastases frequently occurring in the first 3 years following surgery and a very low 5-year survival rate for afflicted patients (77% compared to 93% for other breast cancer subtypes12). The higher mortality is partly due to a disproportionate number of metastatic disease cases13. Treatment of TNBC has been limited due to the lack of well-defined therapeutic targets14 and the scarcity of effective targeted therapies is in part to blame for a poorer prognosis and treatment outcome for TBNC than other types of breast cancer11. Studies of progression from ductal carcinoma in situ to invasive disease have been facilitated by the use of the MCF10A series4,15, which have intrinsic phenotypic plasticity for mesenchymal transition10 and are widely used for investigating EMT in premalignant cells16,17. By contrast, MDA-MB-231 is a cancerous epithelial cell line isolated from a patient with metastatic mammary adenocarcinoma; a type of cancer that begins in the glandular tissue of breast lobules and ducts. Therefore, inducing EMT in MCF10A cells by exposure to MDA-MB-231-derived TEVs (MDA-TEVs) represents a highly relevant disease model for investigating the lesions preceding invasive breast cancer. There is ample precedent for using it, as TEVs derived from MDA-MB-231 cells stimulated with linoleic acid18 or insulin-like growth factor-119 were found to mediate EMT in MCF10A cells, as did hypoxic small EVs derived from the same cell line20. 
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[bookmark: _Toc104452797]Figure S1: Unedited Western blots for EV characterisation, showing samples probed for EV markers CD63 and CD9, microvesicle marker annexin A1, and negative marker calreticulin. 

[bookmark: _Toc104452670][bookmark: _Toc104452798]Supplementary Discussion 2: Investigating EMT requires high temporal resolution and functional readouts
Our platform aims to address the limitations of current sensing technologies in metastasis research. Namely, the inability to monitor the transient state of a dynamic biological system and produce quantitative, time-series data relevant to the biology at play. EMT is a transient process and one of the difficulties in its study arises because the transitions between epithelial and mesenchymal states are not binary21. Carcinoma cells often exhibit a spectrum of epithelial-mesenchymal characteristics22,23 and studies have shown that cancer cells, including breast cancers, express both epithelial and mesenchymal markers24,25. As such, the existence of hybrid EMT states or phenotypes (partial EMT) have been suggested to describe a tumour cell differentiation state in which cancer cells keep both EMT and mesenchymal-to-epithelial transition (MET; reverse-EMT) characteristics. This may promote tumour cell plasticity and tumour progression24,26,27 and is thus an important feature to capture during phenotype screening. Moreover, migration of cells does not necessarily require the cells to lose all epithelial features, as epithelial cells can migrate as single cells or collectively, while attached with one another via weakened cell-cell interactions28. This indicates that the migratory and invasive capacity of cells undergoing EMT is not accurately represented by the simple expression, or lack of expression, of selected (mesenchymal) markers. As such, functional changes in the biological properties of cells must be assessed as well29.
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[bookmark: _Toc104452799]Schematic S1: Experimental overview and design
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[bookmark: _Toc104452800]Figure S2: Cells cultured for 12 days on OECTs stained with viability/cytotoxicity kit probes (green-LIVE: Calcein AM; red-DEAD: ethidium homodimer-1). 
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[bookmark: _Toc104452801]Figure S3: Representative cut-off frequency and cell layer resistance,  vs time plots for all conditions tested. (a) Non-treated. (b) MDA-TEV treated. (c) HEK-EV treated. (d) TGF-β1 treated. (e) Heparin treated. (f) MDA-TEV + heparin treated. 
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[bookmark: _Toc104452802]Figure S4. Asymptotic regression of non-treated and MDA-TEV + heparin treated MCF10A cells, demonstrating that the normalised cut-off frequency tends towards 0.88  0.034 and 0.92  0.051, respectively. The two models are very similar, indicating that heparin treatment of cells exposed to MDA-TEVs block any malignant transformation. 
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[bookmark: _Toc104452803]Figure S5: Linear regression of MDA-TEV treatment condition and residual analysis plots. 

[bookmark: _Toc104452671][bookmark: _Toc104452804]Supplementary Discussion 3: Molecular mechanisms of EMT and determining its occurrence
EMT status is typically defined by changes in cellular properties together with a set of molecular markers29. Epithelial cells are connected to one another via a variety of epithelial cell junctions that help maintain epithelial polarity, while mesenchymal cells do not contain functional epithelial junctions and present a back-front polarity in their actin stress fibres, characteristic of a migrating cell29. During EMT, epithelial cells lose their apical-basal polarity and lateral cell–cell adhesion and gain migratory and invasive properties. Loss of apico-basal polarity leads to destabilisation of adhesion complexes, such as tight junctions and adherens junctions at the lateral membrane30, and is preceded by reorganisation of filamentous actin (F-actin) (Fig 1). Actin filaments in mesenchymal cells are bundled into thick contractile stress fibres that increase cellular contractability for migration31. Vimentin, a type III intermediate filament found in mesenchymal cells, mediates cytoskeletal organisation and focal adhesion maturation, which the migrating cells utilise to attach to the ECM32. Previous studies using the same MDA-TEV-EMT model18,19 assessed transcript and protein expression using RT-qPCR and Western blot and demonstrated that MDA-TEVs induced down-regulation of E-cadherin (epithelial marker) expression and upregulation of Twist-related protein 1 (TWIST1) transcripts, as well as vimentin and N-cadherin (mesenchymal markers) expression in MCF10A cells. TWIST1 is an E-cadherin transcriptional repressors that bind to promoter E-boxes on E-cadherin to repress transcription and they are part of the canonical Wnt/β-catenin pathway, indicating that TEVs (and their cargo) modulate this EMT pathway. Functionally, TEVs promoted migration and invasion in MCF10A cells, as measured by migration/wound-healing and Boyden chamber assays18,19. 
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[bookmark: _Toc104452805]Figure S6: Immunofluorescence of E-cadherin (green), N-cadherin (red), and nuclei (blue) on MCF10A monolayer with no treatment (left column), treated with 50 μg of MDA-TEVs (middle column), or with 10 ng/mL TGFβ (right column) every 12 hours for 60 hours. 
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[bookmark: _Toc104452806]Figure S7: Unedited x/z and y/z orthogonal views (ortho-views, right) of each cell layer in the OECT channel (treatment day 9), obtained by z-stacked confocal images. Cell height was calculated using the built-in tools in the Zen software, as shown in the images. 
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[bookmark: _Toc104452807]Figure S8: Unedited immunoblots of whole-cell lysates collected on treatment day 9 against EMT markers. Equal quantities of protein were separated on SDS-PAGE gels and membranes were blotted with indicated antibodies. Vimentin, predicted: 54-75 kDa; E-cadherin, predicted: 97 kDa; N-cadherin, predicted: 125-135 kDa; fibronectin (slightly smeared due to glycosylation33 and shows multiple bands with lower MW;), predicted: 262-285 kDa; and F-actin (band at ~70 kDa may indicate presence of dimers), predicted 42 kDa. The presence of multiple bands is also indicated on antibody product page (Abcam). 
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[bookmark: _Toc104452808]Figure S9: Unedited immunoblots of TWIST1 protein expression in (a) MDA-MB-231 total cell lysate and MDA-TEVs, and (b) MCF10A cells treated under conditions indicated. TWIST1 has a predicted Mw of 21 kDa
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[bookmark: _Toc104452809]Figure S10: LHS: Cut-off frequency normalised to day 0 (treatment start day) over time for the four drug treatment conditions: non-treated; 200 μg MDA-TEVs; 10 μg/ml heparin; and 200 μg MDA-TEVs + 10 μg/ml heparin, (mean ± s.e.m.; s.e.m. indicated by lightly coloured areas; n=3). Data points before treatment day 0 are omitted for clarity. RHS: Interaction plot illustrating the relationship between MDA-TEV and heparin treatment (mean; n=3).
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