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Text S1. Architectures of Neural Networks
S1.1 Long Short-Term Memory (LSTM) networks
	An LSTM is a recurrent NN which consists of cells as its building block (Hochreiter and Schmidhuber, 1997). One cell in LSTM consists of gates and memory states. The three gates, namely input, output and forget gate are used to control the flow of information in and out of the cell. The two memory states, which are called hidden state and cell state are used to store the information within a cell. The cells are processed in a loop, when the information from a time-step is given to and taken from cell. The total number of time-steps used to predict next value is called lookback time-steps. The equations describing the behavior of gates and states are given below.
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where W and b are the weights and biases, respectively, which are learnable parameters; and tanh and σ are the hyperbolic tangent and sigmoid, respectively. At each step, an LSTM model receives inputs as  and produces outputs as  and . The hidden state  is then used in a fully connected network to obtain the final model predictions. This architecture was used because it is one of the most commonly deep learning architectures to process time series data (Lim and Zohren, 2021; Sezer et al., 2020).

S1.2 1-D Convolution neural network
	Convolution neural networks consists of convolution and pooling layers (LeCun et al., 2015). They extract features from input data by convolving the weight matrix with the input data. The convolution operation is usually followed by a pooling layer which reduces the dimension of the output. This is usually done by either taking maximum or average of a fix number values which is called pooling size (Sze et al., 2017). A CNN has the ability to extract local or spatial features from the input data due to its convolution operation. CNNs are mostly used to for 2-dimensional and 3-dimensional data, however their 1-dimensional variants can be used for 1-dimensional data. Since the hydrological time-series data is 1-dimensional, a 1-D CNN can be used for time-series forecasting. 1-D CNN has been used in hydrological studies such as in Van et al. (2020) and Chong et al. (2020). 
S1.3 CNN-LSTM
A CNN-LSTM architecture has the ability to combine the power of CNN and LSTM to extract features from a sequence. In such NN, the input data is divided into sub-sequences. First a CNN is used on these small sub-subsequences of input data to extract local features. Then the output from CNN is given to LSTM which further extracts temporal features. In this architecture, we used a 1D CNN to extracts features from sub-sequences of input data. This architecture has been found useful in time-series prediction problem due to its ability to breakdown time-dependent input into sub-sequences and extract features from them (Sainath et al., 2015). It has been used in several environmental studies such as lake water level forecasting (Barzegar et al., 2021) and urban water demand prediction (Hu et al., 2019a). 
S1.4 Temporal Convolutional Networks
Temporal convolution networks (TCN) are variants of 1D CNNs with specific padding, dilation rate and stacking. TCNs have the ability to extract temporal features from a sequence using convolution operations (Lea et al., 2016). In CNNs, the weight matrix is moved and convolved on the input data to extract features. This movement step of the weight matrix can be more than one which can help the CNN to extract non-local features. This step of movement of CNN matrix on input data is called dilation rate. We can apply CNN with different dilation rates on a single input in order to extract features at different hierarchies. This hierarchical CNN structure was exploited by WaveNet (Oord et al., 2016) and led to the development of temporal convolution networks (Bai et al., 2018; Lea et al., 2016). In TCNs, layers of CNNs are stacked with different dilation rates in order to extract temporal features.
S1.5 LSTM Autoencoder Network
This kinds of NN consists of two stacked layers of LSTMs. One stack of LSTM acts as encoder which compresses the input information. The second stack of LSTMs acts as decoder and reconstructs the input from compressed data. The decoder, however, can also be used to make predictions. This architecture is also sometimes called ‘sequence to sequence’ because the output from decoder is also a sequence. We, however, used only the last value of decoder and considered it as prediction. This structure has been used for rainfall-runoff modeling (Liu et al., 2020; Xiang et al., 2020).
S1.6 Input Attention LSTM (IA-LSTM)
Qin et al. (2017) developed a dual stage attention-based structure for multi-variate time-series prediction problem. This architecture consists of an input attention mechanism and the temporal attention mechanism. The input attention mechanism is used to find relevant input data which is then fed to LSTM. The temporal attention mechanism helps the NN to select the relevant lookback time-steps. We used only the input attention part of this architecture along with LSTM. This architecture has already shown promising results in water quality prediction problems (Jang et al., 2021). IA-LSTM model calculates the importance of input variable on the model according to below equations
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 Given  number of input features, the attention weight for the -th input  is calculated using the hidden and cell states of LSTM according to Eq. 7. The parameters , , and  are calibrated during the training process. Eq. 8 is a softmax function that returns an array of attention weights that sum to one (Chollet, 2018). The attention weights for each input are then used to extract the driving inputs  according to Eq. 9. The more relevant driving inputs are amplified by their higher weights while the less important ones are reduced to smaller corresponding weights. These inputs are then used as inputs into LSTM to extract the temporal features. Thus, instead of using the original inputs  (Eqs. 1–4), the IA mechanism uses  within LSTM. 
Text S2 Loss calculation
The neural networks were trained using mean square error (MSE) as loss function. We compared the predictions of all models with the observed Chl-a concentration and calculated the mean square error (MSE) using the following equation:
	 			(10)
where  and  are the observed and predicted Chl-a concentrations, respectively, and  indicates the number of datasets.
Text S3 Hyperparameter optimization
The performance of NN is strongly influenced by the choice of hyperparameters used to build it (Hutter et al., 2015). These parameters are specific to the architecture of NN. The hyperparameters of all the models, built in this study were optimized using Bayesian based optimization approach. Bayesian optimization is an efficient algorithm which intelligently selects new set of hyperparameters at each step, by considering the previous results (Snoek et al., 2012). This methodology has often been used to optimize hyperparameters of NNs (Adams, 2014; Shahriari et al., 2015). The optimization of hyperparameters require definition of parameter space from which the hyperparameters are sampled during optimization. The parameter space determines the possible values of hyperparameters. The parameter space of hyperparameters for each of the 6 models built in this study, and their optimized values are enlisted in Table 1. The optimization for all models was performed for 100 iterations.
We also quantified the importance of hyperparameters using the functional analysis of variance (fANOVA) (Hutter et al., 2014) and by plotting partial dependence (PD) plots (Friedman, 1991). PD plots are graphical tools to visually explain importance of each hyperparameter (Apley and Zhu, 2020). On the other hand, fANOVA quantifies the variance in the objective function explained by each hyperparameter in the form of a numerical value (Molnar, 2020). The fANOVA algorithm enabled us to analyze the variation in the model output with respect to the changed input (Klein and Hutter, 2019).  The PD plot shows the marginal effect of a feature on the predicted outcome of the model (Friedman, 2001). It also shows whether the relation between the output and an input feature is linear, monotonic or more complex (Moosbauer et al., 2021).
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Fig. S1. Map of study sites showing monitoring stations in the upper Nakdong river. Nakdong river is located in south east of Korean peninsula. The drainage basin of Nakdong river is heighted.
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Fig. S2. Time series plots of precipitation, potential evapotranspiration and streamflow (cubic centimeters per second) at study site. 
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Fig. S3. Water quality parameters observed at Hwangji, Bonghwa, Dosan and Andong site of study area. These parameters were observed at irregular intervals from 2005 to 2019.
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Fig. S4. Static, physical parameters of four sites. These time-invariant parameters were used to initiate the hidden state and cell state of LSTM model to condition the simulations of LSTM. Hwangji, Bonghwa and Dosan were used for training while Andong was used for model validation.
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Fig. S5. Correlation coefficient of observed parameters at study site “Hwangji”. 
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Fig. S6. Correlation coefficient of observed parameters at study site “Bonghwa”.
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Fig. S7. Correlation coefficient of observed parameters at study site “Dosan”.

[image: ]
Fig. S8. Correlation coefficient of observed parameters at study site “Andong”.
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Fig. S9. Convergence plots of hyperparameter optimization. A) shows the convergence plots for the 6 basic models while b) shows convergence plots of LSTM models with different scenarios.
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Fig. S10.  Training patterns of 6 models during hyperparameter optimization during training and validation.
[image: ]

Fig. S11. Training patters of LSTM model with different scenarios. “LSTM NoCond” represents simulations without physical features, “LSTM Cond” shows simulations with physical features. “LSTM SA represents simulation with self-attention while “LSTM NoFlow” stands for simulation without streamflow. 
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Fig. S12.  Relative importance of hyperparameters quantified by fANOVA (Hutter et al 2014) method for 6 models. 
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Fig. S13. Partial dependence plots of hyperparameters for LSTM model. The diagonal plots represent partial dependence plot with respect to a single hyperparameter. The measure of the slope shows sensitivity of hyperparameter.
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Fig. S14. Partial dependence plots of hyperparameters for CNN model. The diagonal plots represent partial dependence plot with respect to a single hyperparameter. The measure of the slope shows sensitivity of hyperparameter.
[image: ]Fig. S15. Partial dependence plots of hyperparameters for TCN model. The diagonal plots represent partial dependence plot with respect to a single hyperparameter. The measure of the slope shows sensitivity of hyperparameter.
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Fig. S16. Partial dependence plots of hyperparameters for CNN-LSTM model. The diagonal plots represent partial dependence plot with respect to a single hyperparameter. The measure of the slope shows sensitivity of hyperparameter
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Fig. S17. Partial dependence plots of hyperparameters for LSTM Autoencoder model. The diagonal plots represent partial dependence plot with respect to a single hyperparameter. The measure of the slope shows sensitivity of hyperparameter
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Fig. S18. Partial dependence plots of hyperparameters for IA-LSTM Autoencoder model. The diagonal plots represent partial dependence plot with respect to a single hyperparameter. The measure of the slope shows sensitivity of hyperparameter
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Fig. S19. Observed and simulated Chl-a concentration at Hwangji site using LSTM, CNN, TCN, CNN-LSTM, LSTM-Autoencoder and IA-LSTM model. This site was used for training purpose.
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Fig. S20. Observed and simulated Chl-a concentration at Bonghwa site using LSTM, CNN, TCN, CNN-LSTM, LSTM-Autoencoder and IA-LSTM model. This site was used for training purpose.
. 
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Fig. S21. Observed and simulated Chl-a concentration at Dosan site using LSTM, CNN, TCN, CNN-LSTM, LSTM-Autoencoder and IA-LSTM model. This site was used for training purpose.



[image: ]

Fig. S22. Observed and simulated Chl-a concentration at Hwangji site using LSTM model with different scenarios. ‘LSTM NoCond’ is the model without static data, ‘LSTM Cond’ is the model where static data was used to initiate hidden and cell states of LSTM. ‘LSTM SA’ model has ‘self-attention’ mechanism while ‘LSTM NoFlow’ model does not use streamflow as input.
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Fig. S23. Observed and simulated Chl-a concentration at Bonghwa site using LSTM model with different scenarios. ‘LSTM NoCond’ is the model without static data, ‘LSTM Cond’ is the model where static data was used to initiate hidden and cell states of LSTM. ‘LSTM SA’ model has ‘self-attention’ mechanism while ‘LSTM NoFlow’ model does not use streamflow as input.
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Fig. S24. Observed and simulated Chl-a concentration at Dosan site using LSTM model with different scenarios. ‘LSTM NoCond’ is the model without static data, ‘LSTM Cond’ is the model where static data was used to initiate hidden and cell states of LSTM. ‘LSTM SA’ model has ‘self-attention’ mechanism while ‘LSTM NoFlow’ model does not use streamflow as input.
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Fig S25. Attention weights of IA-LSTM model with respect to daylight hours at the four study sites. A higher weight a particular lookback step shows that the daylight hours information at that step was more informative to the model for prediction.
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Fig S26. Attention weights of IA-LSTM model with respect to saturated concentration of dissolved oxygen at the four study sites. A higher weight a particular lookback step shows that the saturated concentration of dissolved oxygen information at that step was more informative to the model for prediction.
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Fig S27. Attention weights of IA-LSTM model with respect to total dissolved phosphorus of dissolved oxygen at the four study sites. A higher weight a particular lookback step shows that the total dissolved phosphorus information at that step was more informative to the model for prediction.
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Fig S28. A comparison of model size, validation coefficient of correlation and number of training epochs of the six deep learning models.  Model size is representative of number of trainable parameters. CNN is the smallest model in terms of model size with 28594 parameters while TCN is the largest model with 190097 parameters.













Table S1. Number of trainable parameters of each model built in this study and the number of training epochs used to train each model. The training was stopped when the model started overfitting.
	Model Name
	Number of Parameters
	Training Epochs
	Training Time (seconds)

	LSTM
	78883
	491
	120

	CNN
	28594
	459
	105

	CNN-LSTM
	114362
	494
	160

	LSTM Autoencoder
	100118
	431
	155

	TCN
	190097
	461
	148

	Input Attention LSTM
	105213
	437
	137

	LSTM based model architectures
	

	LSTM
	78883
	491
	120

	LSTM SA
	63823
	338
	105

	LSTM NoFlow
	78604
	109
	60

	LSTM NoCond
	73763
	499
	90

	LSTM Cond
	66779
	454
	135



Table S2. Names and statistical parameters of observed parameters at study site 1.
	Parameter Name
	Mean
	Median
	Standard Deviation
	No of observations

	Continuous variables

	Minimum Air Temperature
	17.57
	18.70
	8.28
	5478

	Maximum Air Temperature
	8.72
	9.1
	9.02
	5478

	Solar Radiation
	14.94
	13.5
	6.35
	5478

	Stream Flow
	4.07
	0.89
	11.36
	5478

	Water Temperature
	14.86
	15.42
	6.37
	5478

	Saturation Concentration of DO
	10.29
	9.99
	1.46
	5478

	Precipitation
	11.97
	0.0
	3.45
	5478

	Potential Evapotranspiration
	2.26
	1.89
	1.57
	5478

	Daylight Hours
	12.0
	12.01
	1.76
	5478

	Static Variables

	Stream Volume
	608.19
	-
	-
	1

	Stream Width
	30.3
	-
	-
	1

	Stream Length
	18.8
	
	-
	1

	Stream Depth
	1.06
	
	
	1

	Stream Slope
	0.01
	-
	-
	1

	Stream width ratio
	28.4
	-
	
	1

	Sub-basin area
	192.73
	
	-
	1

	Tributary width
	30.3
	-
	-
	1

	Tributary length
	28.7
	-
	-
	1

	Tributary slope
	0.03
	-
	-
	1

	Discontinuous variables

	Ammonia Nitrogen
	0.29
	0.117
	0.49
	175

	Suspended Solids
	5.53
	2.60
	11.97
	175

	Total Nitrogen
	3.87
	3.612
	1.38
	175

	Total Phosphorus
	0.06
	0.046
	0.05
	175

	Dissolved Total Nitrogen
	2.67
	3.21
	1.04
	175

	Dissolved Total Phosphorus
	0.04
	0.029
	0.03
	175

	Dissolved Oxygen
	11.46
	11.2
	2.22
	175

	Biological Oxygen Demand
	1.52
	1.40
	0.97
	175

	Travel Time
	9.44
	10.0
	3.92
	175

	Output Variable

	Observed Chlorophyll-a
	5.06
	3.7
	4.93
	175




Table S3. Names and statistical parameters of observed parameters at study site 1.
	Parameter Name
	Mean
	Median
	Standard Deviation
	No of observations

	Continuous variables

	Minimum Air Temperature
	17.57
	18.70
	8.28
	5478

	Maximum Air Temperature
	8.72
	9.10
	9.02
	5478

	Solar Radiation
	14.97
	13.5
	6.35
	5478

	Stream Flow
	10.46
	2.73
	28.19
	5478

	Water Temperature
	14.86
	15.42
	6.37
	5478

	Saturation Concentration of DO
	10.29
	9.99
	1.46
	5478

	Precipitation
	2.97
	0.0
	10.39
	5478

	Potential Evapotranspiration
	2.24
	1.91
	1.45
	5478

	Daylight Hours
	12.0
	12.01
	1.76
	5478

	Static Variables

	Stream Volume
	1590.9
	-
	-
	1

	Stream Width
	56.28
	-
	-
	1

	Stream Length
	17.54
	
	-
	1

	Stream Depth
	1.61
	
	
	

	Stream Slope
	0.0032
	-
	-
	1

	Stream width ratio
	34.93
	-
	
	1

	Sub-basin area
	49.58
	
	-
	1

	Tributary width
	18.96
	-
	-
	1

	Tributary length
	13.42
	-
	-
	1

	Tributary slope
	0.035
	-
	-
	1

	Discontinuous variables

	Ammonia Nitrogen
	0.079
	0.06
	0.066
	180

	Suspended Solids
	3.43
	1.6
	11.78
	180

	Total Nitrogen
	2.05
	2.09
	0.61
	180

	Total Phosphorus
	0.018
	0.014
	0.015
	180

	Dissolved Total Nitrogen
	1.95
	1.97
	0.61
	180

	Nitric Nitrogen
	1.68
	1.70
	0.59
	180

	Dissolved Total Phosphorus
	0.013
	0.011
	0.59
	180

	Dissolved Oxygen
	11.87
	11.45
	2.85
	180

	Biological Oxygen Demand
	0.97
	0.90
	0.50
	180

	Travel Time
	9.70
	10.15
	3.23
	180

	Output Variable

	Observed Chlorophyll-a
	4.29
	2.9
	4.25
	180



Table S4. Names and statistical parameters of observed parameters at study site 1.
	Parameter Name
	Mean
	Median
	Standard Deviation
	No of observations

	Continuous variables

	Minimum Air Temperature
	17.57
	18.70
	8.28
	5478

	Maximum Air Temperature
	8.72
	9.10
	9.02
	5478

	Solar Radiation
	4.94
	13.50
	6.35
	5478

	Stream Flow
	20.98
	5.11
	54.69
	5478

	Water Temperature
	14.86
	15.42
	6.37
	5478

	Saturation Concentration of DO
	10.29
	9.99
	1.46
	5478

	Precipitation
	2.97
	0.0
	10.39
	5478

	Potential Evapotranspiration
	2.24
	1.91
	1.44
	5478

	Daylight Hours
	12.0
	12.01
	1.76
	5478

	Static Variables

	Stream Volume
	2626.22
	-
	-
	1

	Stream Width
	88.83
	-
	-
	1

	Stream Length
	13.53
	
	-
	1

	Stream Depth
	2.18
	
	
	

	Stream Slope
	0.002
	-
	-
	1

	Stream width ratio
	46.67
	-
	
	1

	Sub-basin area
	78.03
	
	-
	1

	Tributary width
	17.62
	-
	-
	1

	Tributary length
	16.11
	-
	-
	1

	Tributary slope
	0.024
	-
	-
	1

	Discontinuous variables

	Ammonia Nitrogen
	0.033
	0.03
	0.030
	430

	Suspended Solids
	9.58
	2.65
	38.60
	430

	Total Nitrogen
	2.30
	2.22
	0.63
	430

	Total Phosphorus
	0.022
	0.01
	0.03
	430

	Dissolved Total Nitrogen
	1.95
	2.01
	0.85
	430

	Nitric Nitrogen
	1.72
	1.79
	0.79
	430

	Dissolved Total Phosphorus
	0.010
	0.008
	0.01
	430

	Dissolved Oxygen
	11.70
	11.30
	2.49
	430

	Biological Oxygen Demand
	0.90
	0.80
	0.54
	430

	Travel Time
	8.17
	8.6
	3.36
	430

	Output Variable

	Observed Chlorophyll-a
	4.01
	2.6
	4.45
	381



Table S5. Names and statistical parameters of observed parameters at study site 4.
	Parameter Name
	Mean
	Median
	Standard Deviation
	No of observations

	Continuous variables

	Minimum Air Temperature
	17.57
	18.70
	8.28
	5478

	Maximum Air Temperature
	8.72
	9.10
	9.02
	5478

	Solar Radiation
	14.94
	13.50
	6.35
	5478

	Stream Flow
	25.81
	22.00
	19.75
	5478

	Water Temperature
	14.86
	15.42
	6.37
	5478

	Saturation Concentration of DO
	10.29
	9.99
	1.46
	5478

	Precipitation
	2.93
	0.0
	10.03
	5478

	Potential Evapotranspiration
	2.71
	2.29
	1.71
	5478

	Daylight Hours
	12.00
	12.01
	1.76
	5478

	Static Variables

	Stream Volume
	1037.35
	-
	-
	1

	Stream Width
	108.58
	-
	-
	1

	Stream Length
	3.82
	
	-
	1

	Stream Depth
	2.49
	
	
	1

	Stream Slope
	0.003
	-
	-
	1

	Stream width ratio
	43.48
	-
	
	1

	Sub-basin area
	37.31
	
	-
	1

	Tributary width
	11.31
	-
	-
	1

	Tributary length
	13.29
	-
	-
	1

	Tributary slope
	0.014
	-
	-
	1

	Discontinuous variables

	Ammonia Nitrogen
	0.075
	0.058
	0.065
	732

	Suspended Solids
	3.39
	2.0
	5.02
	732

	Total Nitrogen
	1.72
	1.62
	0.47
	732

	Total Phosphorus
	0.023
	0.016
	0.02
	732

	Dissolved Total Nitrogen
	1.62
	1.54
	0.44
	732

	Nitric Nitrogen
	1.36
	1.29
	0.44
	732

	Dissolved Total Phosphorus
	0.016
	0.012
	0.018
	732

	Dissolved Oxygen
	9.97
	10.10
	2.78
	732

	Biological Oxygen Demand
	0.81
	0.80
	0.26
	732

	Travel Time
	1.44
	0.79
	2.45
	732

	Output Variable

	Observed Chlorophyll-a
	4.81
	3.0
	6.41
	732



Table S6.  Names of hyperparameters, space of each parameter and the optimized value of hyperparameter for 6 models. The parameter space of categorical hyperparameters is the actual categories of hyperparameters while for numerical hyperparameters, the space was defined by fixing upper and lower limit.
	Hyperparameter Name
	Parameter space
	Optimized value

	
	Lower limit
	Upper limit
	Categories
	

	LSTM

	batch size
	8
	32
	-
	24

	lookback
	3
	15
	-
	5

	learning rate
	2e-3
	8e-5
	-
	0.0001

	Dense activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ReLU

	Dense1 activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Output activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh, None
	ReLU

	LSTM activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ReLU

	Dense units
	32
	128
	-
	64

	Dense1 units
	8
	32
	-
	16

	LSTM units
	64
	256
	-
	128

	CNN

	batch size
	8
	32
	-
	24

	lookback
	3
	15
	-
	6

	learning rate
	2e-3
	8e-5
	
	0.006

	CNN activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Leaky ReLU

	Dense activation
	
	-
	ReLU, Leaky ReLU, ELU, tanh
	ReLU

	Dense1 activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Output activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh, None
	None

	CNN filters
	64
	256
	-
	128

	CNN filter size
	2
	5
	-
	3

	Max. pooling
	2
	4
	-
	4

	Dense units
	32
	128
	-
	64

	Dense1 units
	8
	32
	-
	32

	TCN

	batch size
	8
	32
	-
	16

	lookback
	3
	15
	-
	5

	learning rate
	2e-3
	8e-5
	-
	3.8e-4

	TCN activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Dense activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Leaky ReLU

	Dense1 activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Output activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh, None
	None

	CNN filters
	64
	256
	-
	128

	CNN kernel size
	2
	5
	-
	4

	Dense units
	32
	128
	-
	56

	Dense1 units
	8
	32
	-
	24

	CNN-LSTM

	batch size
	8
	32
	-
	24

	lookback
	3
	15
	-
	5

	learning rate
	2e-3
	8e-5
	-
	0.0007

	TCN activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Dense activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Leaky ReLU

	Dense1 activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Output activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh, None
	ReLU

	LSTM activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Tanh

	CNN filters
	64
	256
	-
	128

	CNN kernel size
	2
	5
	-
	3

	Max. pooling
	2
	4
	-
	3

	Dense units
	32
	128
	-
	64

	Dense1 units
	8
	32
	-
	18

	LSTM units
	64
	128
	-
	

	LSTM Autoencoder

	batch size
	8
	32
	-
	16

	lookback
	3
	15
	-
	5

	learning rate
	2e-3
	8e-5
	-
	3.2e-4

	Encoder activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Tanh

	Decoder activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Tanh

	Dense activation
	
	-
	ReLU, Leaky ReLU, ELU, tanh
	Leaky ReLU

	Dense1 activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Output activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh, None
	None

	Encoder units
	64
	128
	-
	80

	Decoder units
	64
	128
	-
	70

	Dense units
	32
	128
	-
	56

	Dense1 units
	8
	32
	-
	16

	IA-LSTM

	batch size
	8
	32
	-
	32

	lookback
	3
	15
	-
	4

	learning rate
	2e-3
	8e-5
	-
	0.00045

	Dense activation
	
	-
	ReLU, Leaky ReLU, ELU, tanh
	ReLU

	Dense1 activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	Tanh

	Output activation
	-
	-
	ReLU, Leaky ReLU, ELU, tanh, None
	ReLU

	LSTM activation1
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	LSTM activation2
	-
	-
	ReLU, Leaky ReLU, ELU, tanh
	ELU

	Dense units
	32
	128
	-
	64

	Dense1 units
	8
	32
	-
	28

	LSTM units
	32
	128
	-
	50
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