Supplementary information

JIPipe: Visual batch processing for Image)

Ruman Gerst?*, Zoltan Cseresnyés'*, Marc Thilo Figge'*"

! Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology — Hans
Knoll Institute (HKI)

2 Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany
3 Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany
These authors contributed equally

* Correspondence should be addressed to thilo.figge@leibniz-hki.de

Contents

1 Symbiosis Of IMAGES @NA JIPIPEueeeecueiiiieciiie ettt ectee ettt e st e e s e e s sae e e s ratae e e s snbaeeessnsaeeeeas 2
1.1 Standardized oULPUL fFOrMAt......ccciiii it e e bae e e s ebree e e ennes 2
1.2 OVErview Of JIPipe OPEIatioNScccccuiiieieiiie e ecttee ettt e e tee e e e etee e e e sbee e e e abeee s e nbaeeeenranas 3
1.3 EXEENSION APttt 4

2 Hallmarks of JIPipe by representative appliCations........cccueeeiiiiiiiiiiiiee e 5
2.1 Bacterial growth measured in fluid droplets.......ccccieeeieieiicc e 5
2.2 Nanoparticle delivery analysis in VeIcooouieie e e e 7
2.3 CONTIONTATION ASSAYS ..vviiiiiiiieeieiiieeeettee e eette e e e et e e e estee e e esbeeeeesbeeeeesabaeeeessbaeeeeasbeeeeeanseneesnnsenas 9
2.4 Track analysis of unlabeled NEMALOAEScccuviiiiiiiiiec e 12
2.5 Kidney status check via glomeruli CouNtingcoccveiiiiiiii i, 13

3 JIPipe user interface and data MOAElooiiuiiiiiciiiiee e e 15

4 Online training and docUMENTAtioN FESOUICEScccccviieeeciieeeeciieeeecteeeeeste e e e eerreeeeearaeeeeesaeeeeas 20
4.1 User guide and TULOIIALSccocuiiec ettt et e e e ebee e e e eabae e e e abae e e eenreeas 20
4.2 Java APl dOCUMENTALION c..eiiiiiiiiiicee ettt et 22
43 Data and JSON APl dOCUMENTAION .c..eeiuiiiiieiieteeicesiee et 23

T Y/ =1 i g To o L3OO TSR PPRTO 23
5.1 Lo o L= o U=Y o =] Vo 1=y g ol [R 23
5.2 JIPipe syStem reqUIrEMENTS ..ccciiiiiiiiiiiiiiiiiiieieieeeseeeeeseseseeeeesesesenens 24

(I =] (=1 0=] o oI PPN 24

mailto:thilo.figge@leibniz-hki.de

1 Symbiosis of ImageJ and JIPipe

1.1 Standardized output format

JIPipe writes results in a standardized format that allows results and annotations to be imported back
into JIPipe. (see Supplementary Figure 1.1). The user only must provide the output folder. Here, JIPipe
creates a sub-folder “analysis” that contains directories that correspond to the nodes in the graph. The
name of these node folders is generated automatically and with de-duplication based on the user-
customizable name of the node. This ensures that no data is overwritten, while users are still able to
navigate through the results manually. Each node folder contains sub-directories that correspond to
the output slots. JIPipe automatically ensures during the creation of these slots that they are
compatible to filesystems and unique. Each of those slot folders contains metadata in a file “data-
table.json”. This file stores information about the data stored within the slot, annotations, expected
data types, and true data types. Each row is also indexed with a unique identifier. Data is stored in
sum-directories of the slot folder that correspond to this unique row ID. The format is defined by the
stored data type and allows import back into JIPipe, as the metadata table provides all necessary info
to direct JIPipe to the correct import routine. To improve the user experience, the metadata table is
also present in CSV format that can be opened in standard software.

JIPipe makes use of this powerful result model by offering nodes that can import such results back into
another analysis. The user only must provide the slot folder to allow JIPipe to import all data and
metadata. This allows for postprocessing analyses that combine and structure results from multiple
analyses.

To improve the usability of JIPipe, the standardized output format can be exported into a more
commonly used where file names contain metadata. This feature is available within the cache browser,
result viewer, and as dedicated node. This metadata-based export cannot be directly imported back
into JIPipe.

User-defined

Output folder =

. Copy of the project
project jip « Easy reproducable
fa analysis

e Based on node name
® . Customizable
o [/4
Node ID
C ¢ One for each node
Py OUtDUL SIOt NaME@ wwssssseessssssasssss One per output slot

F§) data-table json «weeeeenees Contains metadata
@ Data annotations

-
= Datatypes

S One per table row
+ Standardized format

Supplementary Figure 1.1 | Standardized result export format. JIPipe writes outputs in a standardized format. The user
only must define the output directory (blue folder). JIPipe automatically generates a filesystem hierarchy based on the
unigue node Ids, output slot names, and row number in the output table (red folders).

1.2 Overview of JIPipe operations

JIPipe comes with a set of standard libraries that contain extensions for image analysis and other
functions. It currently includes over 1000 nodes and over 120 data types. The function of the library
components is briefly described here:

Filesystem library. A library of nodes that allow querying and manipulating file systems. It allows, for
example, to search for files in a specified directory.

Annotation library. This library contains nodes that allow manipulation of data annotations.

Multi-parameter library. The core library provides the functions to execute a node on multiple
parameter sets but lacks nodes to define such parameter sets. This library adds this functionality.

String library. A library that provides string data types (e.g., XML or JSON data).

ImageJ data type library. This library integrates commonly used ImageJ functions, such as images,
tables, and ROl management. Image data types are available in variants that restrict the bit depth or
the dimensionality. Automated conversion is applied to ensure that the constraints are satisfied, for
example, 8-bit grayscale images are converted into RGB images automatically. As each of these modes
are available as separate data type, node developers and users can exactly control and review the
inputs and outputs of a node, which improves usability and reduces the number of errors. This library
also includes support for Bio-Formats?.

ImageJ1 algorithm library. Commonly used commands from ImageJ1 are integrated via this library. It
provides functions to process images and ROI. The library also includes a macro node that can execute
ImageJ macro code inside a JIPipe node.

ImageJ2 algorithm library. ImageJ2 operations are automatically included via a translation layer.

CLIJ integration library. This library integrates functions from CLIJ2! into JIPipe. To improve
performance, it provides a separate data type that encapsulates a GPU image and provides conversion
from and to ImageJ images for ease of use. The functions were generated in an automated fashion via
a Python script.

Table library. A library containing nodes that apply commonly used table operations (e.g., merging
rows, or sorting). This library also adds data types that encapsulate only one table column for more
advanced operations.

Forms library. Users can create interactive nodes that prompt the user to provide an input to the
current data processing. There is an expandable set of such predefined input types available: Numeric
inputs, check boxes, text fields, a choice of predefined values, and selecting a file system path. Multiple
of these inputs can be connected into a form that is displayed for each processed data item. The
standard forms library then writes user inputs into the annotations of the provided data. The library is
modularized, which allows more complex form types, such as letting users draw or modify a mask
interactively.

OMERO integration. JIPipe provides an integration into OMERO? that allows to query the database and
download or upload images.

Python integration. ImageJ provides support for Python scripts via Jython (https://www.jython.org/)
and a standard Python setup. The difference between Jython and Python is that Jython has access to
all Java data types, including ones from ImageJ and JIPipe — while it is currently not possible to integrate
C-based packages, such as Numpy or Tensorflow. To allow the integration of such powerful tools, JIPipe
provides an environment system to integrate any existing Python environment. To increase usability

https://www.jython.org/

of this approach, JIPipe also comes with one-click installers to setup new Python environments via
Conda.

Python scripts communicate with JIPipe via a file-based API. JIPipe automatically includes a Python
library into Python scripts to make use of any node-specific functionality, such as accessing inputs and
writing outputs.

R integration. JIPipe utilizes an environment system similar to Python environments to integrate R
scripts. Similar to Python, users will find nodes to integrate custom R scripts into the pipeline. Again,
JIPipe provides a file-based APl to communicate data and metadata with the R script.

Cellpose integration. We included the ability to run Cellpose into JIPipe. As Cellpose is a Python-based
tool, we make use of the Python integration functionality. JIPipe supports segmentation with Cellpose
on the provided pretrained cytoplasm/nuclei models or a custom model. We also included the ability
to train new models — either from scratch or by retraining a custom or pretrained model.

Utility library. Miscellaneous functions, like interaction with JIPipe outputs, manual data conversion,
and data table sorting.

1.3 Extension API

All non-core functionality is split into dedicated Java libraries that are usually distributed with the core
library but can be left out for specialized distributions of JIPipe that focus on other usages like non-
image-analysis workflows. If only the core library is loaded, JIPipe will contain no usable data types and
nodes. Image analysis functions are provided in dedicated libraries as extensions. Extensions for JIPipe
are SciJava plugins that provide the necessary metadata for JIPipe, for example the name, authors, and
dependencies, and a register () function that executes all necessary steps to add additional
functionalities. Following functions can be added via this function:

Data types. Java developers can add new data types into JIPipe. Data is organized into tables and
annotated with additional string columns. To allow for automated reading and saving, data types must
provide functions to export itself into a folder and be imported from an exported directory.
Additionally, data types must be able to be displayed in the GUI, via a display () function and an
optional preview method. Each data type has a unique identifier string that allows safe serialization of
user-customizable slot configurations.

Node types. Node types are Java classes that contain the workload function. Slots are either added via
Java annotations or created in the object constructor. Like data types, they have a unique identifier.

Data type conversions. JIPipe automatically applies trivial conversions (e.g., from a child class to one
of its parent classes). Other conversions (e.g., converting a plot to an image) must be handled by a
dedicated converter object that can be registered into JIPipe. The converter creates an edge within the
conversion graph, which allows higher-order conversions with multiple steps.

Data type display operation. Each data object comes with a default function to display the data in the
GUI (e.g., displaying an image in ImageJ). Additional display operations can be registered via an
extension.

Data type import operation. An import operation imports data from a JIPipe result folder and displays
it to the user. An example is the import and display of ROI.

Parameter type. Developers can register custom parameter types. Each parameter type requires a
unique identifier, required for serialization of user-defined parameters, and a user interface.

Expression function. The set of functions available in expression parameters can be further expanded.

Table column operation. Independent of expression functions, there exist functions that apply one-
to-one or integrating operations on table columns. This set can be expanded. Such operations are
automatically available inside expressions.

Menu extensions. Developers can create custom menu entries for various uses. They can choose
between multiple locations (e.g., “Project” menu or “Tools” menu).

An alternative to Java extensions is extensions provided as JSON files. They can be created via a user-
friendly GUI from existing pipelines or sets of nodes and allows non-developers to create custom
node types, akin to ImageJ2 scripts or macros. Such extensions are loaded via a “JSON Extension
Loader” Java extension that automatically scans the ImageJ plugins directory for valid extensions.

2 Hallmarks of JIPipe by representative applications

Here we describe the details of the JIPipe application that were utilized to illustrate the wide
applicability of JIPipe in the Results. The examples are the following:

a) Bacterial growth inside fluid droplets

b) Nanoparticle delivery in liver

c) Host-pathogen interactions

d) Nematode viability test

e) Kidney status check via glomeruli counting

2.1 Bacterial growth measured in fluid droplets

Picoliter droplets are miniature bioreactors used in microfluidic experiments to test various growth
conditions on bacteria®>. Due to the extremely large number of droplet images, the native batch-
processing and parallelization features made J/IPipe an ideal candidate to quantify the bacterial growth
in potentially millions of droplets® (Supplementary Figure 2.1). The workflow was successful in finding
the targeted droplet, identify its inner zone and detect bacterial growth (Figure 3 Row 1). In this case,
microfluidic droplets of approximately 100 micrometer diameter were filled with a solution containing
E. coli bacteria and the bacterial growth was observed via brightfield transmitted light microscopy?.
The following JIPipe workflow determines the droplets that show bacterial growth. When compared
with a set of 1500 images with manual annotations (growth vs. no growth), the JIPipe workflow
produced 100% agreement with the ground truth.

The processing workflow starts with scanning the input file folder(s) and annotating the internal JIPipe
table with the folder names and the image identifiers. It is sufficient to drop only the top folder into
the flow (node “Folder list”) because the subsequent nodes will automatically extract the rest of the
information, e.-g. the subfolders (here we use the Recursive list option in the Parameters setting to
handle multiple layers of subfolders automatically). In the “List files” node we search for files that are
of the CZI type by introducing a filter for the absolute path. After adding the image names to the
annotation table, we provide another filtering opportunity by the “Filter paths” node, which can be
useful when limiting the analysis to a subset of images during testing the analysis workflow.

w () input

) Quantification

w (%) Output

© Input
() Preprocessing

w ([Output

w (%) Input w () Input
() segmentation ®) Cellpose

w (%) output w (%) Output

1
w () Input w () input w ([input
(%) visualization () Quantification Cellpose () visualization Cellpose

() output w (%) Output () output

Supplementary Figure 2.1 | Compartment graph of the classical and Cellpose-based image analysis approach to identify
microfluidic droplets that show bacterial growth inside. For the node arrangement within individual compartments, see the
supplied JIP project file "Droplets.jip" and the detailed nodes map “compartments-figure-droplets.png” in Supplementary

Materials.

In detail:

(i) Preprocessing:

O

©)

Read the images into memory and annotate the data table as described in
Supplementary Information 2.1
Pass the results to the Segmentation and Cellpose compartments

(ii) Segmentation:

O O O OO0 0O O O o O o

Hessian segmentation(parameters 2, “Largest”, 2)

Gaussian blur (2 px)

Auto threshold (Triangle algorithm)

Morphological hole filling

Distance transform watershed

Morphological opening (10 px)

Morphological erosion (7 px)

Create ROI and split multiple droplets to create the outer line
Morphological erosion (5 px)

Create ROl and split multiple droplets to create the inner line
Pass the results to the Quantification compartment

(iii) Quantification:

o Filter ROI by statistics (Area above 1000)
o Calculate variance (1 px)
o Auto threshold (Otsu algorithm)
o Extract ROl measurements (Area, Area fraction, Integrated density)
o Create Growth column (percentage Area above 0.5 is classified as growth = 1)
o Pass the results to the Visualization compartment
(iv) Visualization:
o Convert growth areas into ROls
o Merge raw image with growth area ROIs
o Convert inner line of droplets into ROIs
o Merge raw image with inner line ROIs

(v) Cellpose:

o Access the TL images from Preprocessing
o Run Cellpose segmentation
o Object diameter 120 px
o Use pretrained Cellpose model “Cytoplasm”
o Thresholds: 2 (probability), 0.8 (flow)
Filter ROIs by Roundness > 0.7
Morphological opening (10 px)
Morphological erosion (1 px for outer line, 7 px for inner line of droplets)
Turn masks to ROIs and split them
(vi) Quantification Cellpose: see Quantification

O O O O

(vii) Visualization Cellpose: see Visualization

2.2 Nanoparticle delivery analysis in liver

JIPipe’s native batch processing ability and built-in time series algorithms were of particular advantage
in a project using nanoparticles (NPs) to counteract liver fibrosis caused by non-alcoholic fatty liver
disease. NPs are utilized to deliver precisely targeted agents to the liver tissue®. The analysis of such
microscopy data requires the identification of various liver components including hepatocytes, liver
sinusoidal endothelial cells (LSECs), sinusoids, and canaliculi. The segmentation was carried out
without the help of specific labeling, and the extraction of time series information about the uptake
and extrusion of the NP-delivered agents. The extensive set of morphological filters available in JIPipe
were invaluable in identifying the various components of the liver without specific labelling, based
solely upon the autofluorescence signal (Supplementary Figure 2.2). The resulting high-fidelity
segmentation of the LSECs, canaliculi and sinusoids (Figure 3 D-2) indicate the precision and utility of
the JIPipe processing framework.

The live-animal microscopy experiments were described in Muljajew et. al., 20217. Micelle
nanocarriers were injected into the circulatory system of the mouse vie the tail veins. Two-photon
microscopy was utilized to image the cargo delivered by the micelles to the hepatocytes, sinusoids,
canaliculi and liver-sinusoidal endothelial cells the time-series images were analyzed by the JIP
protocol “LiverAnalysis.jip” (see Supplementary Materials)

D Input

S File handling

w (%) output

v O Input v O Input v O Input

() vessel analysis () Hepatocytes analysis () canaliculi analysis

w () Output w () Output w () Output

w (5 Input
() LSEC analysis

w (%) output

A D Input
=
5) Postprocessing

() output

Supplementary Figure 2.2 | Compartment graph of the analysis protocol for liver drug delivery assay, designed to quantify
the spatio-temporal distribution of nanoparticle-delivered cargo to various parts of the murine liver. For the node
arrangement within individual compartments, see the supplied JIP project file " LiverAnalysis.jip" and the detailed nodes map
“compartments-figure-liver.png” in Supplementary Materials.

The workflow was based on principles similar to those shown in the previous chapter. The processing
consisted of six compartments: i) file handling, ii) blood vessel analysis, iii) hepatocyte analysis,
iv) canaliculi analysis, v) the analysis of liver sinusoidal endothelial cells (LSECs), and vi) postprocessing.

In detail:
(i) Images were read into memory and the data table was annotated as described in
Supplementary Information 2.1
(i) Vessel analysis:

Median blur (radius=5 pixels)

Illumination correction (20 px)

Auto threshold (Yen algorithm)

Despeckle

Morphological erosion (7 px)

Particle finder (circularity range 0.0-0.4)

Multi-node algorithm to arrange the time series based on slice numbers

Calculate the intensity time series for the segmented vessel region

Calculate the number of segmented objects per time point to check the segmentation
Pass the results to the LSEC analysis compartment

O O 0O O 0O 0O O O O O

(iii) Hepatocyte analysis:
o Median blur (radius=5 pixels)
o llumination correction (20 px)
o Auto threshold (Li algorithm)
o Despeckle

Morphological erosion (1 px)

Morphological skeletonize

Particle finder (size range 10%-10°)

Multi-node algorithm to arrange the time series based on slice numbers

Calculate the intensity time series for the segmented vessel region

Calculate the number of segmented objects per time point to check the segmentation

O O 0 O O O

(iv) Canaliculi analysis

Median blur (radius=5 pixels)

Illumination correction (20 px)

Auto threshold (Li algorithm)

Despeckle

Morphological erosion (1 px)

Skeletonize

Particle finder (no filtering)

Multi-node algorithm to arrange the time series based on slice numbers
Calculate the intensity time series for the segmented vessel region
Calculate the number of segmented objects per time point to check the segmentation

O O 0O O 0O 0O O O O O

(v) LSEC analysis:

Take inputs from vessel analysis and file handler (fluorescence image)
Illumination correction of fluorescence image (20 px)

Create mask from segmented vessel image

Morphological dilation (7 px)

Mask fluorescence image with segmented vessel image

Auto threshold (RenyiEntropy algorithm)

Particle finder (no filtering)

Multi-node algorithm to arrange the time series based on slice numbers
Calculate the intensity time series for the segmented vessel region
Calculate the number of segmented objects per time point to check the segmentation

O O O O O O O O O O

2.3 Confrontation assays

The interaction between alveolar macrophages and fungal spores was examined as described in earlier
research®®®, The macrophages and fungal spores were identified by label-free segmentation
algorithms, whereas counterstained fungi were identified by fluorescence labeling®°. The workflow
was parallelized to segment labeled and unlabeled cells and spores separately. In addition, classical
and deep learning—based approaches of the macrophage segmentation algorithms were also
organized into separate parallel compartment groups (Supplementary Figure 2.3). The essential nodes
consisted of Hessian filtering to identify unlabeled macrophages and fungal spores, background
correction with appropriate parameters, thresholding steps, and fine-tuned morphological operators.
Here the "Define multiple parameters" node was of high importance by allowing to test many
parameters in one run. This special node allows the definition of one or more parameters that will be
chosen to fit a processing node, with each parameter allowed to be given any number of values to be
tested, and then connected to the corresponding processing node. For example, when testing various
thresholding methods, a “Define multiple parameters” node was set up to contain the parameter
"Method" with values set to the seventeen methods provided by ImageJ. The node was then plugged
into an "Auto threshold 2D " node to provide an overview of the effectiveness of all seventeen methods
on the test images in just one process. The outcome of the analysis consists of phagocytic measures

and of segmented images of all participants (host cells, phagocytosed, adherent, and free pathogens,
phagocytosing, and passive macrophages), see Figure 3 D-5. For the classification of the segmented
objects, ROl-analysis nodes were developed; these enable the quantification of ROl overlap, e.g.,
between host cells and fungi to identify phagocytosed spores. A set of the ROl comparison nodes were
arranged into a separate compartment "Analyze ROI", followed by a set of nodes to calculate the
various phagocytosis measures arranged in the compartment "Summarize ROIs". For the deep
learning—based segmentation of the macrophages, the recently published Cellpose® method was fully
integrated into JIPipe. The Cellpose-related nodes include "Cellpose" (to apply the Cellpose model
either in its original form, or after transfer learning, or following training from scratch); "Cellpose
training" (for transfer learning and training a model from the beginning); "Import Cellpose model" and
"Import Cellpose size model" to read in an already trained model for predefined size or for trained
object size, respectively. Using Cellpose via these JIPipe nodes vastly simplifies the workflow building
process, which is of great advantage for those with little experience in applying Deep Learning methods
in image analysis.

) input
() File handler

v (3 output

w () input w (2 Input w* (%) Input w () input w () Input
) Red ® Green © Biue ®n © cenrpose

w [output w (S Output w () output w ([output w ([output

¥ ©input ¥) Input
() AnalyseROI (%) AnalyseROICellpose

w (S output w (5 Output

w [input w () input w (2 Input
(%) summarize ROI (%) visualization (%) Summarize ROICellpose

© output © output ® Output

Supplementary Figure 2.3 | Compartment graph of the confrontation assay analysis protocol, designed to quantify host-
pathogen interactions. For the node arrangement within individual compartments, see the supplied JIP project file "
ConfrontationAssay.jip" and the detailed nodes map “compartments-figure-confrontation.png” in Supplementary Materials.

In the example provided here, we limited the analysis to the “LabeledHosts_LabeledPathogens”
dataset, which contained images where both the immune cells (hosts) and the fungal spores
(pathogens) were imaged not only in transmitted light modality, but also with fluorescence microscopy
using specific labeling of the assay components. The images are then read into memory with the
“Import image” node, and the channels are separated before passing the data into the output node.
As shown in Supplementary Figure 2.3, the output node is connected to the subsequent five
segmentation compartments: i) antibody-labeled hosts (“Red”), ii) FITC-labeled pathogens (“Green”),
iii) calcofluor white (CFW)-labeled pathogens (“Blue”), iv) transmitted light images (“TL"), and v) the
deep-learning based segmentation workflow (“CellPose”).

In detail:

(i) Images of the labeled host cells are processed as follows:
o Gaussian blur (radius=3 pixels)

Internal gradient (25 px)

Contrast enhancement

Background subtraction (Rolling Ball, 50 px)

Auto threshold (Triangle algorithm)

Morphological closing (2 px)

Morphological hole filling

O O 0O O O O

O
(@)
O

Watershed transformation
Morphological erosion (5 px)
Particle finder to identify macrophages by size (3000-30000) and circularity (0.1-1.0)

“Define multiple parameters” nodes were used originally to test a range of rolling ball radii, and a
series of automated thresholding algorithms, respectively.

(ii) Images of the FITC-labeled fungi are processed as follows:

O

O O O O

Remove outliers (radius=20 pixels, threshold=5)

Background subtraction (Rolling Ball, 22 px)

Auto threshold (Triangle algorithm)

Watershed transformation

Particle finder to identify fungal spores by size (100-3000) and circularity (0.4-1.0)

Two “Define multiple parameters” nodes were used originally to test a range of rolling ball radii,
and a series of automated thresholding algorithms, respectively.

(iii) Images of the CFW-labeled fungal cells are processed as follows:

@)

O O O O O

Remove outliers (radius=20 pixels, threshold=5)

Contrast enhancement

Background subtraction (Rolling Ball, 22 px)

Auto threshold (Li algorithm)

Watershed transformation

Particle finder to identify fungal spores by size (100-3000) and circularity (0.4-1.0)

Two “Define multiple parameters” nodes were used originally to test a range of rolling ball radii,
and a series of automated thresholding algorithms, respectively.

(iv) Images of the TL images of hosts and pathogens are processed as follows:
o Laplacian sharpening with a 3x3 kernel
o Hessian filtering using the smallest eigenvalues with smoothing of 3 pixels
o Gaussian blur (radius=5 px)
o Auto threshold (Huang algorithm)
o Annotating with maximum and minimum threshold values
o Morphological closing (2 px)
o Morphological hole filling
o Remove outliers (radius=10 pixels, threshold=20)
o Remove outliers (radius=20 pixels, threshold=20)
o Watershed transformation
o Morphological erosion (2 px)
o Particle finder to identify macrophages by size (3000-30000) and circularity (0.1-1.0)

(v) The TL and fluorescence images of hosts and pathogens were also segmented using the
default trained networks of the Cellpose environment?®. Here no pre- or post-processing
steps were applied. Rather, the outcome from the Cellpose node provided the ROI lists of
the hosts and pathogens, and the lists were passed on to the output node, from where
they were directed to the “AnalyseROICellpose” compartment (see below).

The segmented images are used to generate lists of regions of interest (ROIls) that describe the
locations of the host cells, as well as the green-labeled and blue-labeled pathogens. These ROIls are
further examined in the “AnalyseROI” and “AnalyseROICellpose” compartments (the latter one applied
for the Cellpose-based analysis) via testing the overlap between pairs of the three object groups to
identify associated fungal spores (i.e., fungi that are interacting with a host cell based on their

overlapping ROIs), adherent fungi (associated pathogens that are CFW-positive) and phagocytosed
fungi (associated fungi that are not adherent, i.e. CFW-negative). In addition, phagocytosing host cells
are identified as objects that contain at least one phagocytosed pathogen. In the last step, the
“SummarizeROI” or “SummarizeROICellpose” compartments calculate the four phagocytic measures??,
using the “Modify tables” node that contain the calculations in a Python script.

2.4 Track analysis of unlabeled nematodes

When beneficial soil fungi are consumed by nematodes (earth worms), a way to protect the soil quality
is to provide the fungi with symbiotic bacteria that produce agents that are toxic for the worms but
not for the fungi, thus protecting the soil-enhancing fungi from the nematodes!?. JIPipe was used to
segment and track the nematodes, and to calculate a viability ratio (the total footprint area covered
by a worm divided by the area of the worm averaged over time) that characterized the efficiency of
various symbiotic bacteria to protect the fungi (Supplementary Figure 2.4). JIPipe was extended for
this project with a node to find connected components that allowed the analysis of time series
experiments. The outcome produced by the project included the merged outlines of every worm
(Figure 3 D-3), the binarized nematodes and the outline of one animal at a selected number of time
points, as well as the footprint of a single worm superimposed onto the original images (Figure 3 E-3).
The postprocessing steps included the calculation of the worm areas and footprints (i.e., the collection
of pixels that were touched by the worm during the course of the time series), and measuring the ratio
between the footprint and the individual worm area, which measures the motility of the animal; the
higher the ratio, the more motile the worm. The time-series images were analyzed by the JIP protocol
“Nematodes.jip” (see Supplementary Materials).

) Input
(<) File handler

(%) output

&) Input
: : Worm segmentation

(%) output

() Input
: : Quantification and visualization

: : Output

Supplementary Figure 2.4 | Compartment graph of the kinetic analysis workflow designed to characterize nematodes
according to their motility. For the node arrangement within individual compartments, see the supplied JIP project file
"Nematodes.jip" and the detailed nodes map “compartments-figure-nematodes.png” in Supplementary Materials.

The workflow was based on principles similar to those shown in the previous chapters. The processing
consisted of three compartments: i) file handling, ii) worm segmentation, iii) quantification and
visualization.

In detail:

(i) Images were read into memory and the data table was annotated as described in
Supplementary Information 2.1
(i) Worm segmentation:
o Splitting stacks to reduce data size for easier testing (optional)
o Gaussian blur (3 px)
o Auto threshold (Triangle algorithm)
o Morphological closing (7 px, diamond)
o Morphological hole filling
o Particle finder (minimum size 4000 px)
o Pass the results to the Quantification and visualization compartment
(iii) Quantification and visualization:
o Time tracking individual worms based on the “#Component” annotation
o Create and measure worm area with logical OR
o Create total area per worm using the “Total” annotation
o Calculate total area over individual worm area
o Recreate time series using the “Slice” annotation in ascending order
o Calculate average, standard deviation and count of area ratios

2.5 Kidney status check via glomeruli counting

Kidney diseases, e.g. nephrotoxic nephritis lead to a diminished function of the kidney tissue, indicated
by the reduced number of glomeruli'2. Light sheet microscopy can be utilized to image whole kidneys
in 3D. These images were generated by staining the glomeruli, the functional units of the kidney. Due
to the high dimensionality of the data and the number of glomeruli that can range up to 16000, manual
counting is highly time-consuming and impractical. Therefore, our group already developed fully
automated solutions in Python and C++3. The disadvantage of these tools is that they require
programming to be adapted and improved. Here, we exemplify how JIPipe can be used to apply an
equivalent analysis, but without the need for programming (Supplementary Figure 2.5). For this
example, we reduced the size of the image stack from 700 to 20, which even non-workstation
computers can process without computing and memory capacity problems. The outcome of the JIPipe
analysis included the identification of individual glomeruli (Figure 3 E-4) and the outline of the entire
kidney tissue. We provide the JIPipe protocol file, as well as the input data in the Supplementary
Materials. Here we also demonstrate the use of a single-compartment configuration of a JIPipe
workflow, combing all processing and visualization steps into a single space.

() Input
(%) Analysis and visualization

: : Output

Supplementary Figure 2.5 | Compartment graph of the glomeruli analysis workflow designed kidney light sheet microscopy
images. For the node arrangement within individual compartments, see the supplied JIP project file
"kidney_example_pipeline.jip" and the detailed nodes map “compartments-figure-glomeruli.png” in Supplementary
Materials.

The processing workflow is organized into three logical steps: i) file handling: these are nodes for
reading and organizing the input images, which are then passed on to the processing nodes

ii) glomeruli segmentation nodes; iii) tissue segmentation and quantification nodes; iv) quantification
of glomeruli; v) visualization nodes: the segmented ROls are quantified and plots are generated. These
plots include glomerular number bar diagrams and a histogram of the glomerular volumes per kidney.
The final plots of the tissue and glomeruli outlines can also be directly accessed via bookmarks. To
execute or visit the bookmarked nodes, go to Project = Project overview and find the bookmarks on
the right side in the “Bookmarks” tab. Click on any bookmark and choose either “Run” (to execute the
pipeline up to that node, inclusive), or “Go to bookmark” to visit the node directly.

In detail:

(i) File handling:

o Images are provided as list of folders, containing the slices of an image stack. JIPipe
converts these user-provided folders into a managed path data structure.

o Folders are annotated with their name that will be used in the pipeline to distinguish
images from each other

o An “Import image stack” node is used to load the slices contained inside each folder
into a 3D image. Annotations are preserved.

o The imported images are passed to the segmentation nodes.

(ii) Glomeruli segmentation:

o Inputimages are received from the output of the file handling nodes

o White Top Hat (radius = 5, disk shape) is applied

o Auto threshold (Otsu method)

o Morphological opening (radius = 2, disk shape)

o “Find Particles 2D” (default settings)

o “Split into connected components” is applied to the set of 2D ROIs generated by the
particle finder. This node applies a 3D connected components algorithm and groups
2D ROIs of the same component into dedicated ROI lists. Each output ROI list is
annotated with an identifier and corresponds to one glomerulus.

o The glomeruli are passed to the quantification and visualization nodes

(iii) Tissue segmentation and quantification:

o Input images are received from the output of the file handling nodes

o Median blur (radius = 1) is applied

o Auto threshold (Default method)

o Morphological closing (radius = 20, disk shape)

o Morphological hole filling

o Find particles (default settings)

(iv) Quantification of glomeruli:

O

“Extract ROI statistics” (Extracted measurements = “Area”) creates a table with one
row per 2D ROI containing its area

“Integrate table columns” (Input column = Area, Function = Sum, Output column =
Volume) calculates the volume in px® for each glomerulus. Its output is a table with
one row

“Add annotations as columns” (Annotation name filter: value == "#Component") adds
the glomerulus identifier into each table

“Merge table rows” (Data batches/Grouping method = “Custom”, Data
batches/Custom grouping columns = “#Dataset”) merges all quantified results of the
same kidney into one table

“Filter table” (Volume >= 28 AND Volume <= 2300) removes glomeruli outside the
expected volume range

(v) Visualization

The distribution of glomerular volumes is plotted via “Plot tables” (Plot type =
Histogram, Value = Volume) plots the “Volume” column as histogram

The tissue is visualized via a “Convert ROl to RGB” node that consumes the extracted
tissue ROl and the raw input image enhanced via a “Histogram-based contrast
enhancer”. A “Change ROI properties” node modifies the ROl to be drawn in green

A combined visualization is generated as follows:

The glomerular ROIs are modified via “Change ROl properties” to be drawn as yellow
lines

“Merge ROI lists” combines the glomerular ROIs and the tissue ROl into a single list

A “Convert ROI to RGB” node overlays the glomeruli and tissue ROIs on top of the
tissue

3 JIPipe user interface and data model

Here we focus on key features of the JIPipe user interface and explain how our software implements a
scalable data model. The full organization of our software can be retrieved from the Supplementary
Material as well as from the JIPipe website (http://www.JIPipe.org/). Familiarizing with the user
interface is assisted by numerous training videos that can be accessed at the website as well. The
central component of the JIPipe GUI is a graph that contains all functional units in form of nodes (see
Supplementary Figure 3.1). Each of these nodes has one or multiple input and output slots that
represent the data entered and produced by this functional unit (see Supplementary Figure 3.2). To
create a pipeline, these slots are connected via edges to indicate a transfer of data from one node’s
output to another node’s input. Outputs can be connected to multiple inputs, e.g., for creating
branches to apply different methods or to generate visualizations of intermediate steps.

JPipe - New project v o x

~4€@ 5e Dospn Bioos

» D File

w [Filename

w [Files
» I import image

& image a

Supplementary Figure 3.1 | JIPipe graph editor Ul. (D The central graph area where operational nodes can be placed by the
user. @ Graphical representation of a node in JIPipe. Nodes have one or multiple input and output slots (grey areas within
each node). 3 Output slots can be connected to inputs via edges (gray line).

http://www.jipipe.org/

Incoming data
from another node

w & Image 1

v i Image 2

(») €% JIPipe node

®_
®_

w 3% Custom label

®

Supplementary Figure 3.2 | Graphical representation of a node with two inputs and one output slot. Only one input is
connected (grey line). D Inputs of the node are in the top row. @ The bottom row contains the node’s outputs. 3 Users
can customize the label names. These are displayed in an italic style. @ Each slot displays its supported data type as icon.
(® The middle row contains the customizable node name, its icon representation, and a button to run the node and its
predecessors. (6 Various nodes allow the creation of custom slots by clicking the “+” button.

Users are able to freely compartmentalize their pipelines (see Supplementary Figure 3.3), for example
into preprocessing, segmentation, and postprocessing (see Fig. 2a). Within compartments, users can
add additional nodes via a menu and arrange them freely.

h

) input
() File handler

() Output

v

-
() Input

(%) Worm segmentation

(%) Output

w

w
() Input

(%) Quantification

(%) output

Eon 1= @ |
B 11 o Prapanaes 20 |
O ||| == o = omo |
I |
> £ ouwul [5]]
~Emw
& Caussan b 20
- @ o [}
[=]
‘ ¥ WAt 20 |
* B porLege
R EO pe— - % a
[+ S || [+ e
& i e
[~ = | || [Awossmainne a
I
~ & o 1| =]
B » 3 S i oy s
- & s - & oo [+ $ome: @ +
I I
- s v & mpu
® A0 DRI T ANNBG@IONS. * o ReCS A SN SAGE
[+ = rnotimaons ||| o]
I I
[+ B] [~ ®ww]
» isLanes | Do Aeduce 4t tas |
[r A | [* = o af + |
Il
—_
~ @ean |+ me [~ me + |
3 S camodnd companar | + G Moedaron |
AL LT]
\ ~ Qrol > F avwrene v 8
o Fam ma s +) D o b coss 5 opi omges
- W s 1{[[+ oo | [+ Hoam |
=
~ e ~ E ~ Eror
» (5 Coldate mestaven + B Seweplaos able colsen K Wiyt mhle colures
~ Dot - B ot - B
I
= & reons || [&] [T Ewr]
* F Tow e sisics ¥ U Swimbe » B A unotssuns as cobmes
< B || | S |
I 1 = [
[~ B][[= e] [+ Biwa]
| ¥ oname £ mosey conamns x| | | M P | [sy |
LD ||| [F Eama] [~ Eouw |
= =

Supplementary Figure 3.3 | Compartmentalization of pipelines. Users can use a compartment graph to organize a pipeline.
Compartments are created and connected via a dedicated compartment graph (left). Each node in this structure contains a
space where functional nodes can be placed (right).

JIPipe provides over 1000 nodes that include tools for data management and generation; mapping the
file and folder structure of the data; annotation tools to keep track of file origins and experimental
conditions; image processing nodes; ROl management; table processing and filtering; nodes to export
the results in various formats and structures; and a group of additional miscellaneous nodes to add
utilities to the system. Multiple ways are provided to search for specific nodes (see Supplementary
Figure 3.4), e.g., by name, functionality, and compatibility to the preceding node. According to the
symbiotic principle outlined earlier, these nodes can also be directly accessed from ImageJ.

HPipe - New project* v o x

 tuto update | B tothing cached | | Noprocesses srerunning | dbFun | @ el

170 B Tacles B epot B Miscallsnecus | - a]>c down BimE

> Dieie
~ Dl fikename

w [Files

> mport imag
mage 5]

— @ Quick guide | 1 fualable rodes | &k Node templstes M Bookmarks 73 jouma
I
a|z
Find matching slgarthm A% # Deawimordfy mask
mages > Form

a & 2: Sumn

[y ye— —

Cresis Gaussian blur 20

5 Gaussisn functon for smoathing 1F
2 s provided, the fiter s applied fo each T mput b

nction in 30 space for @
Jonal data is provided, the filter Is Enpu b

Blur 30 ‘

= fallawing oUEpUTs:

ighe
h3D

 fallawing oUEpUts:

mask that is drawn over a reference image. Vou ca
lasks' input. If 8 Geta batch s no existing mask, a new
tothe node parameters,

Reference dmagel

W = e [p—

Saussian blurred Image of an image given two

20220317 0D:59:11 Welcame 10 JPipe B reduce memory &

Supplementary Figure 3.4 | GUI functions to add nodes into a pipeline. (D Nodes are organized into a menu. @ New and

existing nodes can be searched via a search bar. (3 Users who are familiar with other visual programming languages find a
toolbox where nodes can be dragged into the graph. @ Each input and output provide an “Algorithm finder” feature that

lists all compatible sources or targets based on their data type.

Nodes can be intuitively connected into a pipeline by creating edges between them via using the
mouse. Alternatively, an algorithm finder can be used to locate nodes that match the data. Unique to
JIPipe, all nodes are self-documenting, meaning that users can infer the functionality of the nodes and
their slots without referencing a manual (see Supplementary Figure 3.2). The nodes are fully
customizable by the user, thus simplifying the execution of multi-parameter sets.

A comprehensive context-sensitive documentation of all nodes and their parameters can be accessed
any time. Alternatively, JIPipe includes complete documentations for nodes and data types that can be
exported to HTML, PDF, or text files (see Supplementary Figure 3.5). To provide users of more complex
nodes with a starting point, we implemented minimal examples that also reveal syntax details.
Additionally, JIPipe nodes are capable of automated parameter validation to warn users about possibly
invalid inputs.

HPige - New project*

) analyss ©
sta @ file system W Annotations ¥ images £3A01 @ Tsvles [Bport 3 Miscellanecus -4

omEeee 1

> Dieie

Name mport image

01 Filename AB 7 U Smage

Genersted mage pe & mage s

+ [aceptive porameters + a0
? oo celioai o denscle baaiel s e i i
Import image
Laads an image viathe native Image functions

D Flles (Fle) The mage fie

BN = image (mage) Imparted image

Developer information

Node tvoe ID insort-insaei-inaslus-fron-file
*

20220317 010206 Saved backup to fastdatassrefpipepipe/hackupsiuntried 2022.03-17T01-02.06.223 p B Reduce memory &

Supplementary Figure 3.5. | Integrated documentation. () The node parameter editor provides access to a brief
description of the selected node. Parameter documentations are context sensitive and displayed after hovering the
parameter control. @ The “Help” menu allows access to full documentations for nodes and data types.

A pipeline is executed by clicking the “Run” button, which will automatically validate the project, and
offer options for optimization and multi-threading. The user only has to set an output directory and
confirm the settings. JIPipe will automatically execute the project and store all results in a standardized
format, together with the parameters, as a full project file (see Supplementary Figure 1.1. Afterwards,
the results are displayed in a separate interface that allows to review and export the data (see
Supplementary Figure 3.6). Due to the standardized output format, JIPipe can open existing results in
this viewer, even if the analysis was not applied on the same machine. To work on data interactively,
JIPipe allows the execution of a selected node where results are cached inside the random-access
memory (RAM) to be accessed later from within the GUI and displayed in the appropriate tool, e.g.,
images are displayed by Image) or other tools, or re-used by another JIPipe run. To improve the
usability of caching, JIPipe comes with cache-aware viewers for common Imagel data that
automatically update themselves to the newest cached versions, display metadata, and allow to
browse through all results efficiently.

- B— P\ e o x
D utoupiete | Bincthingcacred | 118

g £
]
Fi i i F i i i Fi
g g g

L 1o Rt aata/Sre IpIp i pe/bSck Jps/DrapIEts_v2 | p_2022 03 1 7101 20.06.221 | W reauce memony B
v Iipie £ ipip plets 2 . P

Supplementary Figure 3.6 | Result analysis GUI. (D The interface is opened after a successful pipeline run. Alternatively,
JIPipe can open existing directories. (2) Results are organized by their compartment, node, and output slot. On selecting an
entry, the corresponding data is displayed. 3 Data is displayed as table, containing information about the compartment,
node, slot, index within the data table. Text and data annotations are displayed as well. The main data item is previewed.

JIPipe organizes data into tables that are associated to each slot (see Supplementary Figure 3.7a). Each
table has one column containing binary data of a type defined by the slot, and an arbitrary number of
metadata columns containing strings or other data. There are various nodes available that generate or
modify the set of metadata. For example, it can be used to track biological conditions, dataset
identifiers, or image properties. The flexibility of this approach allows the easy management of
research data and assists users in finding and reproducing data and analysis details according to the
FAIR principles®. Generally, nodes iterate over the rows of the table and generate one result per row;
this strategy also provides the opportunity to parallelize computationally expensive workloads.
Another benefit of this design is zero-cost up- and downscaling: Users only need to modify the set of
input files or folders to change the scale of the analysis without the need for updating the pipeline
structure. During the processing, metadata is conserved. These annotations are helpful for the
postprocessing and review steps but are also actively used by various algorithms that iterate through
multiple inputs or merge data (see Supplementary Figure 3.7b).

a b

Nodes have one or multiple Experiment %, Multi-input nodes = Group data based on one or
input/output slots. Each slot 001 e multiple annotations. Either as set or table,
stores a table with annotated depending on the node.
002
data. I Raw images
003 a2 Experiment Experiment | Threshold
Data is pro-
001 001 51
- a v
Ce_ssed n_:)w Experiment Threshold %
wise, while 002 002 54
preserving 001 51 Auto-threshold
annotations. : i o 58
002 54
L Y 1 |
003 68 I
' v v *
|_! Red channel |_! Green channel
Experiment Threshold Experiment Red channel | Green channel
Create RGB image
001 51 001 P
2= RGB images -
002 54 ! L 002 >
L 003 68 003 s

Supplementary Figure 3.7 | JIPipe data model. (a) Each node in a pipeline (right) has multiple inputs and output slots (gray
box). Each slot contains a table of binary data (left), annotated with additional string columns (e.g., “Experiment”,
“Threshold”). A connection between two slots (black lines) leads to the data being passed to the input and processed row-
wise (green arrows). The annotations are preserved. (b) A node with multiple inputs (Figure 4a, “Create RGB image”) groups
data (left) by testing for the equivalence of annotation sets (green highlight). The resulting grouped table (right) is processed
row-wise.

4 Online training and documentation resources

We already provide a substantial amount of online documentation that simplify the process of
adapting JIPipe into a bioimage analysis workflow, develop plugins and extensions, and to connect our
software to third-party tools.

4.1 User guide and tutorials

To provide resources for new users of JIPipe, we created both step-by-step tutorials in text and video
form, as well as documentations that guide users through the features of the user interface. As users
of ImageJ might be new to the concept of visual programming and are possibly unaware of the benefits
gained by utilizing our software, we created a video abstract that explains these aspects within three
minutes (see https://www.youtube.com/watch?v=Zyl52bluWYIl). All tutorials are listed on
https://www.jipipe.org/tutorials/ and already include the following items:

e A step-by-step tutorial guiding through a basic image analysis task with batch processing
o Text (25 steps): https://www.jipipe.org/tutorials/analysis/
o Video (9:25 minutes): https://www.jipipe.org/tutorials/analysis video/)
e A comprehensive tutorial that compares the analysis workflow between ImageJ and JIPipe
o Video (22:36 minutes): https://www.jipipe.org/tutorials/jipipe-for-imagej-users/
e Ashort overview of the JIPipe user interface
o Video (4:35 minutes): https://www.jipipe.org/tutorials/guide-user-interface/
e A brief explanation of JIPipe’s data caching feature
o Video (4:16 minutes): https://www.jipipe.org/tutorials/guide-data-caches/

e An explanation of the graph editor features
o Video (3:48 minutes): https://www.jipipe.org/tutorials/guide-graph-editor/
e Atutorial that explains the setup of a batch analysis and the backgrounds of JIPipe's data
management
o Video (7:47 minutes): https://www.jipipe.org/tutorials/guide-batch-processing/
e A guide through the design of a custom node via the JIPipe GUI:
o Text (10 steps): https://www.jipipe.org/tutorials/extension/

https://www.youtube.com/watch?v=Zyl52bluWYI
https://www.jipipe.org/tutorials/
https://www.jipipe.org/tutorials/analysis/
https://www.jipipe.org/tutorials/analysis_video/
https://www.jipipe.org/tutorials/jipipe-for-imagej-users/
https://www.jipipe.org/tutorials/guide-user-interface/
https://www.jipipe.org/tutorials/guide-data-caches/
https://www.jipipe.org/tutorials/guide-graph-editor/
https://www.jipipe.org/tutorials/guide-batch-processing/
https://www.jipipe.org/tutorials/extension/

Information that is not covered by our tutorials is made available in the text documentation (see
https://www.jipipe.org/documentation/) that covers the following topics:

e The basic concepts behind JIPipe

o The basic concepts of visual programming with focus on users familiar to ImageJ:
https://www.jipipe.org/documentation/basic-concepts/visual-programming/

o Anoverview of the batch processing functionality with illustrations to explain the
concepts behind it:
https://www.jipipe.org/documentation/basic-concepts/batch-processing/

e Information about important GUI and JIPipe features related to designing pipelines

o Anoverview of the graph editor user interface:
https://www.jipipe.org/documentation/create-pipelines/pipeline-editor/

o A detailed explanation of JIPipe's expression system with illustrations, examples, and
a list of operators and their precedence:
https://www.jipipe.org/documentation/create-pipelines/expressions/

o An explanation of the purpose of graph compartments:
https://www.jipipe.org/documentation/create-pipelines/compartments/

o A guide through the node grouping functionality:
https://www.jipipe.org/documentation/create-pipelines/groups/

o An explanation on the usage of loop nodes:
https://www.jipipe.org/documentation/create-pipelines/loops/

e Guides relating to running pipelines and reviewing results

o A brief guide on how to run a pipeline:
https://www.jipipe.org/documentation/run-pipelines/run/

o A guide through the result viewing component:
https://www.jipipe.org/documentation/run-pipelines/result-analysis/

o An overview of JIPipe’s data storage format:

https://www.jipipe.org/documentation/run-pipelines/connect-external-software/
o Information on how users can cache data:

https://www.jipipe.org/documentation/run-pipelines/quick-run/ and
https://www.jipipe.org/documentation/run-pipelines/cache/
e Information about the ImageJ integration and how to run JIPipe nodes inside ImageJ:
https://www.jipipe.org/documentation/imagej-integration/
e An overview of JIPipe’s plugin list GUI:
https://www.jipipe.org/documentation/plugins/
e Anoverview of all functionalities included in the standard JIPipe distribution
o The Imagel integration library:
https://www.jipipe.org/documentation/standard-library/imagej-integration/
o A guide on how to utilize macro nodes:

https://www.jipipe.org/documentation/standard-library/macro-node/

o Important remarks regarding the file system nodes:
https://www.jipipe.org/documentation/standard-library/filesystem/

o A guide through the multi-parameter feature supported by many nodes:
https://www.jipipe.org/documentation/standard-library/multi-parameter/

o Remarks about the usage of data annotations:
https://www.jipipe.org/documentation/standard-library/annotations/

o A guide through the plotting features included in JIPipe:
https://www.jipipe.org/documentation/standard-library/plots-tables/

https://www.jipipe.org/documentation/
https://www.jipipe.org/documentation/basic-concepts/visual-programming/
https://www.jipipe.org/documentation/basic-concepts/batch-processing/
https://www.jipipe.org/documentation/create-pipelines/pipeline-editor/
https://www.jipipe.org/documentation/create-pipelines/expressions/
https://www.jipipe.org/documentation/create-pipelines/compartments/
https://www.jipipe.org/documentation/create-pipelines/groups/
https://www.jipipe.org/documentation/create-pipelines/loops/
https://www.jipipe.org/documentation/run-pipelines/run/
https://www.jipipe.org/documentation/run-pipelines/result-analysis/
https://www.jipipe.org/documentation/run-pipelines/connect-external-software/
https://www.jipipe.org/documentation/run-pipelines/quick-run/
https://www.jipipe.org/documentation/run-pipelines/cache/
https://www.jipipe.org/documentation/imagej-integration/
https://www.jipipe.org/documentation/plugins/
https://www.jipipe.org/documentation/standard-library/imagej-integration/
https://www.jipipe.org/documentation/standard-library/macro-node/
https://www.jipipe.org/documentation/standard-library/filesystem/
https://www.jipipe.org/documentation/standard-library/multi-parameter/
https://www.jipipe.org/documentation/standard-library/annotations/
https://www.jipipe.org/documentation/standard-library/plots-tables/

o Anoverview of the integrated Jython and Python wrappers:
https://www.jipipe.org/documentation/standard-library/jython/,
https://www.jipipe.org/documentation/standard-library/python/,
https://www.jipipe.org/documentation/standard-library/python/api/

o Information about the R integration:
https://www.jipipe.org/documentation/standard-library/r-integration/

o An overview of the Cellpose nodes and information about how they are utilized:
https://www.jipipe.org/documentation/standard-library/cellpose/

e Information about the creation custom JIPipe extensions via a graphical interface:
https://www.jipipe.org/documentation/create-json-extensions/

e The usage of JIPipe within a command line interface:
https://www.jipipe.org/documentation/cli/

4.2 Java APl documentation

To aid with the continued development of JIPipe and to facilitate the creation of new extensions, we
published documentation about JIPipe’s Java API. This includes the automatically generated JavaDocs
that contain all classes, methods, and packages (see https://www.jipipe.org/apidocs/index.html), but
also detailed guides on how to setup an extension project, create nodes, data types, parameters, and
other features:

e The setup of a Java Maven project that provides features for JIPipe:
https://www.jipipe.org/documentation-java-api/create-extension/
e Anoverview of the node type classes, including an example node implementation:
https://www.jipipe.org/documentation-java-api/algorithm/
o Documentation on the development of iterative multi-input nodes:
https://www.jipipe.org/documentation-java-api/algorithm/iterating-algorithms/
o An alternative multi-input node type that merges multiple data items:
https://www.jipipe.org/documentation-java-api/algorithm/merging-algorithms/
o Remarks regarding the modification of node input and outputs:
https://www.jipipe.org/documentation-java-api/algorithm/slot-configuration/
o A basic guide to defining node parameters:
https://www.jipipe.org/documentation-java-api/algorithm/parameters/
o Guidelines for creating nodes that support parallelized workloads:
https://www.jipipe.org/documentation-java-api/algorithm/parallelization/
o Definition of node types that do not have a one-to-one relationship with a Java class:
https://www.jipipe.org/documentation-java-api/algorithm/custom-info/
o A guide on creating interactive buttons in parameter lists:
https://www.jipipe.org/documentation-java-api/algorithm/context-actions/
e Anoverview on how the Java APl is used to create a new data type:
https://www.jipipe.org/documentation-java-api/data-type/
o Explanations on how to create user-selectable data importers:
https://www.jipipe.org/documentation-java-api/data-type/result-ui/
o Documentation on implementing result previews:
https://www.jipipe.org/documentation-java-api/data-type/result-preview/
e A guide through the creation of a new parameter type:
https://www.jipipe.org/documentation-java-api/parameter-type/
e Interfacing with JIPipe through its Java API to run nodes, pipelines, and projects:
https://www.jipipe.org/documentation-java-api/usage-in-java/

https://www.jipipe.org/documentation/standard-library/jython/
https://www.jipipe.org/documentation/standard-library/python/
https://www.jipipe.org/documentation/standard-library/python/api/
https://www.jipipe.org/documentation/standard-library/r-integration/
https://www.jipipe.org/documentation/standard-library/cellpose/
https://www.jipipe.org/documentation/create-json-extensions/
https://www.jipipe.org/documentation/cli/
https://www.jipipe.org/apidocs/index.html
https://www.jipipe.org/documentation-java-api/create-extension/
https://www.jipipe.org/documentation-java-api/algorithm/
https://www.jipipe.org/documentation-java-api/algorithm/iterating-algorithms/
https://www.jipipe.org/documentation-java-api/algorithm/merging-algorithms/
https://www.jipipe.org/documentation-java-api/algorithm/slot-configuration/
https://www.jipipe.org/documentation-java-api/algorithm/parameters/
https://www.jipipe.org/documentation-java-api/algorithm/parallelization/
https://www.jipipe.org/documentation-java-api/algorithm/custom-info/
https://www.jipipe.org/documentation-java-api/algorithm/context-actions/
https://www.jipipe.org/documentation-java-api/data-type/
https://www.jipipe.org/documentation-java-api/data-type/result-ui/
https://www.jipipe.org/documentation-java-api/data-type/result-preview/
https://www.jipipe.org/documentation-java-api/parameter-type/
https://www.jipipe.org/documentation-java-api/usage-in-java/

4.3 Data and JSON APl documentation

To store data and projects, JIPipe utilizes JSON files that follow a standardized format. This includes
the format for projects (see https://www.jipipe.org/documentation-json-api/project/) and for non-
Java extensions (see https://www.jipipe.org/documentation-json-api/json-extension/). A similar
standardization is applied in the storage of output files to allow automated data reading and writing
operations. Its highest-order implementation is the standardized format for whole-pipeline and is
described in https://www.jipipe.org/documentation-data-api/pipeline-output/. The format makes use
of the “data table” standard (see https://www.jipipe.org/documentation-data-api/data-table/) that
makes the automated reading and writing of data and metadata possible, due to the presence of a
standardized metadata file (“data-table.json”, see https://www.jipipe.org/documentation-json-
api/data-table/). Within the a data table directory, data items are stored in various directories that
contain hierarchies of files and folders that follow a standard defined by the data type definition in
Java (see https://www.jipipe.org/documentation-data-api/row-folder/). A list of available data types,
associated standards and properties is given in https://www.jipipe.org/documentation-data-api/data-

types/.

5 Methods

5.1 JIPipe dependencies

JIPipe is written in Java version 8 and utilizes libraries provided by SciJava (https://scijava.org/) . The
full list of required libraries is shown in Supplementary Table 1. J/Pipe is open source and licensed
under BSD-2-Clause license.

Dependency Version Author
Bio-Formats 6.5.1 Linkert et al.**
CcLu2 2.0.0.14 Haase et al.
Feature_Detection 2.0.2 Fiji.sc

Feature) 2.0.0 Erik Meijering®®
Flexmark 0.62.2 Vladimir Schneider
Guava 26.0-jre Google Inc.
Image) 2.1.0 Rueden et al.®
ImageScience 3.0.0 Erik Meijering
ImgLib2 2.0.0-beta-46 Pietzsch et al.”’
Jackson 2.11.0 FasterXML
Javaluator 3.0.3 Jean-Marc Astesana
JFreeChart 1.5.0 JFree.org
JFreeSVG 34 JFree.org
JGraphT 1.4.0 Barak Naveh
JUnit 5.7.0 JUnit Team
Jython 2.7.2 Jython Project
Morpholib)J 1.4.1 Legland et al.*®
MPICBG 1.3.0 Stephan Saalfeld
MSLinks 1.0.5 Dmitrii Shamrikov
MTrackl) 1.5.4 Erik Meijering
Multi-Template-Matching - Thomas, Gehrig®®
OMERO 5.5.8 Allan et al.2
RandomJ 2.0.0 Erik Meijering
Reflections 0.9.12 ronmamo

Scijava 29.2.1 Rueden et al.?°
SLF4) 1.7.9 QOS.ch

SwingX 1.6.1 SwinglLabs

https://www.jipipe.org/documentation-json-api/project/
https://www.jipipe.org/documentation-json-api/json-extension/
https://www.jipipe.org/documentation-data-api/pipeline-output/
https://www.jipipe.org/documentation-data-api/data-table/
https://www.jipipe.org/documentation-json-api/data-table/
https://www.jipipe.org/documentation-json-api/data-table/
https://www.jipipe.org/documentation-data-api/row-folder/
https://www.jipipe.org/documentation-data-api/data-types/
https://www.jipipe.org/documentation-data-api/data-types/
https://scijava.org/

Troved) 3.0.3 Rob Eden

Apache Commons Exec 1.3 The Apache Software
Foundation

Apache Commons Compress 1.9 The Apache Software
Foundation

JNA 4,5.2 Timothy Wall, Matthias
Blasing

Supplementary Table 5.1 | List of libraries used by JIPipe.

5.2 JIPipe system requirements

JIPipe was designed to run on any operating system supported by Imagel and tested on Linux (Ubuntu
22.04), Windows (Windows 10), and macOS (macOS Sierra 10.12.6). We must note that due to our
limited access to test MacOS, we can’t ensure that all features will work as expected on Apple
computers. We are open to contributions from the community. We recommend running our software
on hardware with at least 8 GB of system memory and on a 64-bit operating system. To execute all
example pipelines provided with this manuscript, at least 16 GB of memory are required. To utilize
GPU processing functionality provided by CLIJ2, a graphics card supporting OpenCL 1.2 or higher and
capacity to store the analyzed images must be available.

6 References
1. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5-6

(2020).

2. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat.
Methods 9, 245-253 (2012).

3. Svensson, C. M. et al. Coding of Experimental Conditions in Microfluidic Droplet Assays Using
Colored Beads and Machine Learning Supported Image Analysis. Small 15, 1802384 (2019).

4. Mabhler, L. et al. Enhanced and homogeneous oxygen availability during incubation of
microfluidic droplets. RSC Adv. 5, 101871-101878 (2015).

5. Zang, E. et al. Real-time image processing for label-free enrichment of Actinobacteria cultivated
in picolitre droplets. Lab. Chip 13, 3707-3713 (2013).

6. Cseresnyes, Z., Kraibooj, K. & Figge, M. T. Hessian-based quantitative image analysis of host-
pathogen confrontation assays. Cytometry A 93, 346—356 (2018).

7. Muljajew, l. et al. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of
Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 15, 12298-12313 (2021).

8. Hassan, M. . A. et al. The geographical region of origin determines the phagocytic vulnerability

of Lichtheimia strains. Environ. Microbiol. 21, 4563-4581 (2019).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Cseresnyes, Z., Hassan, M. |. A,, Dahse, H.-M., Voigt, K. & Figge, M. T. Quantitative Impact of Cell
Membrane Fluorescence Labeling on Phagocytosis Measurements in Confrontation Assays.
Front. Microbiol. 11, 1193 (2020).

Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular
segmentation. Nat. Methods 18, 100-106 (2021).

Biittner, H. et al. Bacterial endosymbionts protect beneficial soil fungus from nematode attack.
Proc. Natl. Acad. Sci. U. S. A. 118, 2110669118 (2021).

Klingberg, A. et al. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft
Size in Nephritic Kidneys Using Lightsheet Microscopy. J. Am. Soc. Nephrol. JASN 28, 452—-459
(2017).

Gerst, R., Medyukhina, A. & Figge, M. T. MISA++: A standardized interface for automated
bioimage analysis. SoftwareX 11, (2020).

Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777—-
782 (2010).

Meijering, E. Featurel. https://imagescience.org/meijering/software/featurej/.

Rueden, C. T. et al. Imagel2: Imagel for the next generation of scientific image data. BMC
Bioinformatics 18, 529 (2017).

Pietzsch, T., Preibisch, S., Tomancak, P. & Saalfeld, S. ImgLib2—generic image processing in Java.
Bioinformatics 28, 3009-3011 (2012).

Legland, D., Arganda-Carreras, I. & Andrey, P. MorpholibJ: Integrated library and plugins for
mathematical morphology with Imagel. Bioinformatics 32, 3532—3534 (2016).

Thomas, L. S. V. & Gehrig, J. Multi-template matching: a versatile tool for object-localization in
microscopy images. BMC Bioinformatics 21, 44 (2020).

Rueden, C., Schindelin, J., Hiner, M. & Eliceiri, K. SciJava Common [Software]. (2016).

