Appendix: Supporting Supplementary Materials

Appendix A (Supplementary Materials A)
Outline the eight studied orogens and their isotopic mapping 

1. The Altaids (or Central Asian Orogenic Belt, CAOB)
The Altaids, or Altaid tectonic collage1–3, or Central Asian Orogenic Supercollage4, or Central Asian Fold Belt5, or most of the Central Asian Orogenic Belt (CAOB)6–8, is located between the Siberian, Baltic (the East European Cratons), and Tarim–North China cratons. It is the world’s largest accretionary orogen and the most important site for Phanerozoic crustal growth1–3,6,7,9. 
The Altaids was mainly formed by subduction/accretion of the Paleo-Asian Ocean and subsequence collision of ancient terranes, microcontinents, and continental fragments as well as island arcs and accretionary complexes between the Siberia and Tarim–North China cratons1,9,10. The accretion started mainly at ca. 600 Ma (locally ∼1000 Ma) and came to an end with the late Permian to early Triassic collision9,10,11. Thus, the orogenic system is a complex collage of diverse terranes, including micro-cratons, island arcs, continental-margin arcs, forearc/back-arc regimes, accretionary complexes, and ophiolites and microcontinents fragments, and is characterized by oroclines, i.e., the Kazakhstan orocline1,3,9,10,12,13. In addition, the eastern Altaids was formed by the subduction/accretion (350-150 Ma) and closure (∼150 Ma) of the Mongol-Okhotsk Ocean, forming the Tuva-Mongol orocline1,3,11,14 (Fig S1).
The long-lived accretion produced lots of juvenile components in the Altaids. The juvenile components include intra-oceanic arcs, island arcs, continental-margin arcs, forearc/back-arc regimes, accretionary complexes, and ophiolites3,10,12,13,15. The strongly juvenile crust is represented by intra-oceanic arcs (most contain boninites), which have been recognized in many areas, e.g., Western and Eastern Junggar, Inner Mongolia of China, Kazakh, northwestern, western, and northern Mongolia, Transbaikalia, and Russian-Kazakh-Chinese-Mongolian Altai13,16–18. The ancient compositions consist of Precambrian terranes and microcratons19.

Voluminous felsic and intermediate igneous rocks (mostly granitoids) are widespread in the Altaids, accounting for about 50-70% of the present outcrop of the Altaids6,20,21 ( Fig. S1). These rocks were mostly generated during the syn-orogenic period (600-250 Ma) and a few during post-orogenic21–23 (240-200 Ma) in the Paleo-Asian Ocean regime. Many late Paleozoic-Mesozoic felsic and intermediate igneous rocks in the eastern Altaids were formed by the subduction/accretion (350-150 Ma) of the Mongol-Okhotsk Ocean. A few of the rocks (150-120 Ma) were produced in a post-collisional setting. 
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Fig. S1. Tectono-magmatic map of the CAOB showing felsic and intermediate igneous rocks (modified from T. Wang et al14). The major tectonic units are modified after  Sengör et al.6 and Xiao et al.9. MOO = Mongol-Okhotsk Orogen; MOS = Mongol-Okhotsk suture; WJ = West Junggar; EJ = East Junggar; Є = Cambrian; O = Ordovician; S = Silurian; D = Devonian; C = Carboniferous; P = Permian; T = Triassic; J = Jurassic; Pz = Paleozoic. The numbers 1, 2, and 3 that follow P, C, T, and J represent the early, middle and late phases, respectively.

The felsic and intermediate igneous rocks consist mainly of quartz diorites, granodiorites, and monzogranites, which are mostly I- and A-type, with a few S-type24. They are characterized by primitive isotopic features, and therefore distinct from the granitoids of other orogens 6,18,24–28.

A database (4345 Sm-Nd data with ages) of whole-rock Sm-Nd data of felsic and intermediate igneous rocks in the Altaids was compiled from literature and our new 169 data (Table S1a). These data are available and used to make a series of isotopic maps.

The Altaids experienced a long-term accretion mainly from 600 Ma (early subduction of the Paleo-Asian Ocean) to 150 Ma (the timing of the closure of the Mongol-Okhotsk Ocean), therefore, igneous rocks with ages of 600-150 Ma are selected for isotopic mapping. Furthermore, to get and use more isotopic data for mapping, Nd data of igneous rocks older than 600 Ma and younger than 150 Ma rocks have also been used; but their parameters (εNd(t) and TDM) of the data were recalculated by using ages of 600-150 Ma, respectively (Table S1a). Felsic and intermediate igneous rocks were mainly derived from crustal sources and represent the crust isotopes.

The εNd(t) values (Fig. 1a in the text) and two-stage Nd depleted mantle model ages (TDM2; Fig. S2) show a large of variations (Table S1a; Figs. S3 and S4). Most or at least half of the data show εNd(t) > 0, roughly corresponds to TDM2 < 1.0 Ga. Isotopic (Nd) maps of εNd(t) (Fig. 1a) and TDM2 (Fig. S2) have been conducted for the Altaids, based on previously isotopic investigations6,24,26,28,29 and our isotopic mapping in some regions18,25, 27,30–32. The TDM2 map displays a similar isotopic distribution pattern and/or crustal architecture to the εNd(t) map (Fig. 1a). All results demonstrate six-type isotopic provinces (or domains) and crustal architectures in the Altaids (Table S1a). The architectures are also consistent with those unveiled by our previous zircon-Hf isotopic mapping in some areas, such as the West and Eastern Junggar31 and West Tianshan32. 
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Fig. S2. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic-intermediate rocks of the Altaids (CAOB), showing a similar pattern to that of the εNd (t) map (Fig. 1a). Data from Table S1a.
The isotopic mapping yields an area of each province. This allows us to estimate the proportion of juvenile crust quantitatively on an orogen scale. Here, the juvenile crust (εNd(t) > 0) is subdivided into strongly juvenile (province I, εNd(t) = > +6), moderately juvenile (province II, εNd(t) = +6 - +2), and slightly juvenile (province III, εNd(t) = 2 – 0). Their total area of the juvenile crust is 3,729,469 km2, accounting for 58% of the surface area of the Altaids. Moreover, the strongly juvenile and moderately juvenile crust even reach ca. 224,255 km2 and 2,257,818 km2, respectively, total 2,482,073 km2, accounting for ∼59 % area of the orogen. 

Figure. S3a shows that the two-stage Nd depleted mantle model ages (TDM2) have a good linear correlation with the εNd(t) value. Corresponding to the three provinces determined by εNd(t) values, the TDM2 values give rise to < 0.4 Ga (strongly juvenile), 0.4-0.6 Ga (moderately juvenile), and slightly juvenile (0.6-1.0 Ga), respectively. The map for the TDM2 (Fig. S2) demonstrates a similar pattern to the εNd (t) map (Fig. 1a). Both the area and percentage of the juvenile crust of the Altaids are the largest in the world’s Paleozoic orogens, making this belt unique and distinct from other classical Phanerozoic orogens. 
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Fig. S3. Diagrams for εNd(t) values vs. two-stage Nd depleted mantle model ages (TDM2, Ga) of the acid-intermediate igneous rocks from the eight orogens, showing a good linear correlation. Corresponding to the εNd(t) = 0, the average TDM2 =1.18, 1.15, 1.10, 1.19, 1.15, 1.10, and 0.95 for the Altaids, Newfoundland Appalachians, the Lachlan, Caledonian, the Variscan, the Qinling-Dabie, and the Tethyan Tibet Orogens, respectively.

Furthermore, we conduct the TDM2 frequent diagrams for the eight orogens (Fig. 2). Comparably, the Altaids shows much more TDM < 1.1 Ga, characterized by two wide peaks at 0.5 Ga and 0.8 Ga. These indicate that the Altaids has a more highly juvenile crust than any other orogens.  

In some regions of the Altaids, we did zircon-εHf(t) isotopic mapping31,32. Our statistics indicate that εNd(t) and median εHf(t) values have a good linear correlation and are coupled with few exceptions (not shown here). The array of samples from the West Tianshan shows εHf = + 1.33, εNd = + 4.9832, with a similar slope to that of the proposed terrestrial array (y = 1.36x+2.95)33 despite a small y-axis offset. Thus, we use this principle to the defined juvenile crust by εHf(t) >+3–+5. Provinces I to VI are characterized by εHf(t) >+9, +9–+5, +5 – 0, respectively. 

Notably, the results of the isotopic mapping are further confirmed by our mapping of xenocrysts or inherited zircons of igneous rocks34,35. Besides, the juvenile crust of Province I in Western Junggar is also consistent with deep fossil Paleozoic intra-oceanic crust by magnetotelluric imaging36,37.

The same principle and methods for the isotopic mapping above have been used for the other six orogens below.

Figure 4 shows a comparison of εHf(t) values of the eight orogens in an εHf(t) vs. Age diagram. The accretionary orogens, such as the Altaids, Cordilleran, Lachlan, and the Appalachian orogens, host more positive εHf(t) values than the collisional ones such as the Tibet, Variscan, and Qinling-Dabie orogens.
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Fig. S4. A plot of εNd(t) vs. age for felsic-intermediate rocks from the eight orogens, the Altaids (CAOB), North American Cordillera, Newfoundland Appalachian, Lachlan, Caledonian, Variscan, Tethyan Tibet, and the Qinling–Dabie orogens. 
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2. The North American Mesozoic Cordillera
The North American Cordillera Orogen, extending along the west coast of North America for more than 10,000 km (Fig. S5), is an archetypal Cordilleran (ocean-continent subduction) orogenic system and has been the foundation for many tectonic and geodynamic concepts1–7. For example, it is considered to be a classic or archetypal accretionary orogen.
The North American Cordillera Orogen was constructed due to prolonged eastward subduction of the oceanic Farallon and Kula plates. The orogen consists of three tectonic belts, from east to west8: the Paleozoic Rocky Mountains (continental margin, or foreland belt); interior lntermontane belt (hosting Paleozoic allochthonous terranes); and the ~100 km-wide Coast batholith belt (the root of a Late Jurassic to Eocene continental arc). In tectonics, they corresponded to a retro-arc thrust belt, orogenic hinterland, and a continental arc, respectively 7. The orogenic system records ca. 420 Myr of convergent margin processes and subduction in the last 200 My, but the major process occurred during the Mesozoic10.

[image: image5.jpg]60°N

49°N

SO0°N

10°N

150°W  135°W

120°W _105°W

90°W 75°W 60°W

Intrusive rocks Los Angeles

North
American

o

Volcanic rocks

- Q E

N2 K2

New York O

o
Pz O Chicago

Deposits on old continent

N1 i K
N . J i
E3" N T :
E2 @ Mz 0 D SN
E P mws A N
B2 B C2 I o ﬁ%ﬂexmo City
B K1 Ci1 Pz &yt Ny e
[ [ | & v
—
135°\W 120°W 105°W pyy

45°N

30°N

15°N




Fig. S5. Map of felsic and intermediate igneous rocks in the North American Cordillera 11(modified from Garrity and Soller, 2009).
The igneous rocks are the fundamental components of the North American Cordillera. They were formed mainly during the Mesozoic and occurred as several belts overlapping these tectonic welts. The major igneous belts consist of several belts, such as the North American Cordilleran Anatectic Belt and the Mesozoic Cordilleran coastal batholith belt7,9. The North American Cordilleran Anatectic Belt occurs to the east (in the orogenic hinterland). It consists of muscovite-bearing granites, which were derived from localized crustal melting associated with the intrusion of mafic magmas at depth12,13. This belt was mainly formed by the eastward-migrating magmatism that extended into the orogenic interior, particularly during the Jurassic, and ended in the Late Cretaceous. 

The Mesozoic Cordilleran coastal batholiths include the Peninsular Ranges, Sierra Nevada, Idaho, and Coast Mountains batholiths (Fig. S5). They were generated by melting juvenile crustal sources related to depleted upper-mantle sources in a subductional setting.
Cretaceous igneous rocks (arc) occur in all the orogen and overlap the three tectonic belts. The magmatism generally migrated inboard (eastward), across the two magmatic belts, accompanied by a considerable variation of initial εNd compositions ranging from +5 to –5 (west­to­east gradient across strike) as the Proterozoic continental margin was impinged, represented by the “706 line”14. These spatial isotopic variations clearly show the role of basement compositions: juvenile crustal sources related to depleted upper-mantle sources to the west and evolved coastal sources controlled by more enriched continental mantle lithosphere and ancient crust to the east.

Soon after Cretaceous magmatism, the mid-Cenozoic (Paleogene) magmatism rapidly swept back westward toward the trench, producing ignimbrite flare-ups and several large-volume volcanic eruptive centers15,16. The mid-Cenozoic ignimbrite flare-up is related to the foundering or rapid roll-back of the previously shallowly-dipping Farallon plate17. The majority of mid-Cenozoic flare-up magmatism has been interpreted to have originated from the melting of hydrated mantle lithosphere to produce mafic magmas that then experienced various degrees of fractional crystallization and assimilation within the crust to produce a range of compositions (basaltic to rhyolitic)18,19.

We compiled 907 Nd isotopic data of felsic and intermediate igneous rocks of the North American Cordillera from literature (Table S1b). The North American Cordillera is characterized and represented by the Mesozoic orogeny, and the major orogeny and magmatism occurred during 250-66 Ma. Therefore, the igneous rocks with ages of 250-66 Ma are selected for the isotopic mapping. Using the same principle and method for the Altaids, igneous rocks with ages of > 250 Ma and < 66 Ma have also been used for mapping. Their εNd(t) and TDM have been recalculated using 250 Ma or 66 Ma.

These rocks show a large variation of εNd(t) values from highly negative (-14) to highly positive (+6). There is a good linear correlation between εNd(t) values and TDM2 (Fig. S3b), and the map of TDM2 (Fig. S6) yields a similar pattern to the εNd(t) map (Fig. 1b).
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Fig. S6. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic and intermediate igneous rocks in the North American Cordilleran Orogen, showing a similar pattern to that of the εNd (t) map (Fig. 1b). Data from Table S1b.
The isotopic maps (Fig. S6) indicate that the juvenile crust predominantly occurs along the coast, particularly in the northern and southern segments of the orogen, and accounts for ~69% area of the orogen. Furthermore, the juvenile crust is predominately characterized by isotopic provinces I, II, and III, that is, strongly and moderately juvenile provinces. There are few areas of the strongly juvenile crust (strongly primitive, εNd(t) > +6, TDM2 < Ga), much less than that of the Altaids (Fig. 2). 

 The evolved reworked crust occurs in the highland (Rock Range). The crust consists mainly of provinces IV and V, i.e., moderately ancient types (Table S2 and S3). Strongly ancient crust occurs in the highland. All these indicate that the juvenile crust of the North American Cordillera has a moderately high percentage (~42%).
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3. The Newfoundland Appalachian Orogen
The Appalachian Orogen in North America is currently considered to be a Paleozoic accretion-type orogen, formed by accretion and collision of many juvenile terranes and ancient blocks and by the terminal continent-continent (Laurentian and Gondwanan) collision in the Late Permian1–4. It is regarded as a complex accretionary orogen defined  by Condie (2007)5. 

The Newfoundland Appalachians preserves one of the most complete and best-exposed cross-sections through the Appalachian Mountain belt6 It comprises several accreted terranes, including oceanic and continental-margin arcs, ophiolites, continental rifts, and micro-cratons7 (rifted fragments of continents with cratonic sedimentary successions). These terranes were mostly rifted from the northern margin of Gondwana, beginning in the Neoproterozoic and Cambrian8. The Newfoundland Appalachian is traditionally divided into, from north to south, the Humber Zone, the Dunnage Zone, the Gander Zone, and the Avalon Zone. The Dunnage Zone can be further subdivided into the Notre Dame Subzone and the Exploits Subzone6. 

   Felsic and intermediate igneous rocks of the Newfoundland Appalachians are dominated by Paleozoic granitoids (Fig. S7). They are mostly granodiorites and monzogranites, with I- and S-type affinities9,10. Their available Nd isotopic data are from 219 granitic samples of 90 plutons3,10–17 (Figs. 1c). These data cover almost all areas of the orogen.
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Fig. S7. Map of felsic and intermediate igneous rocks of the Newfoundland Appalachian (from Hibbard18).

The Sm-Nd datasets (418 Sm-Nd data with ages, including 71 new data) of the felsic and intermediate igneous rocks of the Newfoundland Appalachian Orogen are listed in Table S1c. They show a moderate variation of εNd(t) values (Fig. 1c). For these data, juvenile crust (εNd(t) > 0) corresponds to TDM2 < 1.15 Ga (Fig. S3c). The map of TDM2 (Fig. S8) also yields a similar pattern to the εNd(t) map (Fig. 1c).

The isotopic maps of both εNd(t) (Fig. 1c) and TDM2 (Fig. S8) indicate that the juvenile crust is about 48,962 km2 and makes ~46% area of the orogen, which are lower than those of the Altaids. Furthermore, the juvenile crust is predominately characterized by isotopic provinces II and III, that is, moderately and slightly juvenile provinces (moderately and primitive). The strongly juvenile crust (strongly primitive, εNd(t) > +6) is very rare (only ~4 km2), much less than that of the Altaids (Figs. 2 and S2). All these demonstrate that the juvenile crust of the Newfoundland Appalachian orogen is both less percent and younger than that of the Altaids (Figs. 1 and 2). 

The ancient crust consists mainly of provinces IV and V, i.e., slightly and moderately ancient types (εNd(t) = -10 – -4 and εNd(t) = -4 – 0, respectively). The strongly ancient crust is rare.
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Fig. S8. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic and intermediate igneous rocks of the Newfoundland Appalachians (Data from Table S1c).
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4. The Lachlan Orogen
The Lachlan Orogen in Australia, a part of the Paleozoic Tasman orogenic system of eastern Australia and Gondwana, is bounded to the north, west, and east by the Thomson, Delamerian, and New England orogens, respectively1–3. The Lachlan Orogen formed by closure (450–340 Ma) of the back-arc basin systems behind a long-lived subduction zone represented by the New England Fold Belt and by accretion of submarine fans, accretionary complexes, extinct volcanic arcs, oceanic crust, and the Tasmanian microcontinent1,2,4. This orogen is considered to be a composite accretionary orogen5 or an extensional accretionary orogen6.

Felsic and intermediate igneous rocks (mostly granitoids) are widespread in the Lachlan Orogen (Fig. S9). I- and S-type granites were first recognized from the Lachlan Orogen and have been extensively studied7,8. These rocks, ranging from about 430 to 370 Ma, form ~20% of the present outcrop in the orogen7,8. Most of them were emplaced syn- to late-kinematically9. Volcanic sequences are widespread (~15% of the area in eastern Lachlan Orogen) and mostly dacite-rhyolite, associated with shallow granitic plutons10. Basaltic to andesitic volcanic rocks comprise the Ordovician (480–460 Ma) Macquarie Arc in the eastern Lachlan Orogen11.
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Fig. S9. Map of felsic and intermediate igneous rocks of the Lachlan Orogen (Modified from maps from the website of Geology Survey of Australia). The diagrams also show major orogen, subprovince, and zone boundaries. Modified from Raymond et al.12.

Numerous available Sm-Nd isotopic data have been reported from the Lachlan Orogen13–20. We collected 411 published available Sr-Nd data of felsic and intermediate igneous rocks (mostly granitoids) from the orogen. The εNd(t) and TDM2 have a good linear correlation (Fig. S3d). Both εNd(t) and TDM2 isotopic maps (Fig. 1d and Fig. S10) show that isotopic province types II, III, IV, and V are predominant (Tables S2 and S3). Types II and III, i.e., juvenile crust, located mainly in the north part of the orogen, accounts for ~33% area of the orogen. 

It is generally considered that the Central Lachlan Subprovinces have a more dominant crustal signature than the Eastern and Western ones21. Pb isotopic map also gives rise to similar results21. Our isotopic mapping further reveals that the isotopically juvenile provinces or domains mainly occur in the northern part and evolved (reworked) ones in the south. This displays that N-S trending orogen has distinct deep compositions from N to S; probable tectonics in the upper and lower crust are decoupled. Anyway, all juvenile domains occupy ~38% of the orogen, less than those of both the Altaids and Newfoundland Appalachia. 
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Fig.10. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic and intermediate igneous rocks from the Lachlan. Data from Table S1d.
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5. Tethyan Tibet Orogen (Tibetan plateau)

The Tethyan Tibet Orogen, or Himalaya Orogen, a major segment of the Tethys, is the Earth’s largest collisional orogen with the thickest crust (60-85 km) and the highest elevation (>4000 m). It was finally formed by the India-Asia collision at 65-55 Ma or younger phase of multiple collision, following Mesozoic accretion/collision of terranes1–8 (e.g., Songpan, north Qiangtang, south Qiangtang, and Lhasa). The terranes were accreted to the southern margin of the Eurasian plate by successive subduction of Paleo- and Neo-Tethyan Oceans since the late-Paleozoic1. The modern architecture of the orogenic system principally reflects the consequences of the India–Asia collision3 and represents the quintessential modern example of collisional orogens. The collision experienced syn-(65-40Ma), late-(40-26 Ma), and post-(<25 Ma) collision8. Voluminous igneous rocks form during all these collisional stages, following the closure of the Neotethys. Besides, many felsic and intermediate igneous rocks (granitoids) were emplaced in the Mesozoic accretionary and collisional setting during the closure of the Paleotethys (Fig. S11).

[image: image11.jpg]35°N

30°N

25°N

90°E

Ophlollte melange
Tecto

boundary and fault "

Strike slip

Diorite, monzonite
syenlte etc.
Gabbro, norite
anorthosite, etc.

Kimberlite Alkaline
lamproite intrusive rocks
Basic dyke
KU nl un

Peridotite
pyroxenite

Ophiolite melan:

e e s B D6 v

ultramafic rock

————

Intrusive rocks

B o BT B 2w

B~ B0 [ [ Bl
O Dby (Yt
B ro e v Il e

B

Mianlue suture

35°N

30°N

80°E

25°N




Fig. S11. Map of felsic and intermediate igneous rocks from the Tibetan Tethys. The diagram also shows subprovince and zone boundaries5. Terranes or blocks: SP = Songpan; NQ = North Qiangtang; SQT = South Qiangtang-Triassic; J-K = Jurassic-Cretaceous; N = Cenozoic. Pr.TO = Proto -Tethyan Ocean; PTO = Paleo-Tethyan Ocean; NTO = Neo- Tethys Ocean; CCOS = Central China Orogenic Systems.

A dataset of 1166 Sm-Nd data of felsic and intermediate igneous rocks from the Tibetan Tethys was established based on the previous research9–13 and our isotopic mapping14–16. The εNd(t) and TDM2 have a good linear correlation (Fig. S3e). We compiled Nd isotopic maps of εNd(t) (Fig. 1e) and TDM2 (Fig. S12). Both maps image similar distribution patterns of juvenile and ancient crust domains. The results show that five of six typical Nd isotopic provinces occur in the orogen. Province I (strongly juvenile crust) is few (Figs. 1 and S12). The juvenile crust is characterized by provinces II and III, totally occupying ca. 162,763 km2, making up 5% of the orogen. The juvenile crust concentrates along the suture zones, e.g., the southern margin of the Lhasa terrane.

Zircon Hf isotopic mapping has also been conducted in the Lhasa terrane14 and its eastern region, i.e., the Sanjiang region15 of this orogen. In the Lhasa terrenes, the Hf isotopic mapping reveals at least four high-εHf (t) (>0) regions, surrounded by large areas of low-εHf (t) (<0) domains. The high-εHf (t) regions occur dominantly along terrane boundaries and correspond to the three volcano-plutonic arcs. The orogen is dominated by low-εHf (t) domains, which correspond to the ancient crust or terranes such as the Lhasa, Qiangtang, and Songpan terranes. The collisional time-slice (<65 Ma) generally shows similar features to pre-collisional, suggesting similar lithospheric architecture. 

Our Nd mapping demonstrates similar isotopic domain patterns and crustal architectures to those yielded by zircon-Hf isotopic mapping on the Lhasa terranes14. As εNd(t) and median εHf(t) values have a good linear correlation with terrestrial array (y = 1.36x+2.95)17, the isotopically juvenile domains determined by the εNd(t) map are smaller than those by the εHf(t) map.
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Fig. S12. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic and intermediate igneous rocks from the Tibetan Tethys (Data from Table S1e).
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6. The Caledonian Orogen (or Caledonides)
The Caledonian Orogen (or Caledonides) occurs in Western Europe as a continuation of the Appalachian Mountain belt in North America1–8. A mountain-building era was recorded in the northern parts of the British Isles, Scandinavia, Svalbard, eastern Greenland, and parts of north-central Europe. This orogen is composed of several terranes with Precambrian basements (e.g., c. 2-7 Ga Scourian gneiss) and a succession of late Precambrian and lower Palaeozoic sediments and volcanic rocks1. The old terranes rifted from Gondwana are like those caught up in the Appalachian and Variscan Orogens2–4. It was formed from the Silurian collision, caused by the closure of the Lapetus Ocean when the continents and terranes of Laurentia, Baltica, and Avalonia collided5,6. The orogenic cycle occurred from Ordovician to Early Devonian, roughly from ca. 600 to 390 Ma, encompassed continental rifting and opening of the Iapetus Ocean, arc-continent collision7,9 (c. 470 to 450 Ma) and subsequent subduction, and final continental collision10. Many Nd isotopic data have been reported from the Scandanavia Orogen, so we carried out isotopic mapping for this region.
The Caledonian granitoids and relative intrusive igneous rocks are assigned to pre-tectonic (555 Ma), syntectonic (450 to 475 Ma), late-tectonic, and post-tectonic (475 to 390 Ma) stages10, recording the final closure of Iapetus. These rocks excess 100 intrusions ranging in composition from granite (sensu stricto) to diorite (Fig. S13). Many studies have been carried out for these rocks and yielded numerous Sm-Nd isotopic data2,11–19. These data are mainly distributed in the eastern part of the orogen (e.g., boundary areas with a margin of the Baltica), so we carried out Nd isotopic mapping in the region.
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Fig. S13 Map of felsic and intermediate igneous rocks from the Caledonian and Variscan Orogens. Modified from Asch20 and Asch et al.21
We collected 907 whole-rock Sm-Nd data of felsic and intermediate igneous rocks from the Caledonides from the literature (Table S1f). These data are available and the εNd(t) and TDM2 have a good linear correlation (Fig. S3f). Isotopic mapping of εNd(t) (Fig. 1f) and TDM2 (Fig. S14) indicates that the orogen is dominated by widespread, negative, low-εNd(t) values (peaks at -4 and -16) and old TDM2 > 1.0 Ga. The slightly juvenile crust (εNd(t) >0, and TDM2< 1.0 Ga) only occurs along the two suture zones, reflecting reworking. The amount is less than 2-1% of the orogen, much less than that of the foregoing orogens. 

[image: image14.jpg]S50°N

60°N /0°N

80N

| |
Atlantic
©170-250 Ma
Ocean \a"\d

5 250-360 Ma 0
0 360-600 Ma cre®
aon®°
ca\e
TDMZ

0.40.6 0.81.01.21.4 1.61.82.0 2.2
I .

@,./}/
St

Scandinavia

10°E

50°E




Fig. S14 Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic and intermediate igneous rocks from a part of the Caledonian Orogen (mainly Scotland). Data from Table S1f. 
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7. The Variscan Orogen (or Variscides)
The Variscan (or Hercynian) Orogen or Variscides is located south of the Caledonian Orogen in Europe and N-Africa. The belt is also the result of the collision between Gondwana and Laurussia in the Paleozoic1–5, which was accommodated by the subduction and accretion of crustal blocks1 and ended up with the assembly of Pangea5. This orogen is characterized by the juxtaposition of blocks of continental crust2 and can be regarded as continental crust continuously accreted to Laurussia. Therefore, the Variscides differ significantly from oceanic accretionary orogens like the Altaids or CAOB6.

Abundant granitoids occur in the Variscides, so-called a “hot” orogen7. These rocks occurred especially at the end of the continental collision and throughout late-orogenic collapse8,9. The granitoids almost all show negative εNd(t) values and old TDM2> 1.0Ga10–16.

We collected 1017 whole-rock Sm-Nd data of felsic and intermediate igneous rocks of the Variscides available from the literature (Table S1g). The εNd(t) and TDM2 also have a good linear correlation (Fig. S3g). Isotopic maps of εNd(t) (Fig. 1g) and T2DM (Fig. S15) indicate that the orogen is dominated by a widespread ancient crust, which is characterized by provinces IV, V, and VII. The relatively slightly juvenile crust (εNd(t) >0, and T2DM< 1.15 Ga) is less than 1% of the orogen, much less than that of the before-mentioned orogens. 
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Fig. S15. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of granitoids from the Variscan Orogen (Data from Table S1g). 
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8. The Qinling-Dabie Orogen 
The Qinling-Dabie Orogen across central China is one of the most important orogens in Asia1. This orogen consists mainly of four distinct blocks or terranes2–4, i.e., from north to south, the North China Block (NCB), the North Qinling Belt (NQB), the South Qinling Belt (SQB), and the South China Block (SCB), separated by the Luonan-Luanchuan fault zone and Shangdan and Mianlue sutures, respectively. The Shangdan suture was formed by the closure of the Shangdan Ocean (a branch of Prototethys) during 500-420 Ma, and the Mianlue suture by the closure of the Mianlue Ocean (a branch of Paleotethys) during 300-220 Ma3–5 Available geophysical data show that the orogen lacks mountain roots and has normal crust thickness6 (~40 km). This orogen experienced Paleozoic subduction-collision7 (with ultra-high pressures metamorphism) related to Proto-Tethys closure and subsequent Triassic (~230 Ma) collision between the NCB and SCB, following the closure of the Paleo-Tethyan Ocean5. This collision is called “hard”, as evidenced by the ultra-high-pressure metamorphism of felsic continental crust in the early Mesozoic8. The Qinling-Dabie Orogen is the best one to be compared with the Altaids because they both are adjacent to the same craton (North China craton) and were formed mainly during a similar period.
Voluminous Paleozoic (mainly 500-400 Ma) and Mesozoic (250-180 Ma and 180-120 Ma) granitoids occur in the Qinling-Dabie Orogen and account for 50-60 % of the Qinling-Dabie Orogen9,10 (Fig. S16). These rocks are mostly granodiorites and monzogranites with I- and S-type signatures. Numerous Nd and Hf isotopic results have been reported, and isotopic mapping has been conducted for some areas11–13.
[image: image16.jpg]_ 120°E

\ Age of volcanic [[] T[] c [[1] 0 [ Ophiolite melangge
\ rocks Tectonic

Tl =5 [ o [

oA i

boundary and fault

[ s [] pt 7 strike siip

35°N

P
B
- K Age and type of intrusive rocks =
- Dlorlte monzomte Peridotite Syenogranite
syenite, etc pyroxenite onzogranite
- Gabbro norite Ophiolite melange 7
anorthoslte, etc.

ultramafic rocks
Kimberlite Alkaline
P- lamproite

: #7+7 Rapakivi granite
intrusive rocks Easicdvie (Rg)

Granitoid-gneiss

Triassic arc-colli.
igneous belt

Paleozoic arc-colli.
igneous belt





Fig. S16. Map of felsic and intermediate igneous rocks in the Qinling-Dabie Orogen.

The Nd isotopic maps εNd(t) (Fig. 1h) and TDM2 (Fig. S17) have been carried out based on 480 whole-rock Nd isotopic data, and the εNd(t) and TDM2 have a good linear correlation (Fig. S3h). These results indicate that the Qinling-Dabie Orogen is dominated by widespread, negative, and much negative values (εNd(t) values mainly range from -4 to -16) and old TDM2> 1.0 Ga, predominately yielding three ancient isotopic provinces (IV, V, VI). The relatively slightly juvenile crust (εNd(t) > 0, and TDM2< 1.0 Ga) only occurs along the two sutures. The amount of juvenile crust is ca. 6,053 km2, less than 2% of the orogen, much less than that of the above orogens. Moreover, the ancient crust is characterized by much more areas of strong ancient isotopic province (εNd(t) < -10, TDM2 > 16 Ga). Both the area and old value of the ancient crust are much more than any other collisional orogens such as the Caledonides and Variscides. Zircon Hf isotopic mapping was also conducted in some areas and came to similar distribution patterns to the results of the Nd mapping11–13.
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Fig. S17. Map of two-stage Nd depleted mantle model ages (TDM2, Ga) of felsic and intermediate igneous rocks from the Qinling-Dabie orogens (Data from Table S1h).
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Appendix B (Supplementary Materials B)
Data and parameters
A huge number of isotope analyses (ages, Nd and Hf, etc.) have been published for felsic and intermediate igneous rocks (including volcanic rocks) from the eight orogens studied in this paper. We collected these data from the literature and database on websites. The Sm-Nd isotopic datasets are presented in Tables S1-1 to S1-8 for the Altaids, North American Cordillera, Newfoundland Appalachian, Lachlan, Caledonian, Variscan, Tethyan Tibet, and the Qinling-Dabie orogens, respectively.

For the calculation of Nd values, we have adopted the chondritic values of (143Nd/144Nd)CHUR = 0.512638, (147Sm/144Nd)CHUR = 0.19671.
Three parameters are calculated as below2:
εNd = ((143Nd/144Nd) Sample(T)/(143Nd/144Nd) CHUR(T)-1) ×10000, 

The one-stage model ages (TDM1) = 1/λx ln(1+ ((143Nd/144Nd)Sample(T) - 0.51315)/ ((147Sm/144Nd)Sample(T) - 0.2137));

The two-stage model age (TDM2) = (TDM1-(TDM1-t)(fcc-fs))/ (fcc-fdm);

where fSm/Nd=(147Sm/144Nd)s/(147Sm/144Nd)CHUR-1; fcc, fs, fdm = fSm/Nd values of the average continental crust, the sample, and the depleted mantle, respectively. fcc = 0.4, fdm = 0.08592, t = the intrusive age of granite. 

Two-stage model ages are obtained assuming that the protolith of the granitic magmas has an Sm/Nd ratio (or fSm/Nd value) of the average continental crust3. They are commonly used for felsic igneous rocks in particular4 to correct for changes in Sm/Nd ratios, produced by processes such as partial melting, fractional crystallization, magma mixing, and alteration, etc. In this work, TDM2 are used for mapping.
Our recalculated results are almost the same as the original ones. Some data from the literature only provide limited measurements and εNd and TDM values, which are directly used in our study.

Table S1 also presents residence ages (TRes= TDM2 – Tmagmatic). Such ages could indicate the relative age of the protolith of the samples, i.e., the time between when a specific crust was created and its reworking to produce the granitoids. Granitoids formed by the reworking of the largely juvenile crust will have young residence ages, whilst those forming in the older crust will have old residence ages5. In some cases, however, old (e.g., Precambrian) reworking for old crust could yield young residence ages. 

In this study, we employ εNd(t) and TDM2 values, which are widely used in literature. A juvenile crust that is extracted from the mantle without a significant contribution of the recycled older crust is commonly defined by a positive εNd(t) value6,7 (> 0). Its corresponding Nd depleted mantle model ages (TDM, Ga) depend on the ages (t) of samples (Fig. 2). 
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Quality of the data 
Almost all Nd data are reliable. Their εNd(t) values vs. two-model Nd depleted mantle model ages (TDM2) show a good linear correlation (Fig S3). Nd model ages have some assumptions, and in some cases, there are some uncertainties about what they mean; therefore, we present the mapping results of εNd(t) values in the text to demonstrate the distribution and areas of the juvenile crust. Anyway, it is reasonable to compare the results (both the εNd(t) and TDM2 values) from orogens using the same principle and method.

Appendix C (Supplementary Materials C)
Principle and methods for isotopic mapping (Contour maps) 

The datasets provide a quantitative basis for regional isotopic mapping to explore crustal growth architectures and patterns on an orogenic scale. Here we have used contour maps. The maps of εNd and TDM2 values were produced in two steps. First, we employed the IDW (Inverse Distance Weighted) interpolation method by Surfer v13.0 for gridding. Considering the uneven distribution of isotope datasets, we used sequentially two spacing and searching radiuses, i.e., 50-500 km and 5-100 km, for the gridding. Second, we converted the grid data to the *.img format in ArcGIS, reclassify them by equal intervals, and then produced the contour maps by Spatial Analyst Tools. 
Methods of Sm-Nd isotopic analysis in the present study
The Sm and Nd were separated at the Key Laboratory of Crust–Mantle Materials and Environments, University of Science and Technology of China (USTC), Hefei. Sm and Nd were separated from other LREEs on quartz columns using 1.7-ml Teflon powder coated with HDEHP, di (2-Ethylhexyl)-orthophosphoric acid, as a cation exchange medium. Sr-Nd isotopic analyses were determined on a Thermal Ionization Mass Spectrometer TRITON.

Note: εNd = ((143Nd/144Nd)s / (143Nd/144Nd)CHUR -1) x 10000,  fSm/Nd = (147Sm/144Nd)s / (147Sm/144Nd)CHUR -1, where s = sample, (143Nd/144Nd)CHUR = 0.512638, and (147Sm/144Nd)CHUR = 0.1967. The depleted mantle model ages (TDM) were calculated using a linear isotopic ratio growth equation: TDM = 1/λx ln (1 + ((143Nd/144Nd)s - 0.51315)/((147Sm/144Nd)s - 0.2137)).  The two-stage depleted mantle model ages were obtained assuming that the protolith of the granitic magmas has a Sm/Nd ratio (or fSm/Nd value) of the average continental crust1. The TDM2 = (TDM1-(TDM1-t) (fcc-fdm))/(fcc-fdm), where fcc, fs, fdm = fsm/Nd values of the average continental crust, the sample and the depleted mantle, respectively. fcc = 0.4, fdm = 0.08592, t = the intrusive age of granite. fcc=0.22.
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