
1

Supplementary Materials

Abbreviations, Theoretical Analysis Calculation

(For reviewer’s reference purpose and not included in the manuscript)

1. Coding for Machine Learning Modelling

2. Abbreviations

3. Theoretical Analysis Calculation

-*- coding: utf-8 -*-

"""Classifier_Paper_CEE.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1cLZ-pvge526T73QId-

O6Dl6udhJFKwFV

"""

#=========================Import libraries

import numpy as np

import scipy.stats as stats

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import sklearn

from sklearn.ensemble import RandomForestClassifier

from sklearn.datasets import make_classification

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.metrics import accuracy_score

from sklearn import metrics

#========================== Load data

data =

pd.read_csv('/content/drive/MyDrive/Workshop/Aravind_CEE/ML_CEE_Final.csv

')

print(data.shape)

data.head()

data.tail()

data.isnull().sum()

#========================== extract required data

X =

data.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shea

r','Com_con_MPa','Eff_span_mm','Xsect_area_sqmm','TS_stir_Mpa','Xsect_sti

r','TS_MS_Mpa','TS_gfrp_Mpa']]

#'samp_desig',

X.head()

X['Shear_type'].unique()

y=data.loc[:,['Shear_F']] # 'Shear_F','Flexure_F',

'Crushing','Delamination'

y.head()

#========================== encoding

from sklearn.preprocessing import LabelEncoder

enc = LabelEncoder()

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

] = \

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

].apply(enc.fit_transform)

y.loc[:,['Shear_F']] = \

y.loc[:,['Shear_F']].apply(enc.fit_transform)

#X.loc[:,['samp_desig','Shear_type','str_50','GFRP_full','U_50','U_Full',

'Steel_Shear','Shear_F','Flexure_F','Crushing','Delamination']] = \

#X.loc[:,['samp_desig','Shear_type','str_50','GFRP_full','U_50','U_Full',

'Steel_Shear','Shear_F','Flexure_F','Crushing','Delamination']].apply(enc

.fit_transform)

X.head()

X['Shear_type'].unique()

y.head()

#========================== training and testing RF

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test =

train_test_split(X,y,test_size=0.3,random_state=0)

evaluate random forest algorithm for classification

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import ConfusionMatrixDisplay

#X_train, y_train = make_classification(n_samples=13000, n_features=13,

n_informative=10, n_redundant=3,random_state=0, shuffle=False)

model = RandomForestClassifier(n_estimators=4,max_depth=11)

#cv=RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=0)

#n_scores = cross_val_score(model, X_train, y_train, scoring='accuracy',

cv=cv, n_jobs=-1, error_score='raise')

#print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

model.fit(X_train, y_train)

yhat = model.predict(X_test)

#======================== model performance

conf_mat = confusion_matrix(y_test, yhat)

#print(conf_mat)

Visualize it as a heatmap

import seaborn

seaborn.heatmap(conf_mat)

plt.show()

Plot non-normalized confusion matrix

titles_options = [

 ("Confusion matrix, without normalization", None),

 ("Normalized confusion matrix", "true"),

]

for title, normalize in titles_options:

 disp = ConfusionMatrixDisplay.from_estimator(

 model,

 X_test,

 y_test,

 #display_labels=class_names,

 cmap=plt.cm.Blues,

 normalize=normalize,

)

 disp.ax_.set_title(title)

 print(title)

 print(disp.confusion_matrix)

Print the precision and recall, among other metrics

 print(metrics.classification_report(y_test, yhat, digits=3))

plt.show()

from sklearn.metrics import mean_absolute_error, r2_score

y_predict = model.predict(X_train)

mae= round(mean_absolute_error(y_train,y_predict),4)

rmse = round((np.sqrt(metrics.mean_squared_error(y_train, y_predict))),4)

r2 = round(r2_score(y_train,y_predict),2)

print("The model performance for training set")

print("--------------------------------------")

print('MAE is {}'.format(mae))

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

print("\n")

y_predict = model.predict(X_test)

mae= round(mean_absolute_error(y_test,y_predict),4)

rmse = round((np.sqrt(metrics.mean_squared_error(y_test, y_predict))),4)

r2 = round(r2_score(y_test,y_predict),2)

print("The model performance for testing set")

print("--------------------------------------")

print('MAE is {}'.format(mae))

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

print("\n")

Calculate the absolute errors

errors = abs(y_predict - y_test)

Print out the mean absolute error (mae)

print('Mean Absolute Error:', round(np.mean(errors), 2), 'kN.')

Calculate mean absolute percentage error (MAPE)

mape = 100 * (errors / y_test)

Calculate and display accuracy

accuracy = 100 - np.mean(mape)

print('Accuracy:', round(accuracy, 2), '%.')

import seaborn as sns

plt.figure(figsize=(5, 7))

ax = sns.distplot(y, hist=False, color='r', label='Actual Value')

sns.distplot(y_predict, hist=False, color='b', label='Fitted Values' ,

ax=ax)

plt.title('Actual vs Fitted Values')

ax.set(xlabel='Failure Load (kN)', ylabel='Density')

#ax.set(xlabel='Mid Span Deflection (in mm)', ylabel='Density')

plt.legend()

plt.show()

plt.close()

#=========================== custom test

#Sl. 1

#model.predict([[3, 0, 0, 0, 0, 1, 31.21, 650.0, 13250, 250.0, 39.72,

454, 0]])

#sl.11,12 - phd work

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06,

415, 0]])

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06,

415, 0]])

#model.predict([[3, 0, 0, 0, 1, 0, 31.21, 2650.0, 13250, 210.0, 100, 500,

165]])

#model.predict([[3, 0, 0, 0, 0, 1, 29.8, 900, 13000, 325, 56.55, 420,

0]])

model.predict([[2, 0, 0, 0, 0, 0, 29.8, 900, 13000, 0, 0, 420, 0]])

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 600, 420, 420]])

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 1200, 420, 311]])

-*- coding: utf-8 -*-

"""Paper_CEE.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1_--5-

x9t_D5MDitdSsAZc1R93aXS5ZgB

"""

#=========================Import libraries

#from google.colab import drive

#drive.mount('/content/drive')

import numpy as np

import scipy.stats as stats

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import sklearn

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.metrics import accuracy_score

from sklearn import metrics

#========================== Load data

data = pd.read_csv('/content/drive/MyDrive/Data/ML_CEE_Final.csv')

print(data.shape)

data.head()

data.tail()

data.isnull().sum()

#========================== extract required data

X =

data.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shea

r','Com_con_MPa','Eff_span_mm','Xsect_area_sqmm','TS_stir_Mpa','Xsect_sti

r','TS_MS_Mpa','TS_gfrp_Mpa']]

X.head()

X['Shear_type'].unique()

y=data.loc[:,['Mid_span_D_mm']] # Failure_Load_kN

#========================== encoding

from sklearn.preprocessing import LabelEncoder

enc = LabelEncoder()

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

] = \

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

].apply(enc.fit_transform)

X.head()

X['Shear_type'].unique()

#========================== training and testing RF

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test =

train_test_split(X,y,test_size=0.7,random_state=0)

from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor(n_estimators=4, max_depth=11)

model.fit(X_train,y_train)

from sklearn.metrics import mean_absolute_error, r2_score

y_predict = model.predict(X_train)

mae= round(mean_absolute_error(y_train,y_predict),4)

rmse = round((np.sqrt(metrics.mean_squared_error(y_train, y_predict))),4)

r2 = round(r2_score(y_train,y_predict),2)

#======================== model performance

print("The model performance for training set")

print("--------------------------------------")

print('MAE is {}'.format(mae))

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

print("\n")

y_predict = model.predict(X_test)

mae= round(mean_absolute_error(y_test,y_predict),4)

rmse = round((np.sqrt(metrics.mean_squared_error(y_test, y_predict))),4)

r2 = round(r2_score(y_test,y_predict),2)

print("The model performance for testing set")

print("--------------------------------------")

print('MAE is {}'.format(mae))

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

print("\n")

Calculate the absolute errors

errors = abs(y_predict - y_test)

Print out the mean absolute error (mae)

print('Mean Absolute Error:', round(np.mean(errors), 2), 'kN.')

Calculate mean absolute percentage error (MAPE)

mape = 100 * (errors / y_test)

Calculate and display accuracy

accuracy = 100 - np.mean(mape)

print('Accuracy:', round(accuracy, 2), '%.')

Commented out IPython magic to ensure Python compatibility.

%matplotlib inline

import seaborn as sns

plt.figure(figsize=(5, 7))

ax = sns.distplot(y, hist=False, color='r', label='Actual Value')

sns.distplot(y_predict, hist=False, color='b', label='Fitted Values' ,

ax=ax)

plt.title('Actual vs Fitted Values')

ax.set(xlabel='Failure Load (kN)', ylabel='Density')

#ax.set(xlabel='Mid Span Deflection (in mm)', ylabel='Density')

plt.legend()

plt.show()

plt.close()

#=========================== custom test

#Sl. 1

#model.predict([[3, 0, 0, 0, 0, 1, 31.21, 650.0, 13250, 250.0, 39.72,

454, 0]])

#sl.11,12 - phd work

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06,

415, 0]])

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06,

415, 0]])

model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 500, 420, 420]])

#model.predict([[3, 0, 0, 0, 1, 0, 31.21, 2650.0, 13250, 210.0, 100, 500,

165]])

#model.predict([[3, 0, 0, 0, 0, 1, 29.8, 900, 13000, 325, 56.55, 420,

0]])

#model.predict([[2, 0, 0, 0, 0, 0, 29.8, 900, 13000, 0, 0, 420, 0]])

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 600, 420, 420]])

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 1200, 420, 311]])

test =

pd.read_csv('/content/drive/MyDrive/Workshop/Aravind_CEE/test.csv')

print(test.shape)

test.head()

t_vect =

test.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shea

r','Com_con_MPa','Eff_span_mm','Xsect_area_sqmm','TS_stir_Mpa','Xsect_sti

r','TS_MS_Mpa','TS_gfrp_Mpa']]

model.predict(t_vect)

Abbreviations

L effective span

P monotonic loading

𝑡𝐹 thickness of FRP strip

𝑤𝑓 width of FRP strip

𝑓𝑦 characteristic strength of steel

𝑓𝑓𝑒 ultimate tensile stress in the FRP shear reinforcement

𝑆𝑓 spacing between the FRP strips

n number of layers

𝐴𝑠𝑣 total cross sectional area of stirrups legs effective in shear

d effective depth of the beam

𝑆𝑣 Stirrups spacing along the length of the member

B breadth of beam

D overall depth of beam

RC Reinforced Concrete

GFRP Glass Fibre Reinforced Polymer

CFRP Glass Fibre Reinforced Polymer

BFRP Basalt Fibre Reinforced Polymer

SSWM Stainless Steel Wire Mesh

CB Control Beam

FA Fine Aggregate

CA Coarse Aggregate

ACI American Concrete Institute

GSM Gram per Square Meter

CSM Chopped Strand Mat

WR Woven Roving

LVDT Linear Variable Differential Transformer

UTM Universal Testing Machine

OPC Ordinary Portland Cement

TRM Textile Reinforced Mortar

EBRIG Externally Bonded Reinforcement In Groove

BS EN British Standard European Norm

ASTM American Society for Testing and Materials

IS Indian Standards

BPA Bisphenol ‘A’

EB Externally bonded Beam

SS Strips on Sides

FS Full on Sides

SU U wrap Strip

FU Full U wrap

Mpa Mega Pascal

mm millimeter

kN kilo Newton

kg/m3 kilo gram per meter cube

T Tonne

RF Random Forest

ML Machine Learning

R2 Coefficient of determination

MAE Mean Absolute Error

RMSE Root Mean Square Error

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Theoretical Analysis Calculation

Calculation of shear resistance of a rectangular singly reinforced RC beam section externally

bonded with GFRP CSM and GFRP laminates with the following data.

Overall beam cross section = 100 × 150 mm

Tension reinforcement = 2 – 8 mm diameter bars

Grade of steel = Fe 500

Grade of concrete = C30

Clear cover = 15 mm

Solution

a) Shear Strength of RC beam externally bonded with GFRP composites

Shear strength of RC beam externally bonded with GFRP composites,

V𝑢 = Ø V𝑛 = Ø (V𝑐 + V𝑠 + ψ𝑛V𝑓)

wf − width of GFRP CSM strip = 50 𝑚𝑚

tf − thickness of GFRP CSM strip = 0.5 mm

𝑓𝑓𝑒 − tensile stress in the GFRP CSM shear reinforcement = 166 𝑀𝑃𝑎

S𝑓 − spacing between the FRP strips = 100 𝑚𝑚

n − number of layers = 1

d𝑓 − depth ofthe beam (GFRP composite attached full depth of beam) = 150 𝑚𝑚

ψ𝑛 − 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝐹𝑅𝑃 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 = 0.85

Ø − strength reduction factor

= 0.7 for brittle sections, as opposed to 0.90 for ductile sections.

b) Shear Strength of RC Beam

Based on IS 456, maximum shear stress for concrete is 3.5 MPa for 28 days cube compressive

strength with 30 MPa. Width and effective depth of beam considered for the theoretical analysis

are 100 mm and 131 mm respectively.

Effective depth, d = Overall depth – (clear cover + 𝜙/2)

d = 150 − (15 + 8
2⁄) = 131 mm

Shear resistance of concrete, V𝑐 =
2 vmax 𝑏𝑑

3
=

2 × 3.5 × 100 × 131

3
= 30566.67 𝑁

V𝑐 = 30.57 𝑘𝑁

c) Shear contribution of steel shear reinforcement

Two legged 5 mm diameter steel shear reinforcements with yield stress 250 MPa at 175 mm

spacing were provided.

The shear contribution of the steel shear reinforcement is then given by

Shear resistance of steel stirrups, Vus =
0.87 𝑓𝑦 𝐴𝑆𝑉𝑑

𝑆𝑣

Area of steel stirrups, Ast = 2 × 19.63 = 39.26 mm2

Vus =
0.87 × 250 × 39.26 × 131

175
= 6392.09 𝑁

Vus = 6.39 𝑘𝑁

d) Shear contribution of GFRP shear reinforcement

GFRP CSM composites with 50 mm strips at 100 mm spacing is attached on two sides of RC

beam and tensile stress in GFRP is 166 MPa.

The shear contribution of the GFRP shear reinforcement is then given by

V𝑓 =
A𝑓𝑣 𝑓𝑓𝑒 d𝑓

S𝑓

Area of CSM strips bonded with both sides of RC beam, Afv = 2 n tf wf

Afv = (2 × 1 × 0.5 × 50) = 50 𝑚𝑚2

V𝑓 =
50 × 166 × 150

100
= 12450 𝑁

V𝑓 = 12.45 𝑘𝑁

V𝑢 = Ø V𝑛 = Ø (V𝑐 + V𝑠 + ψ𝑛V𝑓)

Sample Designation Strength reduction

factor (Ø)

Mechanical Property

CB1 0.85 Ductile (RC beam with longitudinal steel

reinforcement and steel stirrups)

CB2 0.80 Partially ductile (RC beam with

longitudinal steel reinforcement without

stirrups)

Beam bonded with

CSM GFRP composites

0.75 Partially brittle (RC beam with

longitudinal steel reinforcement with

GFRP stirrups)

Shear resistance of CB1, V𝑢 = Ø V𝑛 = Ø (V𝑐 + V𝑠)

V𝑢 = Ø V𝑛 = 0.85 × (30.57 + 6.39) = 31.42 𝑘𝑁

Shear resistance of CB2, V𝑢 = Ø V𝑛 = Ø (V𝑐)

V𝑢 = Ø V𝑛 = 0.80 × 30.57 = 24.46 𝑘𝑁

Shear resistance of RC beam with GFRP CSM strips on sides only (EB − SS − CSM),

 V𝑢 = Ø V𝑛 = Ø (V𝑐 + ψ𝑛V𝑓)

V𝑢 = Ø V𝑛 = 0.75 × (30.57 + [0.85 × 12.45]) = 30.86 𝑘𝑁

	A Page 1.pdf
	ML Coding.pdf
	classifier_paper_cee (1).pdf
	paper_cee (1).pdf

	A 3.pdf

