Supplementary Materials
Abbreviations, Theoretical Analysis Calculation
(For reviewer’s reference purpose and not included in the manuscript)
1. Coding for Machine Learning Modelling
2. Abbreviations

3. Theoretical Analysis Calculation

-*- coding: utf-8 -*-
"""Classifier Paper CEE.ipynb

Automatically generated by Colaboratory.

Original file is located at
https://colab.research.google.com/drive/1lcLZ-pvge526T73QId-
06D16udhJFKwEV

mmn

#= === =Import libraries
import numpy as np
import scipy.stats as stats

import matplotlib

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import sklearn

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make classification

from sklearn.linear model import LinearRegression

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model selection import train test split
from sklearn.model selection import cross val score
from sklearn.metrics import accuracy score

from sklearn import metrics

#= === == Load data

data =

pd.read csv('/content/drive/MyDrive/Workshop/Aravind CEE/ML CEE Final.csv
")

print (data.shape)

data.head()

data.tail ()

data.isnull () .sum()

#= === == extract required data

X =

data.loc[:, ['Shear type','str 50','GFRP_ full','U 50','U Full','Steel Shea
r','Com con MPa','Eff span mm', 'Xsect area sgmm',6 'TS stir Mpa', 'Xsect sti
r','Ts MS Mpa', 'TS gfrp Mpa'l]]

#'samp desig’',

X.head ()

X['Shear type'].unique ()

y=data.loc[:, ['Shear F']] # 'Shear F',6 'Flexure F',
'Crushing', 'Delamination’

y.head ()

#= === == encoding

from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder ()

KoK= X = X

.loc[:, ['Shear type',6'str 50','GFRP_full','U 50','U Full', 'Steel Shear']

=\

.loc[:, ['Shear type',6 'str 50','GFRP_full','U 50','U Full', 'Steel Shear']
.apply(enc.fit transform)

.loc[:, ['Shear F']] =\

.loc[:, ['Shear F']].apply(enc.fit transform)

#X.loc[:, ['samp desig', 'Shear type', 'str 50','GFRP full','U 50','U Full',

'Steel Shear', 'Shear F', 'Flexure F', 'Crushing', 'Delamination']] = \
#X.loc[:, ['samp desig', 'Shear type', 'str 50','GFRP_ full','U 50','U Full',
'Steel Shear', 'Shear F','Flexure F', 'Crushing', 'Delamination’']].apply(enc

.fit transform)

X.

head ()

X['Shear type'].unique ()

V.

#=

head ()

=== == training and testing RF

from sklearn.model selection import train test split

X_

train,X test,y train,y test =

train test split(X,y,test size=0.3,random state=0)

#

evaluate random forest algorithm for classification

from numpy import mean

from numpy import std

from sklearn.datasets import make classification

from sklearn.model selection import cross val score

from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion matrix

from sklearn.metrics import ConfusionMatrixDisplay

#X train, y train = make classification(n samples=13000, n features=13,

n_

informative=10, n redundant=3, random state=0, shuffle=False)

model = RandomForestClassifier(n estimators=4,max depth=11)
#cv=RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=0)

#n scores = cross val score(model, X train, y train, scoring='accuracy',
cv=cv, n_jobs=-1, error score='raise')
#print ('Accuracy: %$.3f (%.3f)' % (mean(n scores), std(n scores)))

model.fit (X train, y train)
yhat = model.predict (X test)

#

=== model performance

conf mat = confusion matrix(y test, yhat)
#print (conf mat)

Visualize it as a heatmap

import seaborn

seaborn.heatmap (conf mat)

plt.show ()

#

Plot non-normalized confusion matrix

titles options = [

("Confusion matrix, without normalization", None),
("Normalized confusion matrix", "true"),

]
for title, normalize in titles options:
disp = ConfusionMatrixDisplay.from estimator (
model,
X test,
y test,
#display labels=class names,
cmap=plt.cm.Blues,
normalize=normalize,
)
disp.ax .set title(title)

print (title)

print (disp.confusion matrix)
Print the precision and recall, among other metrics

print (metrics.classification report(y test, yhat, digits=3))
plt.show ()

from sklearn.metrics import mean absolute error, r2 score

y _predict = model.predict (X train)

mae= round (mean_ absolute error(y train,y predict),4)

rmse = round((np.sgrt (metrics.mean squared error(y train, y predict))),4)
r2 = round(r2 score(y train,y predict),2)

print ("The model performance for training set")
print ("--—-——-——--———-— ")
print ('MAE is {}'.format (mae))

print ('RMSE is {}'.format (rmse))

print ('R2 score is {}'.format (r2))

print ("\n")

y _predict = model.predict (X test)
mae= round(mean absolute error(y test,y predict),4)
rmse = round((np.sgrt (metrics.mean squared error(y test, y predict))),4)

r2 = round(r2 score(y test,y predict),2)

print ("The model performance for testing set")
print("----—--—--———— ")
print ('"MAE is {}'.format (mae))

print ('RMSE is {}'.format (rmse))

print ('R2 score is {}'.format (r2))

print ("\n")

Calculate the absolute errors

errors = abs(y predict - y test)

Print out the mean absolute error (mae)

print ('Mean Absolute Error:', round(np.mean (errors), 2), 'kN.'")

Calculate mean absolute percentage error (MAPE)
mape = 100 * (errors / y test)

Calculate and display accuracy

accuracy = 100 - np.mean (mape)

print ('Accuracy:', round(accuracy, 2), '%.'")

import seaborn as sns
plt.figure(figsize=(5,

ax = sns.distplot(y, hist=False,
sns.distplot (y predict, hist=False,

ax=ax)

7)

)

color='r"',
color="'b',

plt.title('Actual vs Fitted Values')
ax.set (xlabel='"'Failure Load

plt.legend()
plt.show ()
plt.close()

#= —

#S1. 1

#model .predict ([[3, O,
454, 011)

#s1.11,12 - phd work
#model .predict ([[3, O,
415, 011)

#model .predict ([[3, O,
415, 011)

#model .predict ([[3, O,
165]1)

#model .predict ([[3, O,
011)

model .predict ([[2, O,
#model .predict ([[1, O,
#model .predict ([[1, O,

(kN) ',
fax.set (xlabel="Mid Span Deflection

label="Actual Value')

label="Fitted Values'

ylabel="'Density"')
(in mm) ',

custom test

0,

1,

1,

1,

29.8,

31.21,

17.98,

17.98,

31.21,

29.8,

29.8,
29.8,

650.0,

1003.4,

1003.4,

2650.0,

900,

900,

900,
900,

13000,

13000,

13000,
13000,

13250,

13236,

13236,

13250,

325,

0, O,
0, 600,
0, 1200,

250.0,

ylabel="'Density"')

420.8,

420.8,

210.0,

56.55,

39.72,

4

57.06,

57.06,

100,

420,

420, 0]1])

420,
420,

500,

420]17)
31171)

—-*- coding: utf-8 -*-
"""pPaper CEE.ipynb

Automatically generated by Colaboratory.

Original file is located at
https://colab.research.google.com/drive/l1 --5-
x9t D5MDitdSsAZclR93aXS57gB

mmn

#= === =Import libraries
#from google.colab import drive
#drive.mount ('/content/drive')

import numpy as np

import scipy.stats as stats

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import sklearn

from sklearn.linear model import LinearRegression

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model selection import train test split
from sklearn.model selection import cross val score
from sklearn.metrics import accuracy score

from sklearn import metrics

#= === == Load data

data = pd.read csv('/content/drive/MyDrive/Data/ML CEE Final.csv')
print (data.shape)

data.head()

data.tail ()

data.isnull () .sum()

#= === == extract required data

X =

data.loc[:, ['Shear type', 'str 50','GFRP full','U 50','U Full', 'Steel Shea
r','Com con MPa','Eff span mm', 'Xsect area sgmm',6 'TS stir Mpa', 'Xsect sti
r','TsSs MS Mpa', 'TS gfrp Mpa'l]]

X.head ()

X['Shear type'l].unique ()
y=data.loc[:, ['Mid span D mm']] # Failure Load kN
#= === == encoding

from sklearn.preprocessing import LabelEncoder

enc = LabelEncoder ()

X.loc[:, ['Shear type','str 50','GFRP_full','U 50','U Full', 'Steel Shear']
] =\

X.loc[:, ['Shear type','str 50','GFRP_full','U 50','U Full', 'Steel Shear']
].apply(enc.fit transform)

X.head ()

X['Shear type'l].unique ()

#= === == training and testing RF

from sklearn.model selection import train test split
X train,X test,y train,y test =
train test split(X,y,test size=0.7,random state=0)

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor (n_estimators=4, max depth=11)
model.fit (X train,y train)

from sklearn.metrics import mean absolute error, r2 score

y predict = model.predict (X train)
mae= round (mean absolute error(y train,y predict),4)

rmse = round((np.sgrt (metrics.mean squared error(y train, y predict))),4)
r2 = round(r2 score(y train,y predict),2)

#= === model performance

print ("The model performance for training set")

print ("--—-——-——--———-——— ")

print ('MAE is {}'.format (mae))

print ('RMSE is {}'.format (rmse))

print ('R2 score is {}'.format (r2))

print ("\n")

y _predict = model.predict (X test)
mae= round(mean absolute error(y test,y predict), 4)

rmse = round((np.sgrt (metrics.mean squared error(y test, y predict))),4)
r2 = round(r2 score(y test,y predict),2)

print ("The model performance for testing set")
print("----—--—--——— ")

print ('"MAE is {}'.format (mae))

print ('RMSE is {}'.format (rmse))

print ('R2 score is {}'.format (r2))

print ("\n")

Calculate the absolute errors

errors = abs(y predict - y test)

Print out the mean absolute error (mae)

print ('Mean Absolute Error:', round(np.mean(errors), 2), 'kN.'")

Calculate mean absolute percentage error (MAPE)
mape = 100 * (errors / y test)

Calculate and display accuracy

accuracy = 100 - np.mean (mape)

print ('Accuracy:', round(accuracy, 2), '%.'")

Commented out IPython magic to ensure Python compatibility.
%matplotlib inline

import seaborn as sns

plt.figure (figsize=(5, 7))

ax = sns.distplot(y, hist=False, color='r', label='Actual Value')
sns.distplot (y predict, hist=False, color='b', label='Fitted Values' ,
ax=ax)

plt.title('Actual vs Fitted Values')
ax.set (xlabel="'Failure Load

plt.legend()

plt.show ()

plt.close()

. ——
#51. 1

#model .predict ([[3, 0, O,
454, 0]1)

#s1.11,12 - phd work
#model .predict ([[3, 0, O,
415, 0]1)

#model .predict ([[3, 0, O,
415, 011)
model.predict([[1, 0O, O,
#model .predict ([[3, 0, O,
165]1)

#model .predict ([[3, 0, O,
011)

#model .predict ([[2, 0, O,
#model .predict ([[1, 0, O,
#model .predict ([[1, 0, O,

test =

(kN) ',
fax.set (xlabel="'Mid Span Deflection

custom test

o, 1, 31.21,

0o, 1, 17.98,

0o, 1, 17.98,

29.8,

31.21,

650.0,

1003.4,

1003.4,

900,

2650.0,

900,

900,
900,
900,

ylabel="'Density")
(in mm) ',

13000,

13000,

13000,
13000,
13000,

13250,

13236,

13236,

0,

13250,

ylabel="Density"')

250.0, 39.72,

420.8, 57.0¢6,

420.8, 57.0¢6,

500, 420, 420]11)

210.0, 100, 500,

325, 56.55, 420,
0,
0,

0,

0, 420,
600,
1200,

011)
420, 42011)
420, 31111)

pd.read csv('/content/drive/MyDrive/Workshop/Aravind CEE/test.csv')

print (test.shape)
test.head()
t vect =

test.loc[:, ['Shear type','str 50','GFRP_full','U 50','U Full', 'Steel Shea
r','Com con MPa','Eff span mm', 'Xsect area sgmm',6 'TS stir Mpa', 'Xsect sti
r','TS MS Mpa', 'TS gfrp Mpa'l]]

model.predict (t vect)

Abbreviations

GFRP
CFRP
BFRP
SSWM
CB

FA

CA
ACI
GSM
CSM
WR
LVDT
UTM
OPC
TRM
EBRIG
BS EN

effective span

monotonic loading

thickness of FRP strip

width of FRP strip

characteristic strength of steel

ultimate tensile stress in the FRP shear reinforcement
spacing between the FRP strips

number of layers

total cross sectional area of stirrups legs effective in shear
effective depth of the beam

Stirrups spacing along the length of the member
breadth of beam

overall depth of beam

Reinforced Concrete

Glass Fibre Reinforced Polymer

Glass Fibre Reinforced Polymer

Basalt Fibre Reinforced Polymer

Stainless Steel Wire Mesh

Control Beam

Fine Aggregate

Coarse Aggregate

American Concrete Institute

Gram per Square Meter

Chopped Strand Mat

Woven Roving

Linear Variable Differential Transformer
Universal Testing Machine

Ordinary Portland Cement

Textile Reinforced Mortar

Externally Bonded Reinforcement In Groove

British Standard European Norm

ASTM American Society for Testing and Materials

IS Indian Standards

BPA Bisphenol ‘A’

EB Externally bonded Beam
SS Strips on Sides

FS Full on Sides

SU U wrap Strip

FU Full U wrap

Mpa Mega Pascal

mm millimeter

kN kilo Newton

kg/m? kilo gram per meter cube
T Tonne

RF Random Forest

ML Machine Learning

R? Coefficient of determination
MAE Mean Absolute Error
RMSE Root Mean Square Error
TP True Positive

TN True Negative

FP False Positive

FN False Negative

Theoretical Analysis Calculation
Calculation of shear resistance of a rectangular singly reinforced RC beam section externally
bonded with GFRP CSM and GFRP laminates with the following data.
Overall beam cross section = 100 x 150 mm
Tension reinforcement = 2 — 8 mm diameter bars
Grade of steel = Fe 500
Grade of concrete = C30
Clear cover =15 mm
Solution
a) Shear Strength of RC beam externally bonded with GFRP composites
Shear strength of RC beam externally bonded with GFRP composites,
Vy =0V, =0 (V. + Vs + ¢, Vf)
wr — width of GFRP CSM strip = 50 mm
t¢ — thickness of GFRP CSM strip = 0.5 mm
fre — tensile stress in the GFRP CSM shear reinforcement = 166 MPa

S; — spacing between the FRP strips = 100 mm

n — number of layers = 1

d; — depth ofthe beam (GFRP composite attached full depth of beam) = 150 mm
y,, — additional reduction factors for FRP shear reinforcement = 0.85

@ — strength reduction factor

= 0.7 for brittle sections, as opposed to 0.90 for ductile sections.

b) Shear Strength of RC Beam

Based on IS 456, maximum shear stress for concrete is 3.5 MPa for 28 days cube compressive
strength with 30 MPa. Width and effective depth of beam considered for the theoretical analysis
are 100 mm and 131 mm respectively.
Effective depth, d = Overall depth — (clear cover + ¢/2)

d =150 - (15+8/,) = 131 mm

2 Vmax bd 2 x3.5x 100 x 131
3 B 3

Shear resistance of concrete, V, = = 30566.67 N

V, = 30.57 kN

c) Shear contribution of steel shear reinforcement

Two legged 5 mm diameter steel shear reinforcements with yield stress 250 MPa at 175 mm
spacing were provided.

The shear contribution of the steel shear reinforcement is then given by

0.87 £, Asyd

Shear resistance of steel stirrups, Vs = S
14

Area of steel stirrups, Ag; = 2 X 19.63 = 39.26 mm?

~0.87 x 250 x 39.26 x 131

Vs T = 6392.09 N

Vys = 6.39 kN
d) Shear contribution of GFRP shear reinforcement
GFRP CSM composites with 50 mm strips at 100 mm spacing is attached on two sides of RC
beam and tensile stress in GFRP is 166 MPa.

The shear contribution of the GFRP shear reinforcement is then given by

A d
v, =2 fre dr
Sf

Area of CSM strips bonded with both sides of RC beam, Ag, = 2 n ty wy

Af, = (2% 1% 0.5 % 50) =50 mm?

_ 50 X 166 x 150

s 100

= 12450 N

V; = 1245 kN

Vy =0V, =0 (V. + Vs + ¢, Vf)

Sample Designation

Strength reduction

Mechanical Property

factor (&)

CB1 0.85 Ductile (RC beam with longitudinal steel
reinforcement and steel stirrups)

CB2 0.80 Partially ductile (RC beam with
longitudinal steel reinforcement without
stirrups)

Beam bonded with 0.75 Partially brittle (RC beam with

CSM GFRP composites

longitudinal steel reinforcement with
GFRP stirrups)

Shear resistance of CB1,V,, =@V, =@ (V. + Vy)

V, =@V, = 0.85 X (30.57 + 6.39) = 31.42 kN

Shear resistance of CB2,V,, = @V, =@ (V)

V, =@V, = 0.80 X 30.57 = 24.46 kN

Shear resistance of RC beam with GFRP CSM strips on sides only (EB — SS — CSM),

V=0V, =0 (Vc +¢nvf)

V, =@V, =0.75 X (30.57 + [0.85 x 12.45]) = 30.86 kN

	A Page 1.pdf
	ML Coding.pdf
	classifier_paper_cee (1).pdf
	paper_cee (1).pdf

	A 3.pdf

