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# -*- coding: utf-8 -*- 

"""Classifier_Paper_CEE.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1cLZ-pvge526T73QId-

O6Dl6udhJFKwFV 

""" 

 

#=========================Import libraries 

import numpy as np 

import scipy.stats as stats 

 

import matplotlib 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

import sklearn 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.datasets import make_classification 

from sklearn.linear_model import LinearRegression 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import accuracy_score 

from sklearn import metrics 

 

#========================== Load data  

data = 

pd.read_csv('/content/drive/MyDrive/Workshop/Aravind_CEE/ML_CEE_Final.csv

') 

print(data.shape) 

data.head() 

data.tail() 

data.isnull().sum() 

 

#========================== extract required data 

X = 

data.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shea

r','Com_con_MPa','Eff_span_mm','Xsect_area_sqmm','TS_stir_Mpa','Xsect_sti

r','TS_MS_Mpa','TS_gfrp_Mpa']] 

#'samp_desig', 

X.head() 

X['Shear_type'].unique() 

y=data.loc[:,['Shear_F']] # 'Shear_F','Flexure_F', 

'Crushing','Delamination' 

y.head() 

 

 

#========================== encoding 

from sklearn.preprocessing import LabelEncoder 

enc = LabelEncoder() 



X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

] = \ 

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

].apply(enc.fit_transform) 

y.loc[:,['Shear_F']] = \ 

y.loc[:,['Shear_F']].apply(enc.fit_transform) 

 

#X.loc[:,['samp_desig','Shear_type','str_50','GFRP_full','U_50','U_Full',

'Steel_Shear','Shear_F','Flexure_F','Crushing','Delamination']] = \ 

#X.loc[:,['samp_desig','Shear_type','str_50','GFRP_full','U_50','U_Full',

'Steel_Shear','Shear_F','Flexure_F','Crushing','Delamination']].apply(enc

.fit_transform) 

 

X.head() 

X['Shear_type'].unique() 

y.head() 

 

#========================== training and testing RF 

from sklearn.model_selection import train_test_split 

X_train,X_test,y_train,y_test = 

train_test_split(X,y,test_size=0.3,random_state=0) 

 

# evaluate random forest algorithm for classification 

from numpy import mean 

from numpy import std 

from sklearn.datasets import make_classification 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedStratifiedKFold 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import ConfusionMatrixDisplay 

 

#X_train, y_train = make_classification(n_samples=13000, n_features=13, 

n_informative=10, n_redundant=3,random_state=0, shuffle=False)  

model = RandomForestClassifier(n_estimators=4,max_depth=11) 

#cv=RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=0) 

#n_scores = cross_val_score(model, X_train, y_train, scoring='accuracy', 

cv=cv, n_jobs=-1, error_score='raise') 

#print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores))) 

model.fit(X_train, y_train) 

yhat = model.predict(X_test) 

 

#======================== model performance 

conf_mat = confusion_matrix(y_test, yhat) 

#print(conf_mat) 

# Visualize it as a heatmap 

import seaborn 

seaborn.heatmap(conf_mat) 

plt.show() 

 

# Plot non-normalized confusion matrix 

titles_options = [ 

    ("Confusion matrix, without normalization", None), 

    ("Normalized confusion matrix", "true"), 



] 

for title, normalize in titles_options: 

    disp = ConfusionMatrixDisplay.from_estimator( 

        model, 

        X_test, 

        y_test, 

        #display_labels=class_names, 

        cmap=plt.cm.Blues, 

        normalize=normalize, 

    ) 

    disp.ax_.set_title(title) 

 

    print(title) 

    print(disp.confusion_matrix) 

# Print the precision and recall, among other metrics 

    print(metrics.classification_report(y_test, yhat, digits=3)) 

plt.show() 

 

from sklearn.metrics import mean_absolute_error, r2_score 

 

y_predict = model.predict(X_train) 

mae= round(mean_absolute_error(y_train,y_predict),4) 

rmse = round((np.sqrt(metrics.mean_squared_error(y_train, y_predict))),4) 

r2 = round(r2_score(y_train,y_predict),2) 

 

print("The model performance for training set") 

print("--------------------------------------") 

print('MAE is {}'.format(mae)) 

print('RMSE is {}'.format(rmse)) 

print('R2 score is {}'.format(r2)) 

print("\n") 

 

y_predict = model.predict(X_test) 

mae= round(mean_absolute_error(y_test,y_predict),4) 

rmse = round((np.sqrt(metrics.mean_squared_error(y_test, y_predict))),4) 

r2 = round(r2_score(y_test,y_predict),2) 

 

print("The model performance for testing set") 

print("--------------------------------------") 

print('MAE is {}'.format(mae)) 

print('RMSE is {}'.format(rmse)) 

print('R2 score is {}'.format(r2)) 

print("\n") 

 

# Calculate the absolute errors 

errors = abs(y_predict - y_test) 

# Print out the mean absolute error (mae) 

print('Mean Absolute Error:', round(np.mean(errors), 2), 'kN.') 

 

# Calculate mean absolute percentage error (MAPE) 

mape = 100 * (errors / y_test) 

# Calculate and display accuracy 

accuracy = 100 - np.mean(mape) 

print('Accuracy:', round(accuracy, 2), '%.') 



 

import seaborn as sns 

plt.figure(figsize=(5, 7)) 

 

 

ax = sns.distplot(y, hist=False, color='r', label='Actual Value') 

sns.distplot(y_predict, hist=False, color='b', label='Fitted Values' , 

ax=ax) 

 

plt.title('Actual vs Fitted Values') 

ax.set(xlabel='Failure Load (kN)', ylabel='Density') 

#ax.set(xlabel='Mid Span Deflection (in mm)', ylabel='Density') 

 

plt.legend() 

plt.show() 

plt.close() 

 

#=========================== custom test 

#Sl. 1 

#model.predict([[3, 0, 0, 0, 0, 1, 31.21, 650.0, 13250, 250.0, 39.72, 

454, 0]]) 

#sl.11,12 - phd work 

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06, 

415, 0]]) 

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06, 

415, 0]]) 

 

 

#model.predict([[3, 0, 0, 0, 1, 0, 31.21, 2650.0, 13250, 210.0, 100, 500, 

165]]) 

#model.predict([[3, 0, 0, 0, 0, 1, 29.8, 900, 13000, 325, 56.55, 420, 

0]]) 

model.predict([[2, 0, 0, 0, 0, 0, 29.8, 900, 13000, 0, 0, 420, 0]]) 

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 600, 420, 420]]) 

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 1200, 420, 311]]) 
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"""Paper_CEE.ipynb 

 

Automatically generated by Colaboratory. 
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#=========================Import libraries 

#from google.colab import drive 

#drive.mount('/content/drive') 

import numpy as np 

import scipy.stats as stats 

import matplotlib 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

import sklearn 

from sklearn.linear_model import LinearRegression 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import accuracy_score 

from sklearn import metrics 

 

#========================== Load data  

data = pd.read_csv('/content/drive/MyDrive/Data/ML_CEE_Final.csv') 

print(data.shape) 

data.head() 

data.tail() 

data.isnull().sum() 

 

#========================== extract required data 

X = 

data.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shea

r','Com_con_MPa','Eff_span_mm','Xsect_area_sqmm','TS_stir_Mpa','Xsect_sti

r','TS_MS_Mpa','TS_gfrp_Mpa']] 

X.head() 

X['Shear_type'].unique() 

y=data.loc[:,['Mid_span_D_mm']] # Failure_Load_kN  

 

#========================== encoding 

from sklearn.preprocessing import LabelEncoder 

enc = LabelEncoder() 

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

] = \ 

X.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shear']

].apply(enc.fit_transform) 

X.head() 

X['Shear_type'].unique() 

 

#========================== training and testing RF 



from sklearn.model_selection import train_test_split 

X_train,X_test,y_train,y_test = 

train_test_split(X,y,test_size=0.7,random_state=0) 

 

from sklearn.ensemble import RandomForestRegressor 

model = RandomForestRegressor(n_estimators=4, max_depth=11) 

model.fit(X_train,y_train) 

 

from sklearn.metrics import mean_absolute_error, r2_score 

 

y_predict = model.predict(X_train) 

mae= round(mean_absolute_error(y_train,y_predict),4) 

rmse = round((np.sqrt(metrics.mean_squared_error(y_train, y_predict))),4) 

r2 = round(r2_score(y_train,y_predict),2) 

 

#======================== model performance 

print("The model performance for training set") 

print("--------------------------------------") 

print('MAE is {}'.format(mae)) 

print('RMSE is {}'.format(rmse)) 

print('R2 score is {}'.format(r2)) 

print("\n") 

 

y_predict = model.predict(X_test) 

mae= round(mean_absolute_error(y_test,y_predict),4) 

rmse = round((np.sqrt(metrics.mean_squared_error(y_test, y_predict))),4) 

r2 = round(r2_score(y_test,y_predict),2) 

 

print("The model performance for testing set") 

print("--------------------------------------") 

print('MAE is {}'.format(mae)) 

print('RMSE is {}'.format(rmse)) 

print('R2 score is {}'.format(r2)) 

print("\n") 

 

# Calculate the absolute errors 

errors = abs(y_predict - y_test) 

# Print out the mean absolute error (mae) 

print('Mean Absolute Error:', round(np.mean(errors), 2), 'kN.') 

 

# Calculate mean absolute percentage error (MAPE) 

mape = 100 * (errors / y_test) 

# Calculate and display accuracy 

accuracy = 100 - np.mean(mape) 

print('Accuracy:', round(accuracy, 2), '%.') 

 

# Commented out IPython magic to ensure Python compatibility. 

# %matplotlib inline 

import seaborn as sns 

plt.figure(figsize=(5, 7)) 

 

ax = sns.distplot(y, hist=False, color='r', label='Actual Value') 

sns.distplot(y_predict, hist=False, color='b', label='Fitted Values' , 

ax=ax) 



 

plt.title('Actual vs Fitted Values') 

ax.set(xlabel='Failure Load (kN)', ylabel='Density') 

#ax.set(xlabel='Mid Span Deflection (in mm)', ylabel='Density') 

 

plt.legend() 

plt.show() 

plt.close() 

 

#=========================== custom test 

#Sl. 1 

#model.predict([[3, 0, 0, 0, 0, 1, 31.21, 650.0, 13250, 250.0, 39.72, 

454, 0]]) 

#sl.11,12 - phd work 

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06, 

415, 0]]) 

#model.predict([[3, 0, 0, 0, 0, 1, 17.98, 1003.4, 13236, 420.8, 57.06, 

415, 0]]) 

 

model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 500, 420, 420]]) 

 

#model.predict([[3, 0, 0, 0, 1, 0, 31.21, 2650.0, 13250, 210.0, 100, 500, 

165]]) 

#model.predict([[3, 0, 0, 0, 0, 1, 29.8, 900, 13000, 325, 56.55, 420, 

0]]) 

#model.predict([[2, 0, 0, 0, 0, 0, 29.8, 900, 13000, 0, 0, 420, 0]]) 

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 600, 420, 420]]) 

#model.predict([[1, 0, 0, 0, 1, 0, 29.8, 900, 13000, 0, 1200, 420, 311]]) 

 

test = 

pd.read_csv('/content/drive/MyDrive/Workshop/Aravind_CEE/test.csv') 

print(test.shape) 

test.head() 

t_vect = 

test.loc[:,['Shear_type','str_50','GFRP_full','U_50','U_Full','Steel_Shea

r','Com_con_MPa','Eff_span_mm','Xsect_area_sqmm','TS_stir_Mpa','Xsect_sti

r','TS_MS_Mpa','TS_gfrp_Mpa']] 

 

model.predict(t_vect) 



 

 

 

Abbreviations 

L effective span 

P monotonic loading 

𝑡𝐹 thickness of FRP strip 

𝑤𝑓 width of FRP strip 

𝑓𝑦 characteristic strength of steel 

𝑓𝑓𝑒 ultimate tensile stress in the FRP shear reinforcement 

𝑆𝑓 spacing between the FRP strips 

n number of layers 

𝐴𝑠𝑣  total cross sectional area of stirrups legs effective in shear 

d effective depth of the beam 

𝑆𝑣 Stirrups spacing along the length of the member 

B breadth of beam 

D overall depth of beam 

RC Reinforced Concrete 

GFRP Glass Fibre Reinforced Polymer 

CFRP Glass Fibre Reinforced Polymer 

BFRP Basalt Fibre Reinforced Polymer 

SSWM Stainless Steel Wire Mesh 

CB Control Beam 

FA Fine Aggregate 

CA Coarse Aggregate 

ACI American Concrete Institute 

GSM Gram per Square Meter 

CSM Chopped Strand Mat   

WR Woven Roving 

LVDT Linear Variable Differential Transformer 

UTM Universal Testing Machine 

OPC Ordinary Portland Cement 

TRM Textile Reinforced Mortar 

EBRIG Externally Bonded Reinforcement In Groove 

BS EN British Standard European Norm 



 

 

 

ASTM American Society for Testing and Materials 

IS Indian Standards 

BPA Bisphenol ‘A’ 

EB Externally bonded Beam 

SS Strips on Sides 

FS Full on Sides 

SU U wrap Strip 

FU Full U wrap 

Mpa Mega Pascal 

mm millimeter 

kN kilo Newton 

kg/m3 kilo gram per meter cube 

T Tonne 

RF Random Forest 

ML Machine Learning 

R2 Coefficient of determination  

MAE Mean Absolute Error  

RMSE Root Mean Square Error 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

 

  



 

 

 

Theoretical Analysis Calculation 

Calculation of shear resistance of a rectangular singly reinforced RC beam section externally 

bonded with GFRP CSM and GFRP laminates with the following data. 

Overall beam cross section = 100 × 150 mm 

Tension reinforcement = 2 – 8 mm diameter bars 

Grade of steel = Fe 500 

Grade of concrete = C30 

Clear cover = 15 mm 

Solution 

a) Shear Strength of RC beam externally bonded with GFRP composites 

Shear strength of RC beam externally bonded with GFRP composites, 

V𝑢 = Ø V𝑛 = Ø (V𝑐 + V𝑠 + ψ𝑛V𝑓) 

wf − width of GFRP CSM strip = 50 𝑚𝑚 

tf − thickness of GFRP CSM strip = 0.5 mm 

𝑓𝑓𝑒 − tensile stress in the GFRP CSM shear reinforcement = 166 𝑀𝑃𝑎  

S𝑓 − spacing between the FRP strips = 100 𝑚𝑚 

n − number of layers = 1 

d𝑓 − depth ofthe beam (GFRP composite attached full depth of beam) = 150 𝑚𝑚 

ψ𝑛 − 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝐹𝑅𝑃 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 =  0.85 

Ø − strength reduction factor

= 0.7 for brittle sections, as opposed to 0.90 for ductile sections. 

b) Shear Strength of RC Beam  



 

 

 

Based on IS 456, maximum shear stress for concrete is 3.5 MPa for 28 days cube compressive 

strength with 30 MPa. Width and effective depth of beam considered for the theoretical analysis 

are 100 mm and 131 mm respectively. 

Effective depth, d = Overall depth – (clear cover + 𝜙/2) 

d = 150 − (15 + 8
2⁄ ) = 131 mm 

Shear resistance of concrete, V𝑐 =
2 vmax 𝑏𝑑

3
=

2 × 3.5 × 100 × 131

3
= 30566.67 𝑁 

V𝑐 = 30.57 𝑘𝑁 

c) Shear contribution of steel shear reinforcement 

Two legged 5 mm diameter steel shear reinforcements with yield stress 250 MPa at 175 mm 

spacing were provided. 

The shear contribution of the steel shear reinforcement is then given by 

Shear resistance of steel stirrups, Vus =
0.87 𝑓𝑦  𝐴𝑆𝑉𝑑

𝑆𝑣
 

Area of steel stirrups, Ast = 2 × 19.63 = 39.26 mm2 

Vus =
0.87 × 250 × 39.26 × 131

175
= 6392.09 𝑁 

Vus = 6.39 𝑘𝑁 

d) Shear contribution of GFRP shear reinforcement 

GFRP CSM composites with 50 mm strips at 100 mm spacing is attached on two sides of RC 

beam and tensile stress in GFRP is 166 MPa. 

The shear contribution of the GFRP shear reinforcement is then given by 

V𝑓 =
A𝑓𝑣 𝑓𝑓𝑒 d𝑓

S𝑓
 

Area of CSM strips bonded with both sides of RC beam, Afv = 2 n tf wf 

Afv = (2 × 1 × 0.5 × 50) = 50 𝑚𝑚2 



 

 

 

V𝑓 =
50 × 166 × 150

100
= 12450 𝑁 

V𝑓 = 12.45 𝑘𝑁 

V𝑢 = Ø V𝑛 = Ø (V𝑐 + V𝑠 + ψ𝑛V𝑓) 

Sample Designation Strength reduction 

factor (Ø) 

Mechanical Property 

CB1 0.85 Ductile (RC beam with longitudinal steel 

reinforcement and steel stirrups) 

CB2 0.80 Partially ductile (RC beam with 

longitudinal steel reinforcement without 

stirrups) 

Beam bonded with 

CSM GFRP composites 

0.75 Partially brittle (RC beam with 

longitudinal steel reinforcement with 

GFRP stirrups) 

 

Shear resistance of CB1, V𝑢 = Ø V𝑛 = Ø (V𝑐 + V𝑠) 

V𝑢 = Ø V𝑛 = 0.85 × (30.57 + 6.39) = 31.42 𝑘𝑁 

Shear resistance of CB2, V𝑢 = Ø V𝑛 = Ø (V𝑐) 

V𝑢 = Ø V𝑛 = 0.80 × 30.57 = 24.46 𝑘𝑁 

Shear resistance of RC beam with GFRP CSM strips on sides only (EB − SS − CSM), 

 V𝑢 = Ø V𝑛 = Ø (V𝑐 + ψ𝑛V𝑓) 

V𝑢 = Ø V𝑛 = 0.75 × (30.57 + [0.85 × 12.45]) = 30.86 𝑘𝑁 
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