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Statistically bias-corrected and downscaled climate models
underestimate the severity of U.S. maize yield shocks

Supplementary Information

NEX-GDDP Climate Data. The NASA NEX-GDDP technical note can be found at:

https://esgf.nccs.nasa.gov/esgdoc/NEX-GDDP Tech Note vO0.pdf

The Technical Note contains a detailed description of the separate algorithms used to
downscale and bias-correct the raw CMIP5 model outputs. Here we describe only the
central steps.

The bias-correction procedure performs a quantile-mapping in which for each
variable, a transfer function is applied to the GCM-generated cumulative distribution
function (CDF) such that the quantiles are set to align with observational data. CDFs are
constructed for each day of the year by pooling the target day +15 days over the entire
historical period, 1950-2005. This corrects the statistical moments of the GCM output. The
downscaling or spatial disaggregation step performs a scaled bilinear interpolation of the
GCM-generated fields that respects the monthly climatology of the observational data.
Both steps are implemented such that the monthly trends (specifically, the 9-year running
average for each month) in the GCM outputs remain unchanged. These approaches
assume stationarity: the spatial patterns of the mapping functions derived from the
historical time period are assumed to remain the same in the future.

The observational/reanalysis product that was used to perform both the bias-
correction and downscaling is the Global Meteorological Forcing Dataset (GMFD;").
GMFD was developed to provide near-surface meteorological variables, derived via a
globally consistent methodology, suitable for forcing models of land surface processes. It
was produced by combining multiple global observational products with the NCEP/NCAR

Reanalysis dataset.

Skill of climate variables. There are two broad classes of models available to simulate
agricultural yields: process-based” and statistical’. Process-based models explicitly

simulate the physiological mechanisms of plant growth. They typically require extensive
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calibration for a large number of inputs, including soil information, solar radiation data, and
farm management decisions like planting/harvesting dates and fertilizer application
practices. In contrast, statistical models employ regression techniques to predict
agricultural outcomes from fine-scale weather data. They benefit from increasingly large
and detailed datasets and can implicitly account for farm management decisions. Although
methodologically somewhat different, a recent study finds that both approaches give very
similar predictions when compared over the same region, particularly when the effects of
carbon dioxide are neglected®. Innovative new machine-learning approaches, such as
random forests®” and neural networks®, have also shown considerable skill in reproducing
historical yields.

Here, we adapt a statistical model originating from Schlenker and Roberts’. This
statistical model is more parsimonious and transparent than process-based models and it
readily allows us to predict yield variations based solely on NEX-GDDP output variables.

As described in the main text, our yield model is given by:

r 2

logY;; = fi(t) + ¢i + «; GDDi’,t + Bi EDDi’,t +V; Pi,,t +r; P+ o€ (1)

We implement a test to check whether the above model is an improvement over the sub-

model of describing yields by the technological time trend only, given by
logYie = fi(t) + €. (2)

This test is to ensure that in the main text, our conclusions are drawn from counties where
including climatic variables in the yield model is meaningful in the sense of providing
additional skill. An argument could be made that if the fit is worsened by the inclusion of
climate data, any uncertainty analysis surrounding that data would be rendered irrelevant.
In order to guard against this, in the main text we include only counties where Eq. (1)
provides a lower mean squared error than Eq. (2) measured via leave-one-out cross-
validation.

Counties for which the full model gives a worse fit are shown in red in Figure S13,
and counties for which the full model gives a better fit are shown in green. The boundary
is predominantly north-south oriented and approximately traces the 100W meridian, which
previous studies’'' have used as a first-order boundary between irrigated maize (to the
west) and rainfed maize (to the east). Irrigated crops are generally less sensitive to
fluctuations in weather and thus less well-suited to regression analysis, a result that

emerges qualitatively here.
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Our quantitative results are very similar if all counties are included (Figures S7, S8,
S9), reflecting that most of the historically high-production counties are better modeled via
Eq. (1). For all years throughout the historical time period, counties better modeled by Eq.

(1) accounted for no less than 80% of the national production share (Figure S11).
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Fig. S1. 1960-2016 mean county production shares. Note that in the main text, for all analysis over
the historical period we use yearly production shares. The averages are used in the projections

and can give an idea of which counties have been historically important.
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Figure S2. Tail-area probabilities of CMIP-modeled maize yields measured against observationally
driven yields. Results are shown for standard deviation (a), median absolute deviation (b), and the
magnitude of the largest negative yield shock (c). Stippling indicates tail-area probabilities less than
0.01 or greater than 0.99.
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a) Growing Degree Days SD b) Growing Degree Days MAD

c) Extreme Degree Days SD d) Extreme Degree Days MAD

e) Season-total Precip. SD
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Figure S3. Tail-area probabilities for each climate variable in the yield model, from the CMIP
ensemble. The left column shows standard deviation; the right column median absolute deviation
(MAD). Climate variables are organized by row: growing degree days (top), extreme degree days
(middle), precipitation (bottom). Stippling indicates tail-area probabilities less than 0.01 or greater
than 0.99.
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Figure S4. Historical mean and standard deviation for each climate variable in the yield model,
calculated from the reanalysis. The left column shows the mean; the right column standard

deviation (SD). Climate variables are organized by row: growing degree days (top), extreme degree

days (middle), precipitation (bottom).
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90

91 Figure S5. Yield model fit residuals for 24 consecutive years during the historical time period,

92  showing considerable spatial correlation.
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Figure S6. Moran’s |, a measure of global spatial autocorrelation, over the entire historical period.
A k-nearest-neighbors algorithm with k=70 is used to calculate the spatial weights matrix, using
only the counties that show improved skill after including the climate variables. Values close to 1
indicate highly correlated data. The null hypothesis of spatial independence, a hypothesis that we

made in the main text, can be rejected for all years (P < 0.001).
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Figure S7. As Figure 1 in the main text but including all counties, regardless of whether including
climate variables increases skill. Tail-area probabilities for the CMIP ensemble differ only at the
third decimal place. Tail-area probabilities for the NEX ensemble differ more, but our qualitative

results and conclusions hold.
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107 Figure S8. As Figure 2 in the main text but including all counties, regardless of whether including

108  climate variables increases skill.
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Figure S9. As Figure 4 in the main text but including all counties, regardless of whether including

climate variables increases skill. The projected yield density functions are almost

indistinguishable, as are the corresponding return periods.
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Fig. $10. (top) Yield model coefficient of determination measured against USDA records over the
historical time period (1960-2005). Counties in white are those that exhibited less than 50% data
coverage in the USDA record. (bottom) Annual national-level yield time series, constructed by
summing county-level yields with weights equal to yearly historical production shares. The USDA
record is shown in orange, the full yield model is shown in purple, and the time trend is shown in
gray.
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Figure S11. Summed production of counties for which including climatic variables in the yield

model give an improved out-of-sample performance, measured relative to the total national level

production each year.
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Figure S12. Coefficient of determination, R?, for the out-of-sample period (2006-2016).
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Figure S13. Counties for which including climatic variables in the yield model give an improved

out-of-sample performance are shown in the green; those for which a worse fit is observed are

shown in red.
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Table S1. CMIP5 models and native resolutions

Model Name Modeling Agency Resolution (lat x lon)

ACCESS1-0 Commonwealth Scientific and Industrial 1.24° x 1.875°
Research Organization and Bureau of
Meteorology, Australia

BCC-CSM1-1 Beijing Climate Center, China Meteorological 2.8125° x 2.8125°
Administration

BNU-ESM College of Global Change and Earth System 2.8125° x 2.8125°
Science, Beijing Normal University, China

CanESM2 Canadian Centre for Climate Modelling and 2.8125° x 2.8125°
Analysis, Canada

CCsSM4 National Center for Atmospheric Research, 0.9375° x 1.25°
USA

CESM1-BGC National Center for Atmospheric Research, 0.9375° x 1.25°
USA

CNRM-CM5 National Centre of Meteorological Research, 1.40625° x 1.40625°
France

CSIRO-MK3-6-0 Commonwealth Scientific and Industrial 1.875° x 1.875°
Research Organization & Queensland Climate
Change Centre of Excellence, Australia

GFDL-CM3 Geophysical Fluid and Atmospheric 2°x2.5°
Administration Dynamics Laboratory, USA

GFDL-ESM2G Geophysical Fluid and Atmospheric 2°x2.5°
Administration Dynamics Laboratory, USA

GFDL-ESM2M Geophysical Fluid 2°x2.5°
and Atmospheric Administration Dynamics
Laboratory, USA

INMCM4 Institute for Numerical Mathematics, Russia 1.5°x 2°

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 1.875° x 3.75°

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 1.25° x 2.5°

MIROC-ESM Japan Agency for Marine-Earth Science and 2.8125° x 2.8125°

Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and
National Institute for Environmental Studies,
Japan

MIROC-ESM- CHEM

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and
National Institute for Environmental Studies,
Japan

2.8125° x 2.8125°

MIROC5 Atmosphere and Ocean Research Institute 1.40625° x 1.40625°
(The University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan
MPI-ESM-LR Max Planck Institute for Meteorology, Germany | 1.875° x 1.875°
MPI-ESM-MR Max Planck Institute for Meteorology, Germany | 2.875° x 1.875°
MRI-CGCM3 Meteorological Research Institute, Japan 1.125° x 1.125°
NorESM1-M Norwegian Climate Centre, Norway 1.875° x 2.5°
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