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Statistically bias-corrected and downscaled climate models 
underestimate the severity of U.S. maize yield shocks 
 
Supplementary Information 
 1 
NEX-GDDP Climate Data. The NASA NEX-GDDP technical note can be found at: 2 
 3 
https://esgf.nccs.nasa.gov/esgdoc/NEX-GDDP_Tech_Note_v0.pdf 4 
 5 
The Technical Note contains a detailed description of the separate algorithms used to 6 
downscale and bias-correct the raw CMIP5 model outputs. Here we describe only the 7 
central steps. 8 

The bias-correction procedure performs a quantile-mapping in which for each 9 
variable, a transfer function is applied to the GCM-generated cumulative distribution 10 
function (CDF) such that the quantiles are set to align with observational data. CDFs are 11 
constructed for each day of the year by pooling the target day ±15 days over the entire 12 
historical period, 1950-2005. This corrects the statistical moments of the GCM output. The 13 
downscaling or spatial disaggregation step performs a scaled bilinear interpolation of the 14 
GCM-generated fields that respects the monthly climatology of the observational data. 15 
Both steps are implemented such that the monthly trends (specifically, the 9-year running 16 
average for each month) in the GCM outputs remain unchanged. These approaches 17 
assume stationarity: the spatial patterns of the mapping functions derived from the 18 
historical time period are assumed to remain the same in the future. 19 
 The observational/reanalysis product that was used to perform both the bias-20 
correction and downscaling is the Global Meteorological Forcing Dataset (GMFD;1). 21 
GMFD was developed to provide near-surface meteorological variables, derived via a 22 
globally consistent methodology, suitable for forcing models of land surface processes. It 23 
was produced by combining multiple global observational products with the NCEP/NCAR 24 
Reanalysis dataset. 25 
 26 
Skill of climate variables. There are two broad classes of models available to simulate 27 
agricultural yields: process-based2 and statistical3. Process-based models explicitly 28 
simulate the physiological mechanisms of plant growth. They typically require extensive 29 
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calibration for a large number of inputs, including soil information, solar radiation data, and 30 
farm management decisions like planting/harvesting dates and fertilizer application 31 
practices. In contrast, statistical models employ regression techniques to predict 32 
agricultural outcomes from fine-scale weather data. They benefit from increasingly large 33 
and detailed datasets and can implicitly account for farm management decisions. Although 34 
methodologically somewhat different, a recent study finds that both approaches give very 35 
similar predictions when compared over the same region, particularly when the effects of 36 
carbon dioxide are neglected4. Innovative new machine-learning approaches, such as 37 
random forests5–7 and neural networks8, have also shown considerable skill in reproducing 38 
historical yields. 39 

Here, we adapt a statistical model originating from Schlenker and Roberts9. This 40 
statistical model is more parsimonious and transparent than process-based models and it 41 
readily allows us to predict yield variations based solely on NEX-GDDP output variables. 42 
 As described in the main text, our yield model is given by: 43 

log 𝑌!,# = 𝑓!(𝑡) 	+	𝑐! + 𝛼! 	𝐺𝐷𝐷!,#$ + 𝛽! 	𝐸𝐷𝐷!,#$ + 𝛾! 	𝑃!,#$ + 𝜅! 	𝑃!,#$
%	 	+ 	𝜖!,# . (1) 44 

We implement a test to check whether the above model is an improvement over the sub-45 
model of describing yields by the technological time trend only, given by 46 

log 𝑌!,# = 𝑓!(𝑡)	 	+	𝜖!,#.     (2) 47 

This test is to ensure that in the main text, our conclusions are drawn from counties where 48 
including climatic variables in the yield model is meaningful in the sense of providing 49 
additional skill. An argument could be made that if the fit is worsened by the inclusion of 50 
climate data, any uncertainty analysis surrounding that data would be rendered irrelevant. 51 
In order to guard against this, in the main text we include only counties where Eq. (1) 52 
provides a lower mean squared error than Eq. (2) measured via leave-one-out cross-53 
validation.  54 

 Counties for which the full model gives a worse fit are shown in red in Figure S13, 55 
and counties for which the full model gives a better fit are shown in green. The boundary 56 
is predominantly north-south oriented and approximately traces the 100W meridian, which 57 
previous studies9–11 have used as a first-order boundary between irrigated maize (to the 58 
west) and rainfed maize (to the east). Irrigated crops are generally less sensitive to 59 
fluctuations in weather and thus less well-suited to regression analysis, a result that 60 
emerges qualitatively here.  61 
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Our quantitative results are very similar if all counties are included (Figures S7, S8, 62 
S9), reflecting that most of the historically high-production counties are better modeled via 63 
Eq. (1). For all years throughout the historical time period, counties better modeled by Eq. 64 
(1) accounted for no less than 80% of the national production share (Figure S11).  65 
  66 
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Fig. S1. 1960-2016 mean county production shares. Note that in the main text, for all analysis over 67 
the historical period we use yearly production shares. The averages are used in the projections 68 
and can give an idea of which counties have been historically important. 69 

70 
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 71 

Figure S2. Tail-area probabilities of CMIP-modeled maize yields measured against observationally 72 
driven yields. Results are shown for standard deviation (a), median absolute deviation (b), and the 73 
magnitude of the largest negative yield shock (c). Stippling indicates tail-area probabilities less than 74 
0.01 or greater than 0.99. 75 
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 77 

Figure S3. Tail-area probabilities for each climate variable in the yield model, from the CMIP 78 
ensemble. The left column shows standard deviation; the right column median absolute deviation 79 
(MAD). Climate variables are organized by row: growing degree days (top), extreme degree days 80 
(middle), precipitation (bottom). Stippling indicates tail-area probabilities less than 0.01 or greater 81 
than 0.99. 82 
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 84 

Figure S4. Historical mean and standard deviation for each climate variable in the yield model, 85 
calculated from the reanalysis. The left column shows the mean; the right column standard 86 
deviation (SD). Climate variables are organized by row: growing degree days (top), extreme degree 87 
days (middle), precipitation (bottom). 88 
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 90 

Figure S5. Yield model fit residuals for 24 consecutive years during the historical time period, 91 
showing considerable spatial correlation.  92 
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 93 

Figure S6. Moran’s I, a measure of global spatial autocorrelation, over the entire historical period. 94 
A k-nearest-neighbors algorithm with k=10 is used to calculate the spatial weights matrix, using 95 
only the counties that show improved skill after including the climate variables. Values close to 1 96 
indicate highly correlated data. The null hypothesis of spatial independence, a hypothesis that we 97 
made in the main text, can be rejected for all years (P < 0.001). 98 
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 100 

Figure S7. As Figure 1 in the main text but including all counties, regardless of whether including 101 
climate variables increases skill. Tail-area probabilities for the CMIP ensemble differ only at the 102 
third decimal place. Tail-area probabilities for the NEX ensemble differ more, but our qualitative 103 
results and conclusions hold. 104 
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 106 

Figure S8. As Figure 2 in the main text but including all counties, regardless of whether including 107 
climate variables increases skill. 108 
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 111 

 112 
Figure S9. As Figure 4 in the main text but including all counties, regardless of whether including 113 
climate variables increases skill. The projected yield density functions are almost 114 
indistinguishable, as are the corresponding return periods. 115 
 116 
 117 
 118 
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 119 
 120 
Fig. S10. (top) Yield model coefficient of determination measured against USDA records over the 121 
historical time period (1960-2005). Counties in white are those that exhibited less than 50% data 122 
coverage in the USDA record. (bottom) Annual national-level yield time series, constructed by 123 
summing county-level yields with weights equal to yearly historical production shares. The USDA 124 
record is shown in orange, the full yield model is shown in purple, and the time trend is shown in 125 
gray. 126 
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 127 

Figure S11.  Summed production of counties for which including climatic variables in the yield 128 
model give an improved out-of-sample performance, measured relative to the total national level 129 
production each year. 130 
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 132 

 133 

Figure S12. Coefficient of determination, R2, for the out-of-sample period (2006-2016). 134 

 135 
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 136 

Figure S13.  Counties for which including climatic variables in the yield model give an improved 137 
out-of-sample performance are shown in the green; those for which a worse fit is observed are 138 
shown in red.  139 
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Table S1. CMIP5 models and native resolutions 140 
 141 

Model Name Modeling Agency  Resolution (lat x lon)  
 

ACCESS1-0  Commonwealth Scientific and Industrial 
Research Organization and Bureau of 
Meteorology, Australia  

1.24° x 1.875°  
 

BCC-CSM1-1  Beijing Climate Center, China Meteorological 
Administration  

2.8125° x 2.8125°  
 

BNU-ESM  College of Global Change and Earth System 
Science, Beijing Normal University, China  

2.8125° x 2.8125°  
 

CanESM2  Canadian Centre for Climate Modelling and 
Analysis, Canada  

2.8125° x 2.8125°  
 

CCSM4  National Center for Atmospheric Research, 
USA  

0.9375° x 1.25°  
 

CESM1-BGC  National Center for Atmospheric Research, 
USA  

0.9375° x 1.25°  
 

CNRM-CM5  National Centre of Meteorological Research, 
France  

1.40625° x 1.40625°  
 

CSIRO-MK3-6-0  Commonwealth Scientific and Industrial 
Research Organization & Queensland Climate 
Change Centre of Excellence, Australia  

1.875° x 1.875°  
 

GFDL-CM3  Geophysical Fluid and Atmospheric 
Administration Dynamics Laboratory, USA  

2° x 2.5°  
 

GFDL-ESM2G  Geophysical Fluid and Atmospheric 
Administration Dynamics Laboratory, USA  

2° x 2.5°  
 

GFDL-ESM2M  Geophysical Fluid  
and Atmospheric Administration Dynamics 
Laboratory, USA  

2° x 2.5°  
 

INMCM4  Institute for Numerical Mathematics, Russia  1.5° x 2° 
IPSL-CM5A-LR  Institut Pierre-Simon Laplace, France 1.875° x 3.75°  
IPSL-CM5A-MR  Institut Pierre-Simon Laplace, France  1.25° x 2.5°  
MIROC-ESM  Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies, 
Japan  

2.8125° x 2.8125°  
 

MIROC-ESM- CHEM  Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies, 
Japan  

2.8125° x 2.8125°  
 

MIROC5  
 

Atmosphere and Ocean Research Institute 
(The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology, Japan  

1.40625° x 1.40625°  
 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875° x 1.875°  
MPI-ESM-MR  Max Planck Institute for Meteorology, Germany  2.875° x 1.875°  
MRI-CGCM3  Meteorological Research Institute, Japan  1.125° x 1.125°  
NorESM1-M  Norwegian Climate Centre, Norway  1.875° x 2.5°  
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