

Statistically bias-corrected and downscaled climate models underestimate the severity of U.S. maize yield shocks

Supplementary Information

1 **NEX-GDDP Climate Data.** The NASA NEX-GDDP technical note can be found at:

2 https://esgf.nccs.nasa.gov/esgdoc/NEX-GDDP_Tech_Note_v0.pdf

3

4

5

6 The Technical Note contains a detailed description of the separate algorithms used to

7 downscale and bias-correct the raw CMIP5 model outputs. Here we describe only the

8 central steps.

9 The bias-correction procedure performs a quantile-mapping in which for each

10 variable, a transfer function is applied to the GCM-generated cumulative distribution

11 function (CDF) such that the quantiles are set to align with observational data. CDFs are

12 constructed for each day of the year by pooling the target day ± 15 days over the entire

13 historical period, 1950-2005. This corrects the statistical moments of the GCM output. The

14 downscaling or spatial disaggregation step performs a scaled bilinear interpolation of the

15 GCM-generated fields that respects the monthly climatology of the observational data.

16 Both steps are implemented such that the monthly trends (specifically, the 9-year running

17 average for each month) in the GCM outputs remain unchanged. These approaches

18 assume stationarity: the spatial patterns of the mapping functions derived from the

19 historical time period are assumed to remain the same in the future.

20 The observational/reanalysis product that was used to perform both the bias-

21 correction and downscaling is the Global Meteorological Forcing Dataset (GMFD;¹).
22 GMFD was developed to provide near-surface meteorological variables, derived via a

23 globally consistent methodology, suitable for forcing models of land surface processes. It

24 was produced by combining multiple global observational products with the NCEP/NCAR

25 Reanalysis dataset.

26

27 **Skill of climate variables.** There are two broad classes of models available to simulate

28 agricultural yields: process-based² and statistical³. Process-based models explicitly

29 simulate the physiological mechanisms of plant growth. They typically require extensive

30 calibration for a large number of inputs, including soil information, solar radiation data, and
31 farm management decisions like planting/harvesting dates and fertilizer application
32 practices. In contrast, statistical models employ regression techniques to predict
33 agricultural outcomes from fine-scale weather data. They benefit from increasingly large
34 and detailed datasets and can implicitly account for farm management decisions. Although
35 methodologically somewhat different, a recent study finds that both approaches give very
36 similar predictions when compared over the same region, particularly when the effects of
37 carbon dioxide are neglected⁴. Innovative new machine-learning approaches, such as
38 random forests⁵⁻⁷ and neural networks⁸, have also shown considerable skill in reproducing
39 historical yields.

40 Here, we adapt a statistical model originating from Schlenker and Roberts⁹. This
41 statistical model is more parsimonious and transparent than process-based models and it
42 readily allows us to predict yield variations based solely on NEX-GDDP output variables.

43 As described in the main text, our yield model is given by:

$$44 \quad \log Y_{i,t} = f_i(t) + c_i + \alpha_i GDD'_{i,t} + \beta_i EDD'_{i,t} + \gamma_i P'_{i,t} + \kappa_i {P'_{i,t}}^2 + \epsilon_{i,t}. \quad (1)$$

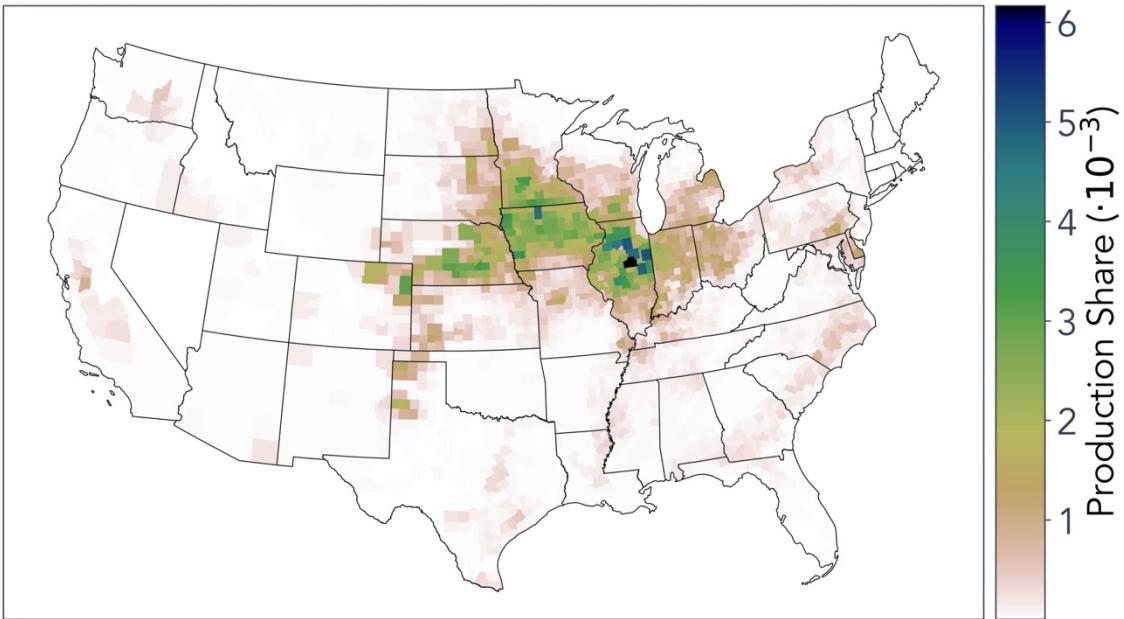
45 We implement a test to check whether the above model is an improvement over the sub-
46 model of describing yields by the technological time trend only, given by

$$47 \quad \log Y_{i,t} = f_i(t) + \epsilon_{i,t}. \quad (2)$$

48 This test is to ensure that in the main text, our conclusions are drawn from counties where
49 including climatic variables in the yield model is meaningful in the sense of providing
50 additional skill. An argument could be made that if the fit is worsened by the inclusion of
51 climate data, any uncertainty analysis surrounding that data would be rendered irrelevant.
52 In order to guard against this, in the main text we include only counties where Eq. (1)
53 provides a lower mean squared error than Eq. (2) measured via leave-one-out cross-
54 validation.

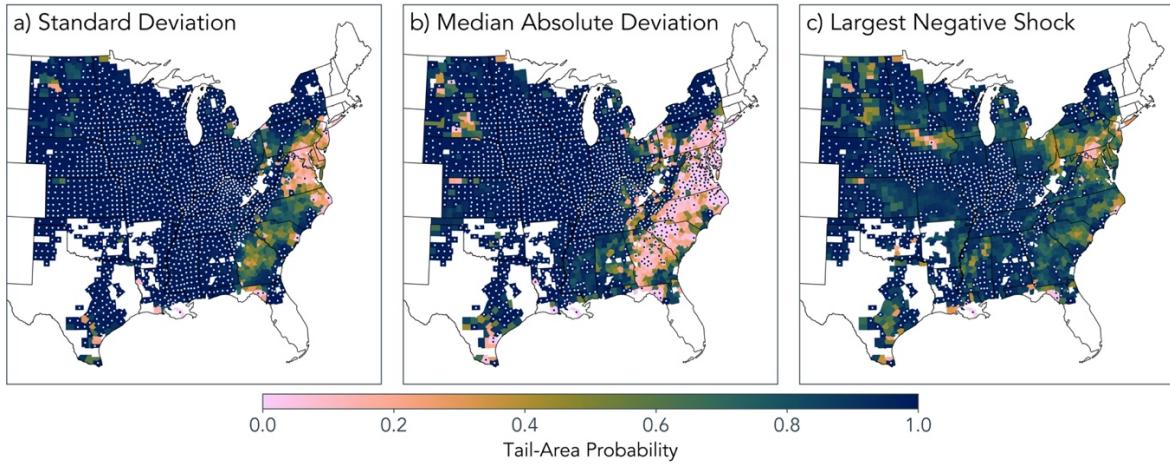
55 Counties for which the full model gives a worse fit are shown in red in Figure S13,
56 and counties for which the full model gives a better fit are shown in green. The boundary
57 is predominantly north-south oriented and approximately traces the 100W meridian, which
58 previous studies⁹⁻¹¹ have used as a first-order boundary between irrigated maize (to the
59 west) and rainfed maize (to the east). Irrigated crops are generally less sensitive to
60 fluctuations in weather and thus less well-suited to regression analysis, a result that
61 emerges qualitatively here.

62 Our quantitative results are very similar if all counties are included (Figures S7, S8,
63 S9), reflecting that most of the historically high-production counties are better modeled via
64 Eq. (1). For all years throughout the historical time period, counties better modeled by Eq.
65 (1) accounted for no less than 80% of the national production share (Figure S11).
66



67 **Fig. S1.** 1960-2016 mean county production shares. Note that in the main text, for all analysis over
68 the historical period we use yearly production shares. The averages are used in the projections
69 and can give an idea of which counties have been historically important.

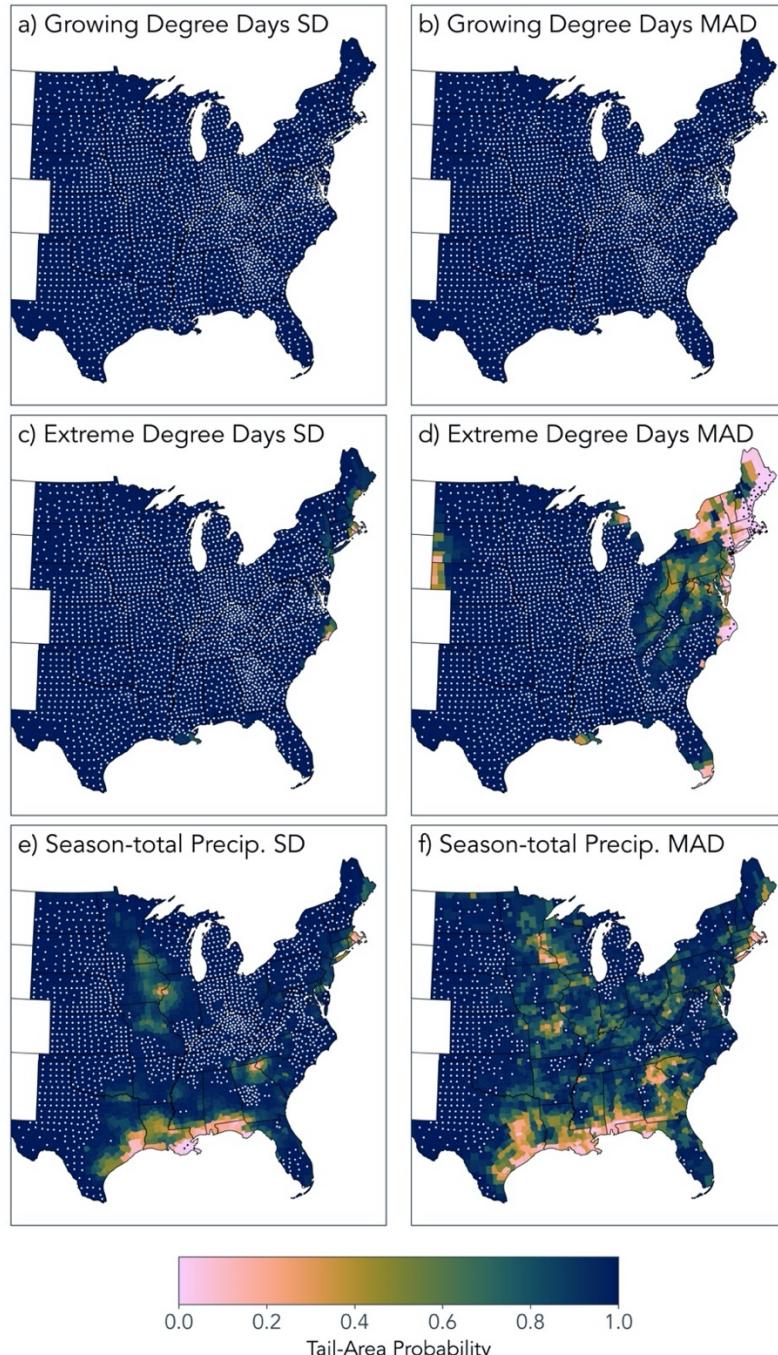
70



71

72 **Figure S2.** Tail-area probabilities of CMIP-modeled maize yields measured against observationally
 73 driven yields. Results are shown for standard deviation (a), median absolute deviation (b), and the
 74 magnitude of the largest negative yield shock (c). Stippling indicates tail-area probabilities less than
 75 0.01 or greater than 0.99.

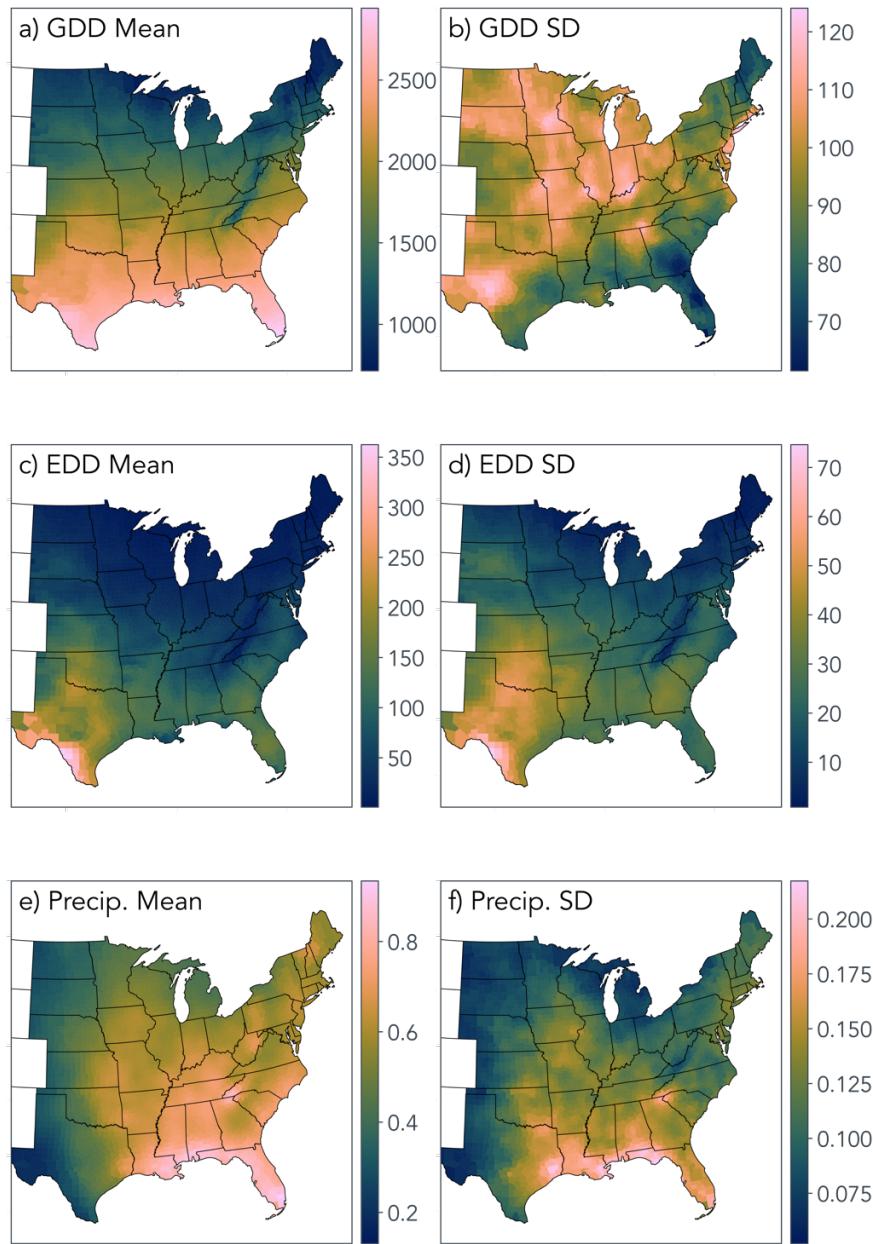
76



77

78 **Figure S3.** Tail-area probabilities for each climate variable in the yield model, from the CMIP
 79 ensemble. The left column shows standard deviation; the right column median absolute deviation
 80 (MAD). Climate variables are organized by row: growing degree days (top), extreme degree days
 81 (middle), precipitation (bottom). Stippling indicates tail-area probabilities less than 0.01 or greater
 82 than 0.99.

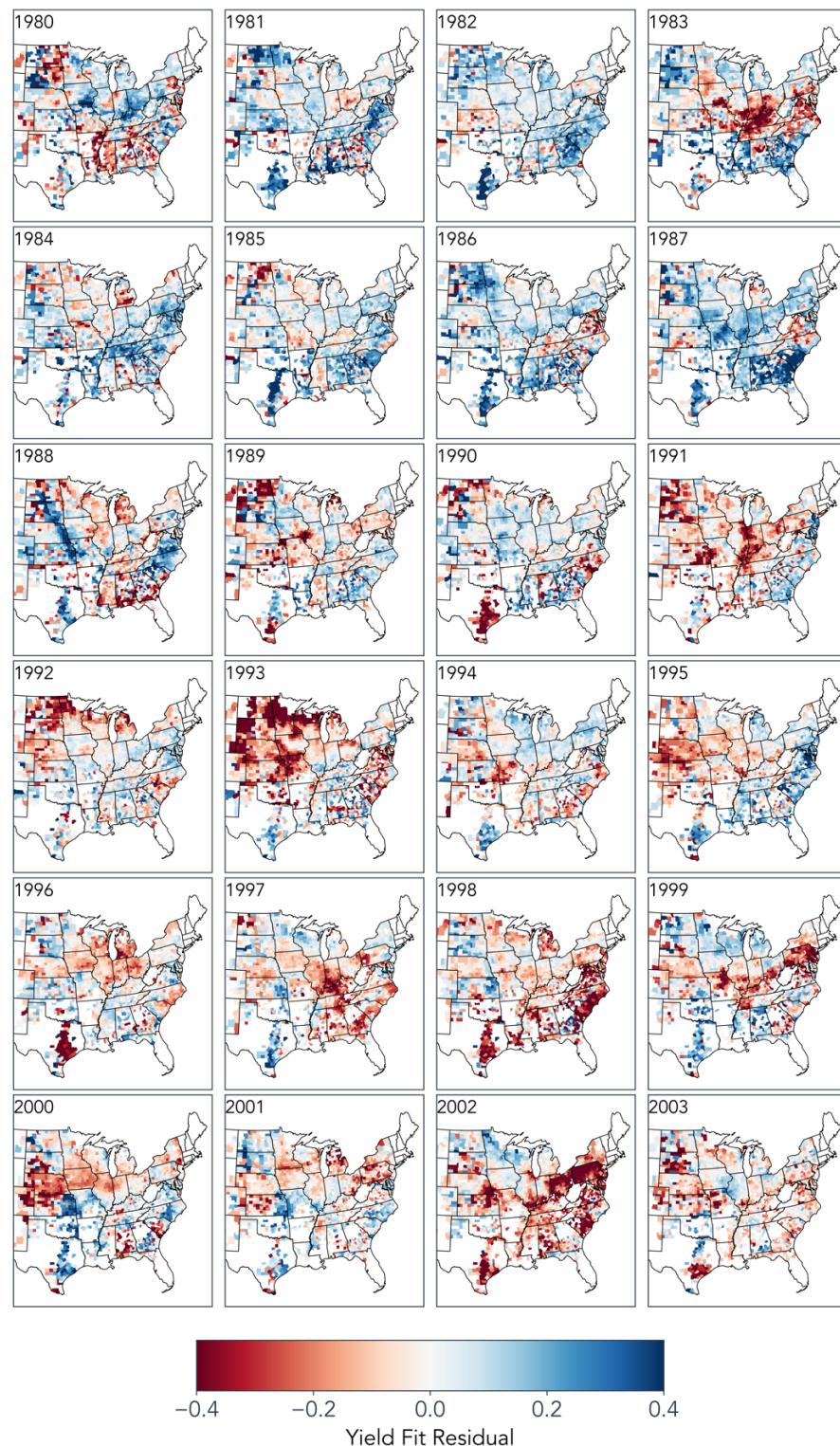
83



84

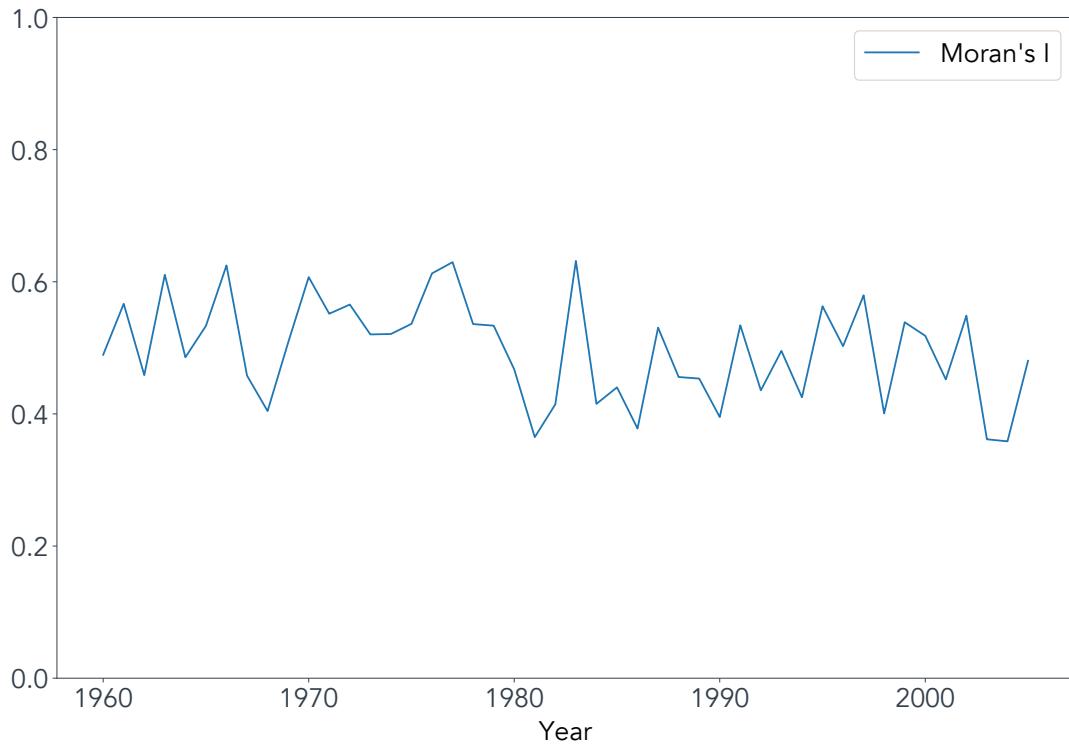
85 **Figure S4.** Historical mean and standard deviation for each climate variable in the yield model,
 86 calculated from the reanalysis. The left column shows the mean; the right column standard
 87 deviation (SD). Climate variables are organized by row: growing degree days (top), extreme degree
 88 days (middle), precipitation (bottom).

89



90

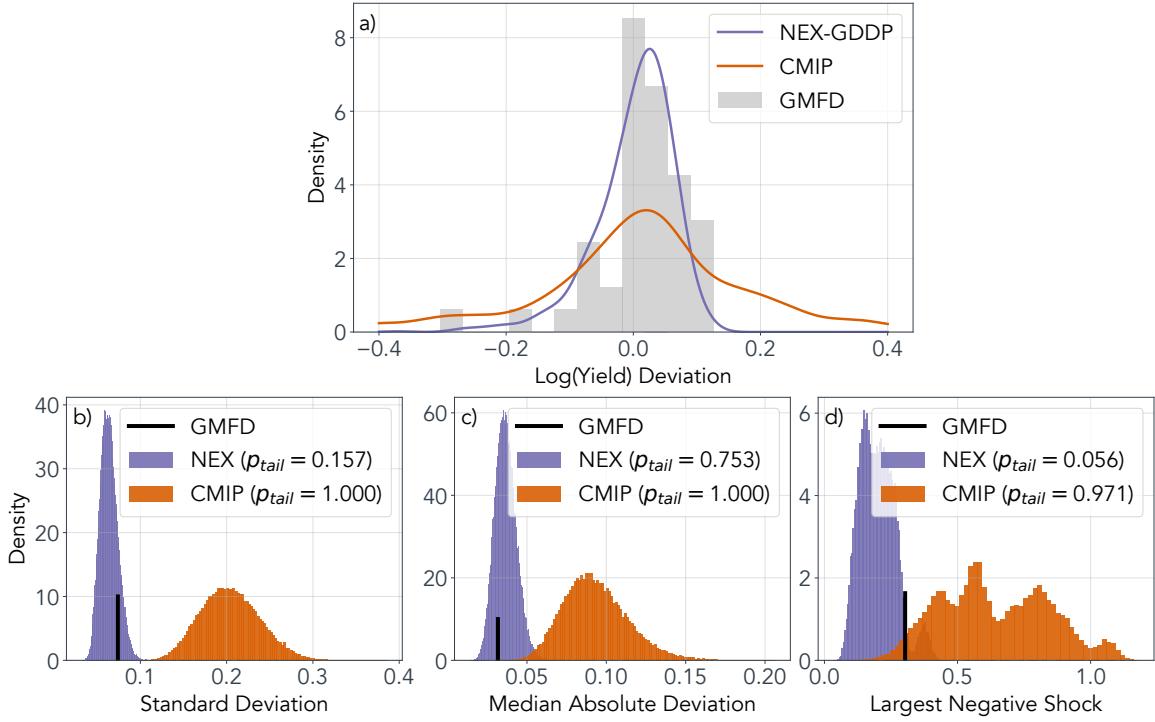
91 **Figure S5.** Yield model fit residuals for 24 consecutive years during the historical time period,
92 showing considerable spatial correlation.



93

94 **Figure S6.** Moran's I, a measure of global spatial autocorrelation, over the entire historical period.
95 A k-nearest-neighbors algorithm with $k=10$ is used to calculate the spatial weights matrix, using
96 only the counties that show improved skill after including the climate variables. Values close to 1
97 indicate highly correlated data. The null hypothesis of spatial independence, a hypothesis that we
98 made in the main text, can be rejected for all years ($P < 0.001$).

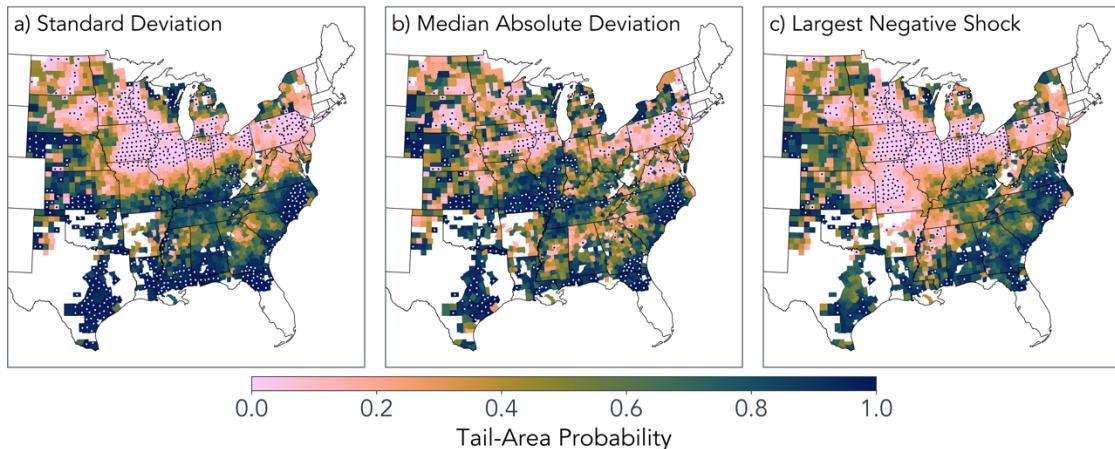
99



100

101 **Figure S7.** As Figure 1 in the main text but including all counties, regardless of whether including
 102 climate variables increases skill. Tail-area probabilities for the CMIP ensemble differ only at the
 103 third decimal place. Tail-area probabilities for the NEX ensemble differ more, but our qualitative
 104 results and conclusions hold.

105



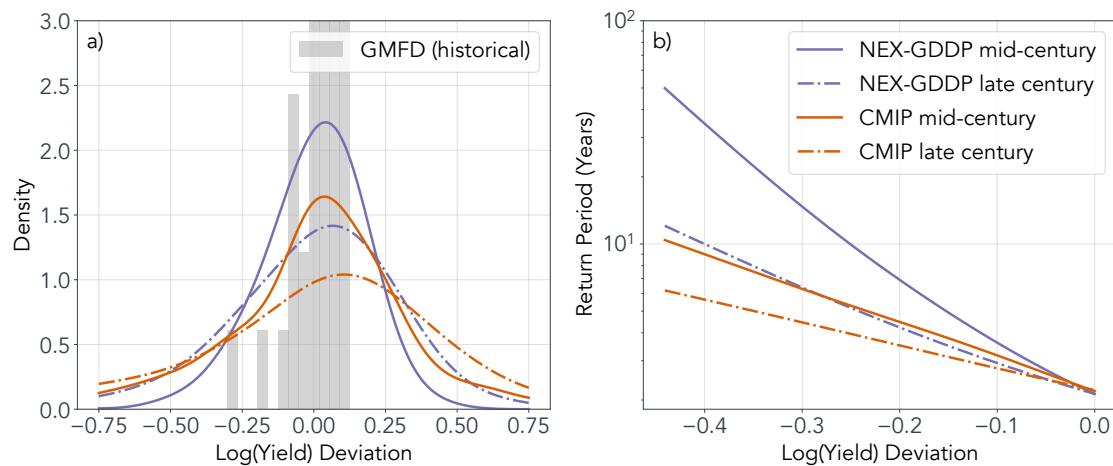
106

107 **Figure S8.** As Figure 2 in the main text but including all counties, regardless of whether including
108 climate variables increases skill.

109

110

111



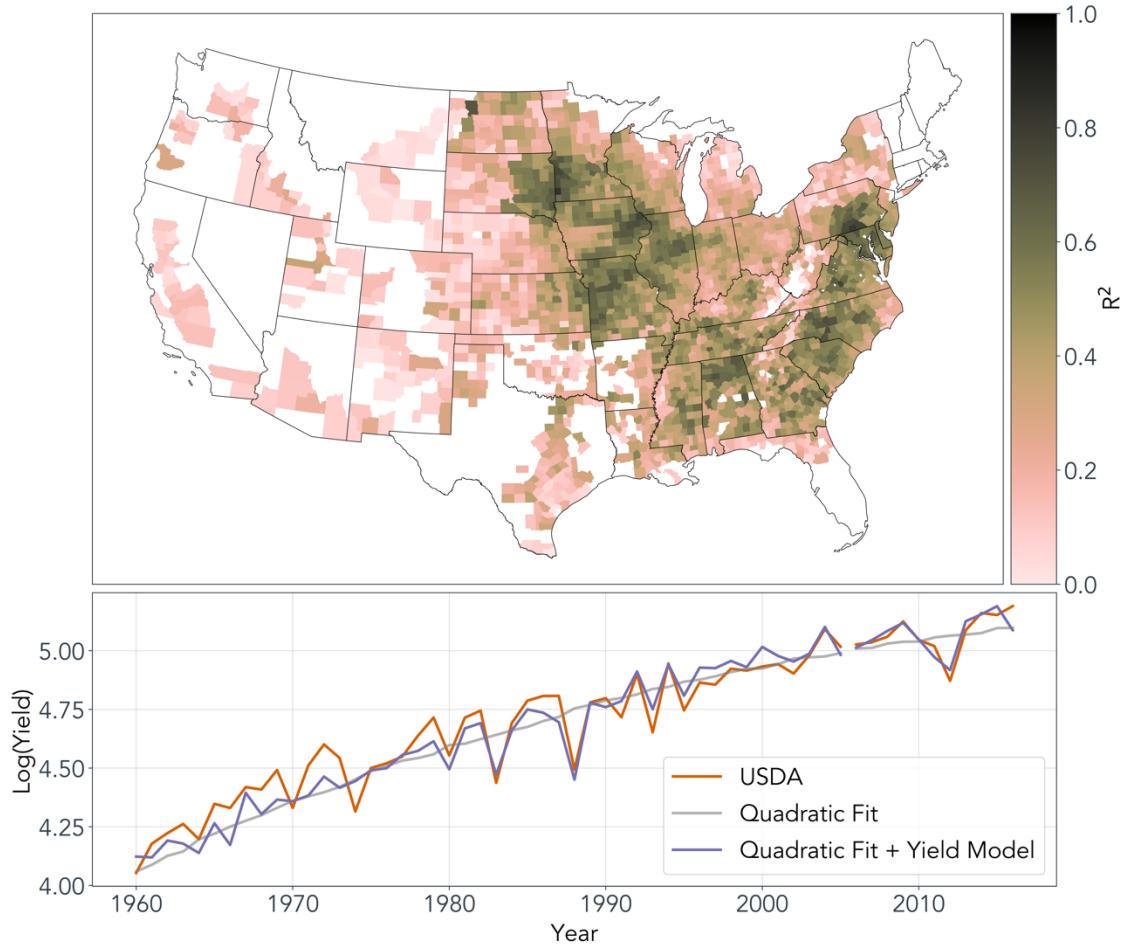
112

113 **Figure S9.** As Figure 4 in the main text but including all counties, regardless of whether including
114 climate variables increases skill. The projected yield density functions are almost
115 indistinguishable, as are the corresponding return periods.

116

117

118



119

120

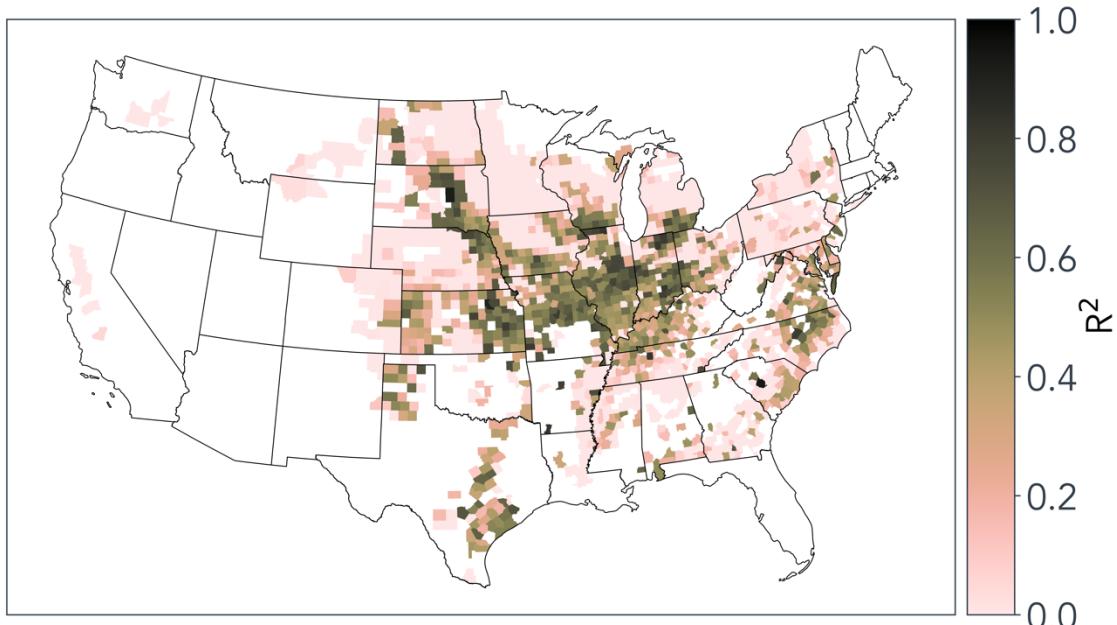
121 **Fig. S10.** (top) Yield model coefficient of determination measured against USDA records over the
 122 historical time period (1960-2005). Counties in white are those that exhibited less than 50% data
 123 coverage in the USDA record. (bottom) Annual national-level yield time series, constructed by
 124 summing county-level yields with weights equal to yearly historical production shares. The USDA
 125 record is shown in orange, the full yield model is shown in purple, and the time trend is shown in
 126 gray.

127

128 **Figure S11.** Summed production of counties for which including climatic variables in the yield
129 model give an improved out-of-sample performance, measured relative to the total national level
130 production each year.

131

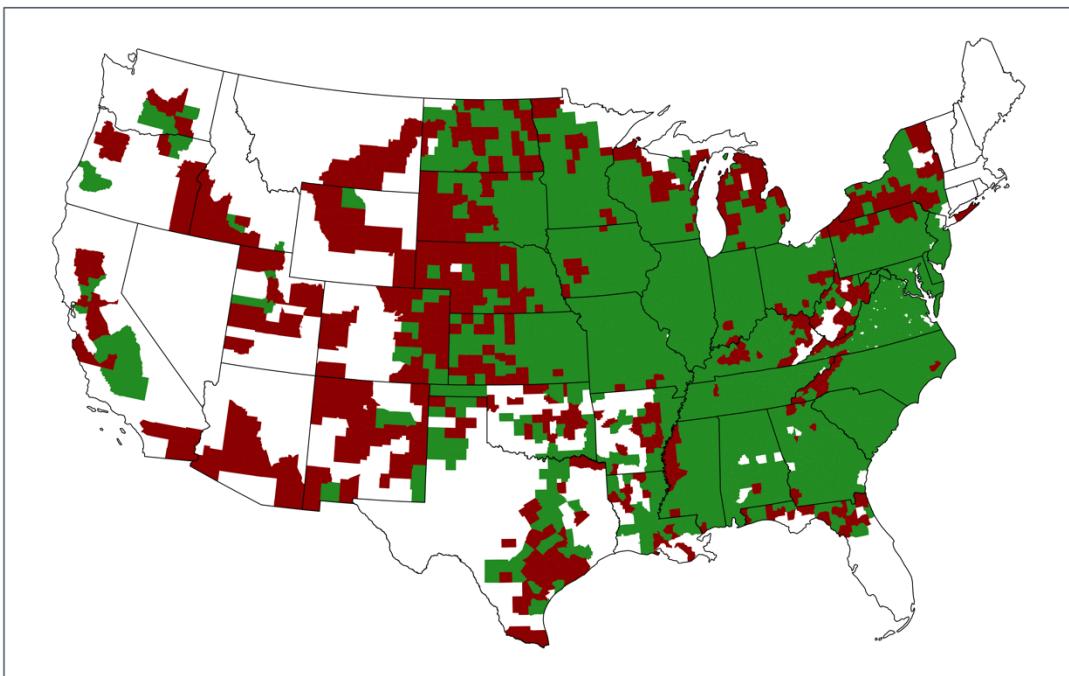
132



133

134 **Figure S12.** Coefficient of determination, R^2 , for the out-of-sample period (2006-2016).

135



136

137 **Figure S13.** Counties for which including climatic variables in the yield model give an improved
138 out-of-sample performance are shown in the green; those for which a worse fit is observed are
139 shown in red.

Table S1. CMIP5 models and native resolutions

Model Name	Modeling Agency	Resolution (lat x lon)
ACCESS1-0	Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Australia	1.24° x 1.875°
BCC-CSM1-1	Beijing Climate Center, China Meteorological Administration	2.8125° x 2.8125°
BNU-ESM	College of Global Change and Earth System Science, Beijing Normal University, China	2.8125° x 2.8125°
CanESM2	Canadian Centre for Climate Modelling and Analysis, Canada	2.8125° x 2.8125°
CCSM4	National Center for Atmospheric Research, USA	0.9375° x 1.25°
CESM1-BGC	National Center for Atmospheric Research, USA	0.9375° x 1.25°
CNRM-CM5	National Centre of Meteorological Research, France	1.40625° x 1.40625°
CSIRO-MK3-6-0	Commonwealth Scientific and Industrial Research Organization & Queensland Climate Change Centre of Excellence, Australia	1.875° x 1.875°
GFDL-CM3	Geophysical Fluid and Atmospheric Administration Dynamics Laboratory, USA	2° x 2.5°
GFDL-ESM2G	Geophysical Fluid and Atmospheric Administration Dynamics Laboratory, USA	2° x 2.5°
GFDL-ESM2M	Geophysical Fluid and Atmospheric Administration Dynamics Laboratory, USA	2° x 2.5°
INMCM4	Institute for Numerical Mathematics, Russia	1.5° x 2°
IPSL-CM5A-LR	Institut Pierre-Simon Laplace, France	1.875° x 3.75°
IPSL-CM5A-MR	Institut Pierre-Simon Laplace, France	1.25° x 2.5°
MIROC-ESM	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan	2.8125° x 2.8125°
MIROC-ESM- CHEM	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan	2.8125° x 2.8125°
MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan	1.40625° x 1.40625°
MPI-ESM-LR	Max Planck Institute for Meteorology, Germany	1.875° x 1.875°
MPI-ESM-MR	Max Planck Institute for Meteorology, Germany	2.875° x 1.875°
MRI-CGCM3	Meteorological Research Institute, Japan	1.125° x 1.125°
NorESM1-M	Norwegian Climate Centre, Norway	1.875° x 2.5°

References

142 1. Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-Year High-Resolution
143 Global Dataset of Meteorological Forcings for Land Surface Modeling. *J Climate* **19**,
144 3088–3111 (2006).

145 2. Rosenzweig, C. *et al.* Assessing agricultural risks of climate change in the 21st century
146 in a global gridded crop model intercomparison. *Proc National Acad Sci* **111**, 3268–3273
147 (2014).

148 3. Blanc, E. & Schlenker, W. The Use of Panel Models in Assessments of Climate
149 Impacts on Agriculture. *Rev Env Econ Policy* **11**, 258–279 (2017).

150 4. Lobell, D. B. & Asseng, S. Comparing estimates of climate change impacts from
151 process-based and statistical crop models. *Environ Res Lett* **12**, 015001 (2017).

152 5. Hoffman, A. L., Kemanian, A. R. & Forest, C. E. Analysis of climate signals in the
153 crop yield record of sub-Saharan Africa. *Global Change Biol* **24**, 143–157 (2018).

154 6. Leng, G. & Hall, J. W. Predicting spatial and temporal variability in crop yields: an
155 inter-comparison of machine learning, regression and process-based models. *Environ Res
156 Lett* **15**, 044027 (2020).

157 7. Jeong, J. H. *et al.* Random Forests for Global and Regional Crop Yield Predictions.
158 *Plos One* **11**, e0156571 (2016).

159 8. Crane-Droesch, A. Machine learning methods for crop yield prediction and climate
160 change impact assessment in agriculture. *Environ Res Lett* **13**, 114003 (2018).

161 9. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages
162 to U.S. crop yields under climate change. *Proc National Acad Sci* **106**, 15594 (2009).

163 10. Hsiang, S. *et al.* Estimating economic damage from climate change in the United
164 States. *Science* **356**, 1362–1369 (2017).

165 11. Diffenbaugh, N. S., Hertel, T. W., Scherer, M. & Verma, M. Response of corn
166 markets to climate volatility under alternative energy futures. *Nat Clim Change* **2**, 514–
167 518 (2012).