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1 Supplementary Materials and Methods

1.1 Sampling and voucher information

Boletus edulis specimens were gathered from a global distribution using a
combination of targeted field collection and through institutional loans from
fungaria in North America, Asia, and Europe. Full collection and voucher
details are presented in Table S1. No specimen collected prior to 1950 was
sampled to maximise DNA library integrity and minimize an effect of time
on population stratification. In addition, specimens of the sister group to B.
edulis, Boletus reticuloceps, and two other members of the ”porcini” clade,
Boletus variipes and Boletus barowsi, were included as outgroups [1].

1.2 DNA extraction, library preparation, and sequencing

Genomic DNA was extracted from 10mg of hymenophore tissue from each
specimen using the Monarch gDNA extraction kit. DNA extract quality was
assessed for quality using a NanoDrop 1000 (Thermo Scientific) and frag-
ment integrity using agarose gel electrophoresis. Ssmples were sequenced
using a combination of paired-end sequencing on the Illumina MiSeq, HiSeq,
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and Novaseq sequencing platforms (Table S2). A highly contiguous reference
genome for subsequent variant calling was produced using the MaSuRCA
v3.3.1 [2] hybrid-assembly approach using Illumina HiSeq short-read and
Oxford Nanopore long-read sequences from the specimen BD747 collected in
the Uinta Mountains in Utah, USA. See [3] for full details.

1.3 Genome assembly and phylogenomics

Raw sequencing reads were quality-filtered and adapter-trimmed using
fastP v0.20.1 [4] with default settings. Genome assemblies were produced
from quality-filtered reads using SPAdes v3.15.0 [5] with five k-mer values
(k=77,85,99,111,127). In addition, we included a publicly-available assembly
from Pazillus involutus [6]retrieved from the JGI Mycocosm Portal [7] as the
outgroup. From these assemblies we used exonerate v2.2.0 [8] to extract 702
single-copy orthologs conserved across the Boletales identified by the Boletales
MCL clustering in Mycocosm. Retained orthologs were aligned using MAFFT
v7.397 [9] with the L-INS-i algorithm, and maximum-likelihood gene-trees were
produced using IQ-TREE v2.0.3 [10] with automatic model selection in Mod-
elFinder [11] and ultrafast bootstrapping [12] with 1000 replicates. Gene trees
with poor support (BSj=10%) were removed before generating a summary coa-
lescent species tree using ASTRAL-III v5.7.5 [13]. The ” Boletus edulis” group
was defined by the monophyletic group sharing a most recent common ances-
tor with Boletus reticuloceps, and geographically monphyletic genetic clusters
within B. edulis were identified as distinct lineages. To date the divergence of
the B. edulis geographic lineages, we utilized the multiple-species-coalescent
model within the Bayesian platform StarBEAST?2 [14] using an estimated 100
MYA (95% CI = 70-150 mya) divergence date for the Boletaceae [15]. To esti-
mate divergence times using a manageable dataset, a matrix was composed
of two arbitrarily selected, but geographically different, representatives from
each B. edulis lineage, with B. reticuloceps, B. variipes, and P. involutus as
outgroups. Twenty of the 702 single-copy genes were randomly selected and
putative orthologs of these genes in each genome were aligned in MAFFT,
as above. Best-clock models were automatically chosen with bModelTest, site
models were set to all-reversible, and an a prior: initial clock rate of 0.001 was
chosen based on estimated mutation rates in related taxa [16]. The MCMC
chain was run for 107 cycles and all parameters reached acceptable convergence
based on ESS values ; 200. The final tree was produced using Tree-Annotator
with an empirically determined burn-in (10%).

1.4 Gene annotation of BD747 reference sequence

To improve gene prediction accuracy and model training, we extracted total
RNA from BD747 hymenophore tissue using TRI Reagent®) (Sigma-Aldrich)
following the manufacturer’s instructions. Short-read mRNA enrichment,
library prep, and paired-end sequencing was performed by Novogene USA.
Full-length ¢cDNA was sequenced on a single Oxford Nanopore Technologies
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R9.4 flow cell in a MinION device after mRNA enrichment and library prepa-
ration using a Direct cDNA Sequencing Kit (SQK-DCS109) following the man-
ufacturer’s protocols. The Funannotate v1.8.6 (funannotate.readthedocs.io)
genome annotate wrapper script was used for gene prediction of BD747 accord-
ing to best practices. In brief, short-read DNA/RNA and long-read ¢cDNA
were used to first create a PASA training model, which is utilized to guide
Augustus gene-prediction with assembled mRNA transcript evidence. Func-
tional annotation of predicted genes utilizes InterProScanb, Eggnog-Mapper
v2.0.8, dbCAN2, SignalP v5.0, and antiSMASH v6.

1.5 Variant calling and SNP filtering

Quality filtered reads were mapped to our B. edulis reference BD747, using
Bowtie2 v2.2.6 [17]. Variant calling was performed with GATK v4.20 [1§]
using their best practices for non-model organisms. To retain only high confi-
dence variants, positions with ;5% missing data, a minimum allele count of 2,
and min/max mean read depth of 10 and 75, respectively, were removed with
VCFtools v0.1.15 [19]. After this confidence filtering, we then removed any
individual with more than 30% missing data to prevent spurious assignments
to population due to limited information. Some variant statistical analyses
such as PCA and admixture require independent observations, therefore we
used PLINK v1.9 [20] to prune out SNPs in high linkage-disequilibrium (r? ;
0.2, 50KB windows, 10BP step) to create a secondary LD-pruned dataset.

1.6 Population structure analyses

To identify overlap between phylogenomic B. edulis lineages and population
structure we performed an initial PCA with our LD-pruned dataset using the
R package adegenet v2.1.3. To identify sub-population structure of B. edulis
lineages, PCAs and Neighbor-Joining trees were produced for each lineage.
Ancestry admixture analysis was performed with the snmf function of the R
package LEA v3.2.0 [21] on the LD-pruned dataset using sites with no missing
values, K values 4-8, and 10 runs per K. The run with the lowest cross-entropy
for each K was selected for final admixture assessment. Population summary
statistics for each lineage were calculated using the non-LD pruned dataset in
the R package PopGenome v2.7.5 across the top 100 largest genomic scaffolds.
Pairwise Fg(, and Dy, were calculated across 10KB non-overlapping windows
using the program PIXY (v1.2.2) [22] which facilitates the use of invariant sites
to compensate for missing data which is critical for accurate assessments of
D(xy)- Nucleotide diversity across synonymous and nonsynonymous sites was
calculated across all genes on scaffold-1 using the program SNPGenie [23]. To
determine if differentiation was limited to non-coding regions, we limited our
dataset to include only genic regions and identified the number of highly dif-
ferentiated genes for each population (Ft vs. all ; 0.75). To verify the presence
of gene flow between lineages/populations we identified the strength of intro-
gression between groups by calculating Patterson’s D statistic (ABBA-BABA)
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using the Dsuite command line package [24] on all phylogeny-compatible quar-
tets. LD decay of each lineage was assessed using pairwise R2 values produced
with VCFtools across 50,000 Bp windows across the 1.6 Mbp scaffold_1.

1.7 Local adaptation analysis

To identify highly divergent loci that may represent instances of local adap-
tation, we utilized a two part analysis that identified highly divergent genes
containing putative locally adapted SNPs in lineages of B. edulis. First, we cal-
culated pairwise Fst and D(zy) statistics with PIXY using only genic regions
in our all-sites filtered dataset (Fig S1). We then calculated the average pair-
wise Fit and D(xy) for each gene and for each population. Our final dataset
of highly divergent loci included genes that were in the top 5% of both Fit
and Dry). To identify divergent loci that have significant signatures of local
adaptation we used the program PCAdapt [25] to identify single putative
SNPs within our LD-pruned dataset. We used a K value of K=3 according to
proscribed practices as this represented the first plateau identified in a scree
plot (Fig. S9), and performed Bonferroni correction (alpha=0.01) to produce a
high-confidence dataset. We then used a custom script to identify highly diver-
gent loci that contained SNPs with significant signatures of local adaptation
(pj0.05).

1.8 Isolation by distance/environment and ecological
niche modeling

To identify the environmental forces that may be contributing to population
and phylogenetic divergence we identified BioClim variables that significantly
associated with 1) population clustering based on Principle Component Anal-
ysis, 2) putative locally adaptive SNPs using Genetic by Environmental
Analysis, and 3) phylogenetic distance between tips across our single-copy
orthologue phylogeny. First, we used the R pacakge gdalUtils to identify the
19 BioClim variables at a 30 second scale for each specimen based on their
collection location.

To identify signatures of isolation by distance (IBD) and isolation by envi-
ronment (IBE) we used Multiple Matrix Regression to assess the correlation
between geographic, environmental, and genetic distance matrices as well as
the interaction between Geographic and Environmental distance. Geographic
distances were calculated using GPS coordinates and the dist() function of base
R. The 19 Bioclim variables for each individual were plotted using principle
component analyses, then Euclidean distances between individuals on the PCA
were calculated using the pca2dist function of the R package APE and stored
as a final environmental distance matrix. We used two methods to calculate
genetic distances: 1) absolute genetic distances using the dist.gene function in
ape and 2) first using PCA clustering and then calculating Euclidean distances
between individuals, similar to how we calculated environmental distances.
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To identify whether current distributions of B. edulis populations represent
distinct ecological niches we used the Maxent v3.4.1 [26] program to model
the potential niche distribution likelihoods of all B. edulis lineages based on
historic (1970-2000) environmental conditions as determined by the 19 BioClim
variables. Default settings were used with 100 replicates and a . In addition,
we reran this analysis on a second dataset of the 19 Bioclim variables produced
from models of environmental conditions during the last glacial maximum
approximately 22,000 years ago.

1.9 Demographic modeling

To understand the demographic history of the B. edulis lineages we simulated
five different two-population demographic scenarios (Fig 5) and compared
these models to two empirical datasets of sister lineages: Westcoast/Colorado
and Alaska/Eastcoast. Our specific models are 1) isolation without migration,
2) ancient gene flow followed by isolation, 3) isolation followed by recent gene
flow (secondary contact), 4) continuous gene flow after divergence, and 5) dif-
ferential gene flow as reproductive barriers form (high then low). Empirical
datasets consisted of 2-D unfolded site frequency spectra between each lineage
pair produced using easySFS. Models were implemented using fastsimcoal2
v2.6.0.3 [27]. Each model was run for 200,000 simulations across 50 iterations
and rerun 100 times. We used the Akaike information criterion to determine
the best run for each model. To find the best model for each pair of sister taxa,
we reran each model using the parameters determined in the best run 100
times and compared the distribution of likelihoods between all five models.
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Fig. 2 Concatenated supermatrix phylogenomic analysis using the 702 conserved single
copy dataset. Node labels represent bootstrap support.
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Fig. 3 Population structure of B. edulis lineages assessed with top) principle component
analysis (PCA) using the first two principle components, and bottom) neighbor-joining tree
with tips colored based on results from PCA. The siz lineages recovered from phylogenomic
and admizture analysis were also recovered in these assessments.
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Fig. 4 Stacked admixture analysis performed with the R package LEA for K=4 through
K=8. At K=4 and K=5 the Ak lineage is clustered with the EC and EU lineages, indicating
recent admixture within these lineages. At high vales of K (K;6) the 6 lineages are surpris-
ingly still retained, with only one or two individuals being segregated into new clusters. This
further indicates little lineage substructure.
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Fig. 5 Principle component analysis and neighbor-joining trees of within lineage population
for all 6 lineages identified. Little within-lineage substructure is found outside of the AK

lineage.
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Fig. 6 Divergence date estimation using StarBEAST2 and 20 randomly selected loci from
the 702 single copy dataset. All parameters reached ESS ; 200 which indicates adequate

convergence.
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Fig. 7 A) Tajima’s D statistic calculated with VCFTOOLS. The EU lineage exhibits a sig-
nificantly (Pj 0.05) lower, negative D value, possibly indicating rapid population expansion.
B) Pairwise population F(st) calculated with PIXY across only genic regions. High F(st)
values for most comparisons indicate that divergence is genome-wide and not relegated to
genomic regions of low selective constraint such as intergenic regions.
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Fig. 8 QQplot distributions of 10kb window pairwise F(st) values. Ongoing gene-flow
can reduce genome-wide differentiation around all but select ”divergence islands” under
divergent-selection. The cessation of gene-flow relaxes genomic homogenization, allowing
divergence to accumulate in all but the most-conserved loci. All pairwise comparisons except
AK/EC have distributions that can indicate minimal ongoing geneflow, increased abun-
dance than expected of loci with little divergence due to high conservation. AK/EC have an
increased abundance than expected of highly diverged loci, indicating genomic divergence
islands.
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Fig. 9 Results of genome-wide outlier analysis to identify divergence loci. Top) The number
of highly divergence loci, in top 1% of divergence of all loci, found within each population.
Middle) Scree plot produced by PCAdapt indicating the proportion of variance explained
by K principle components. K=3 was selected according to proscribed protocol as this rep-
resented the first "knee” plateau, potentially representing the three branches within the B.
edulis phylogeny. Bottom) Manhatttan plot produced by PCAdapt indicating the signifi-
cance of putative locally-adapted loci.
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Fig. 10 Environmental coorelation analysis of B. edulis lineages using A) 19 Bioclim values
extracted for the location of each specimen and assessed using PCA, B) Biplot of 19 Bioclim
variables indicating that Bio4 is primary variable contributing to variation between speci-
mens, C) Contribution of Bioclim variables to each lineage Maxent ecological niche model.
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Fig. 11 Jacknife contributions of each Bioclim variable to the AUC of the AK ecological
niche model for left) current conditions and right) conditions during the last glacial maximum

(22Kya).
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Fig. 12 Jacknife contributions of each Bioclim variable to the AUC of the BC ecological
niche model for left) current conditions and right) conditions during the last glacial maximum

(22Kya)
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Fig. 13 Jacknife contributions of each Bioclim variable to the AUC of the CO ecological

niche model for left) current conditions and right) conditions during the last glacial maximum
(22Kya)
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Fig. 14 Jacknife contributions of each Bioclim variable to the AUC of the EC ecological

niche model for left) current conditions and right) conditions during the last glacial maximum
(22Kya)
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Fig. 15 Jacknife contributions of each Bioclim variable to the AUC of the EU ecological

niche model for left) current conditions and right) conditions during the last glacial maximum
(22Kya)
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Fig. 16 Jacknife contributions of each Bioclim variable to the AUC of the EC ecological

niche model for left) current conditions and right) conditions during the last glacial maximum
(22Kya)
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