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Supplementary Figure 1. High-pressure XRD results of single-crystal Fe10-Al14-Bgm. a is the collected original XRD image on single-crystal Fe10-Al14-Bgm in a CCD camera at ~76 GPa and 300 K and b is the corresponding integrated pattern.  In a, diffraction peaks from the sample are marked with a small rectangle, and signals from neon pressure medium and diamonds are labeled with “neon” and “D”, respectively. Analyses of the XRD pattern indicate the loaded platelet has a crystallographic orientation of (-0.50, 0.05, -0.86). In b, Miller indices (hkl) of bridgmanite are labeled close to diffracted peaks. Average FWHM of these peaks are ~0.06°. Insert in b is a zoom-in region circled by a red rectangle in a, showing nice and round diffraction peaks. c shows unit cell volume of single-crystal Fe10-Al14-Bgm at high pressure and 300 K. Solid red circles are collected data of Fe10-Al14-Bgm in this study and red line is the best fit using third-order Birch-Murnaghan EoS. Black and blue lines are literature results on end member MgSiO3 bridgmanite4 and (Al,Fe)-bearing bridgmanite5 with a composition of Mg0.89Fe2+0.024Fe3+0.096Al0.11Si0.89O3 (Fe12-Al11-Bgm), respectively. The insert shows derived error ellipses of K0T and K′0T at the ±1σ level. The wavelength of incident X-ray beam is 0.3344 Å.
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Supplementary Figure 2. Sound velocities of single-crystal Fe10-Al14-Bgm as a function of azimuthal chi angles at high pressure. a, 25.0 GPa. b, 54.4 GPa. c, 82.0 GPa. Black and red circles are experimentally measured sound velocities of two platelets with crystallographic orientations of (-0.50, 0.05, -0.86) and (0.65, -0.59, 0.48), respectively. Lines are the best fits to derive the full elastic tensor using Christoffel’s equations2. The two perpendicularly polarized shear wave velocities, VS2 and VS1, are plotted as solid and dashed lines for distinguishing.
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Supplementary Figure 3. Single-crystal elastic moduli of lower-mantle bridgmanite as a function of pressure. Solid red circles are derived results of single-crystal Fe10-Al14-Bgm in this study, and solid red lines are the best fits using a finite-strain theory6. Literature results on bridgmanite with different compositions are plotted for comparisons. Dahsed black7, red3, blue8 lines are from ab initio calculations for MgSiO3 bridgmanite. Symbols are from experimenal measurements. Solid orange and blue circles1: Fe6-Al4-Bgm and Fe12-Al11-Bgm; open black circles9: Fe10-Al10-Bgm; solid olive circles: recalculated results by Lin et al.10 using velocity data of Kurnosov et al.9; open blue square11: MgSiO3 bridgmanite; solid black circles12: MgSiO3 bridgmanite. All experimental results are determined from BLS measurements except Fukui et al.12, which used inelastic x-ray scattering. Errors are smaller than symbols when not shown.
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Supplementary Figure 4. Elastic properties of bridgmanite with different Fe and Al contents at high pressure and 300 K. a, ρ. b, KS. c, μ. d, Δρ/ρ. e, ΔKS/KS. f, Δμ/μ. Symbols are experimental data in the literature4,5,15-21 and this study, and solid lines with corresponding colors are the best fits using third-order finite-strain equations6 that take Fe and Al effects into account. Particularly, solid red circles are single-crystal Fe10-Al14-Bgm data in this study. Legend in a is only for density data, whereas legends in b and c are shared for KS and μ. Uncertainties are smaller than symbols when not shown.
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Supplementary Figure 5. Modeling on thermoelastic properties of ferropericlase at high P-T. a is density of ferropericlase with different Fe contents at high pressure and 300 K, while b-d are high P-T data. In a, symbols are experimental data22-27, and solid lines with corresponding colors are the best fits using Birch-Murnaghan EoS. A linear Fe effect on the density of ferropericlase is assumed. Detailed references are shown in the legend, in which numbers in parentheses right after “fp” indicate its Fe content in molar per cent. In b-d, symbols are high P-T elastic data of MgO (ref. 28), (Mg0.94Fe0.06)O (ref. 23), and (Mg0.75Fe0.25)O (ref. 27), and solid lines are the best fits using the fully internally-consistent thermoelastic model. Theoretical calculations29 on (Mg0.8125Fe0.1875)O ferropericlase are plotted as dashed black (300 K) and olive (2000 K) in d for comparisons. Uncertainties are smaller than symbols when not shown.
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Supplementary Figure 6. Modeling on thermoelastic parameters of CaSiO3 perovskite at high P-T. a and b-c show high P-T elastic moduli (KS and µ) and density of CaSiO3 perovskite, respectively.  Solid symbols in a and b are data from Gréaux et al.30, and solid lines are the best fits. Open circles in a and b are data from Thomson et al.31, which shows much lower shear moduli than those from Gréaux et al.30 and are not included in our fitting. c is thermal EoS of CaSiO3 perovskite32 up to 150 GPa and 2200 K, which is consistent with those by Gréaux et al.30 and is inclueded in our constraints. Dashed33 and dotted34 lines are results from theoretical calculations at 2000 K. Uncertainties are smaller than symbols when not shown.
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Supplementary Figure 7. Sensitivity of modeled high P-T VP, VS, and ρ of (Al,Fe)-bearing bridgmanite to variations of thermoelastic parameters. a, ηS0. b, θ0. c, q0. d, γ0. e, T. Fe and Al contents in bridgmanite along a geotherm are fixed as 10 mol% and 10 mol%, respectively, as a representative analysis. Reference values of these four parameters are taken based on analyses of literature experimental high P-T data3,6,35,36 and benchmarking from ab initio calculations3 (Supplementary Table 6). Perturbations of ±20%, ±30%, ±50%, ±40%, and ±10% are given to ηS0, θ0, q0, γ0, and T, respectively, to cover their upper and lower bounds reported in the literature3,6,35,36. Variations in VP, VS, and ρ profiles are typically less than 0.6% with the given perturbations. Theoretical calculations3 for MgSiO3 bridgmanite at 2000 K are plotted for comparisons. 
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Supplementary Figure 8. Velocity variations due to the frequency dependence of seismic attenuation as a function of the parameter τ. Experimentally-measured velocities of bridgmanite and ferropericlase using BLS and ISLS are in GHz frequency range, while seismic observations have frequencies on the order of Hz. According to the literature37, calculations show that velocity variations due to attenuation from GHz to Hz are ~0.3% with the parameter τ as ~0.3, shown as the shaded orange area.







[image: ]
[bookmark: _Hlk49611763]Supplementary Figure 9. Lower-mantle mineralogy based on the best fits to PREM. a-f show the best fits by using varied KD with depth38, and g-i are the best fits with fixed KD as ~0.44.  a, Fe partitioning coefficient (KD) between bridgmanite and ferropericlase as a function of depth from the literature38,39. Dashed black line is from experimental constraints38, which is used in our best-fit model, and shaded orange area is from a theoretical report40. b and c, Variations of Fe and/or Al contents in bridgmanite and ferropericlase with depth. d, VP, e, VS, and f, ρ of individual minerals along an adiabatic geotherm with varied KD with depth38 (refer to Figs. 2-3). g, VP, h, VS, and i, ρ of individual minerals along an adiabatic geotherm with fixed KD as ~0.44. Velocity and density profiles of (Al,Fe)-bearing bridgmanite, ferropericlase, and Ca-perovskite are plotted as solid black, olive, and blue lines, respectively. PREM profiles41 are plotted as open circles. The value of KD affect little on our conclusion that the lower mantle is bridgmanite-predominant (Supplementary Table 6, and Supplementary Fig. 13).
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Supplementary Figure 10. Trade-offs between volume and compositional parameters on deriving the lower-mantle mineralogy and adiabatic geotherm. a, Contents of bridgmanite versus CaSiO3 perovskite. b, Total Fe content versus content of CaSiO3 perovskite. Pink circles are our best-fit model, which uses changing KD with depth38. Blue, red, and gray circles are results with fixed KD of 0.44, 0.74, and 0.33, respectively (Supplementary  Table 7). These KD values are chosen to cover its range of literature reports38. 
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[bookmark: _Hlk49710426]Supplementary Figure 11. Modeling on thermoelastic parameters of transition-zone minerals at high P-T. a-b and c-d are modeling for (Mg0.91Fe0.09)2SiO4 ringwoodite42 and majoritic garnet43 with a composition of pyrolite minus olivine, respectively. Solid circles are experimental high P-T data from the literature42,43, and solid lines are the best fits using the fully internally-consistent thermoelastic model6. a and b share the legend, and c and d share the legend. Uncertainties are smaller than symbols when not shown.
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Supplementary Figure 12. Velocity and density profiles across the 660-km discontinuity. Dashed black41 and red44 lines are from 1D seismic profiles. Solid circles are mineral physics models for a chemically homogeneous whole mantle. Three candidate whole-mantle compositional models are considered. Black circles: peridotite45 with ~80 vol% ringwoodite and ~20 vol% majoritic garnet (Mg/Si=~1.5); red circles: pyrolite46 with ~60 vol% ringwoodite and ~40 vol% majoritic garnet (Mg/Si=~1.25); olive circles: piclogite47,48 with ~20 vol% ringwoodite and ~80 vol% majoritic garnet (Mg/Si=~0.9). Thermoelastic parameters for high P-T modeling of majoritic garnet and ringwoodite are derived from refits to literature data42,43 using the thermoelastic model6 (Supplementary Table 6 and Supplementary Fig. 14). The gradual transformation of majoritic garnet at high P-T is taken from the literature49. Vertical black ticks show representative standard uncertainties (±1σ) of modeled VP, VS, and ρ of mineral aggregates. 
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Supplementary Figure 13. Lower-mantle bulk viscosity as a function of volume fraction of ferropericlase. Viscosities of bridgmanite and ferropericlase are shown as shaded blue and green areas, respectively, from the literature50. Solid and dashed lines represent modeled lower-mantle viscosities using “inter-connected weak layers” (IWL) and “load bearing framework” (LBF) models51, respectively. Solid red and olive circles show estimated viscosities for a bridgmanite-predominant and pyrolitic lower mantle, respectively.

Supplementary Table 1. Lattice parameters and unit cell volume of single-crystal Fe10-Al14-Bgm at high pressure.
	Au
	Fe10-Al14-Bgm

	Pressure (GPa)
	a (Å)
	a (Å)
	b (Å)
	c (Å)
	V (Å3)

	ambient
	
	4.7875(2)
	4.9423(2)
	6.9205(2)
	163.75(1)

	4.3(1)
	4.0463(3)
	4.7601(2)
	4.9122(2)
	6.8873(2)
	161.04(1)

	5.9(1)
	4.0348(3)
	4.7526(2)
	4.9056(2)
	6.8776(2)
	160.35(1)

	7.4(1)
	4.0253(3)
	4.7375(2)
	4.9029(2)
	6.8544(2)
	159.21(1)

	9.0(1)
	4.0151(3)
	4.7282(2)
	4.8971(2)
	6.8410(2)
	158.40(2)

	10.4(1)
	4.0064(3)
	4.7244(2)
	4.8868(2)
	6.8269(3)
	157.62(2)

	12.8(1)
	3.9930(3)
	4.7131(2)
	4.8805(2)
	6.8099(3)
	156.64(2)

	14.8(1)
	3.9820(3)
	4.7023(3)
	4.8745(2)
	6.7969(3)
	155.79(2)

	16.1(1)
	3.9750(3)
	4.6967(3)
	4.8638(2)
	6.7845(3)
	154.98(2)

	17.1(1)
	3.9701(3)
	4.6952(3)
	4.8599(2)
	6.7782(3)
	154.67(2)

	18.3(1)
	3.9640(3)
	4.6897(3)
	4.8538(2)
	6.7720(3)
	154.15(2)

	19.6(1)
	3.9573(3)
	4.6821(3)
	4.8483(2)
	6.7640(3)
	153.54(3)

	19.8(1)
	3.9564(3)
	4.6812(3)
	4.8455(2)
	6.7605(3)
	153.35(3)

	21.9(1)
	3.9464(3)
	4.6744(3)
	4.8403(3)
	6.7436(3)
	152.58(3)

	22.9(1)
	3.9418(3)
	4.6678(3)
	4.8357(3)
	6.7390(3)
	152.11(3)

	25.3(1)
	3.9313(3)
	4.6623(3)
	4.8143(3)
	6.7239(3)
	150.92(3)

	26.8(1)
	3.9249(3)
	4.6562(3)
	4.8113(3)
	6.7136(4)
	150.40(4)

	27.6(2)
	3.9217(4)
	4.6485(3)
	4.8034(3)
	6.7061(4)
	149.74(4)

	29.2(2)
	3.9150(4)
	4.6406(3)
	4.7962(3)
	6.6985(4)
	149.09(4)

	30.8(2)
	3.9086(4)
	4.6316(3)
	4.7906(3)
	6.6894(4)
	148.42(4)

	32.1(2)
	3.9036(5)
	4.6364(3)
	4.7873(3)
	6.6709(4)
	148.06(4)

	33.8(2)
	3.8969(6)
	4.6143(3)
	4.7812(3)
	6.6660(4)
	147.06(5)

	35.1(2)
	3.8920(6)
	4.6204(4)
	4.7689(3)
	6.6555(4)
	146.65(5)

	37.3(2)
	3.8840(6)
	4.5977(4)
	4.7574(3)
	6.6488(5)
	145.50(5)

	38.6(3)
	3.8797(7)
	4.5989(4)
	4.7566(3)
	6.6374(5)
	145.19(5)

	40.3(3)
	3.8736(8)
	4.5913(4)
	4.7502(3)
	6.6246(5)
	144.48(5)

	42.4(3)
	3.8664(9)
	4.5813(4)
	4.7412(3)
	6.6110(5)
	143.59(5)

	43.9(3)
	3.8617(9)
	4.5848(4)
	4.7477(3)
	6.5905(5)
	143.46(6)

	45.2(4)
	3.857310)
	4.5800(4)
	4.7424(4)
	6.5850(5)
	143.03(6)

	47.6(4)
	3.8498(10)
	4.5676(4)
	4.7356(4)
	6.5691(5)
	142.09(6)

	49.4(4)
	3.8443(10)
	4.5645(4)
	4.7286(4)
	6.5622(5)
	141.64(6)

	50.8(4)
	3.8398(11)
	4.5562(5)
	4.7266(4)
	6.5574(5)
	141.22(6)

	52.7(4)
	3.8344(10)
	4.5494(5)
	4.7102(4)
	6.5396(6)
	140.13(6)

	54.8(4)
	3.8281(11)
	4.5464(5)
	4.7109(4)
	6.5382(6)
	140.03(6)

	56.9(5)
	3.8222(11)
	4.5358(5)
	4.7042(4)
	6.5410(6)
	139.57(6)

	58.4(5)
	3.8181(11)
	4.5236(5)
	4.7000(4)
	6.5314(6)
	138.86(7)

	59.9(5)
	3.8141(11)
	4.5225(6)
	4.6956(4)
	6.5266(6)
	138.60(7)

	61.5(5)
	3.8097(11)
	4.5172(6)
	4.6938(5)
	6.5205(6)
	138.26(7)

	63.1(5)
	3.8053(11)
	4.5080(6)
	4.6910(5)
	6.5163(6)
	137.80(7)

	65.7(4)
	3.7987(10)
	4.4973(6)
	4.6823(5)
	6.5091(6)
	137.07(7)

	67.0(5)
	3.7954(10)
	4.4877(6)
	4.6814(5)
	6.5046(6)
	136.66(7)

	68.9(5)
	3.7907(10)
	4.4701(6)
	4.6766(5)
	6.4994(7)
	135.87(7)

	71.1(5)
	3.7853(11)
	4.4719(6)
	4.6700(5)
	6.4887(7)
	135.51(7)

	72.6(5)
	3.7816(11)
	4.4567(6)
	4.6661(5)
	6.4810(7)
	134.78(7)



Supplementary Table 2. Specific heat capacity of polycrystalline ferropericlase and bridgmanite at ambient pressure
	T
(K)
	CP (J/mol/K)
	T
(K)
	CP (J/mol/K)
	T
(K)
	CP (J/mol/K)
	T
(K)
	CP (J/mol/K)

	 Fe-bearing Bridgmanite 
(Mg0.96Fe0.05Si0.99O3)
	Ferropericlase
(Mg0.8Fe0.2O)

	2.11
	0.06
	101.71
	18.16
	201.42
	55.21
	307.48
	39.26

	5.06
	0.08
	104.74
	19.30
	204.44
	56.22
	312.53
	39.63

	8.07
	0.10
	107.76
	20.45
	207.44
	57.31
	317.56
	39.95

	11.10
	0.14
	110.79
	21.41
	210.46
	58.22
	322.60
	40.25

	14.12
	0.19
	113.81
	22.45
	213.49
	59.01
	327.64
	40.54

	17.15
	0.25
	116.83
	23.57
	216.51
	59.79
	332.67
	40.83

	20.17
	0.31
	119.86
	24.78
	219.53
	60.82
	337.72
	41.07

	23.19
	0.37
	122.88
	25.95
	222.55
	61.76
	342.76
	41.27

	26.21
	0.46
	125.91
	27.16
	225.65
	62.21
	347.80
	41.59

	29.23
	0.57
	128.92
	28.35
	228.60
	63.19
	352.82
	41.86

	32.25
	0.73
	131.94
	29.49
	231.61
	64.25
	357.85
	42.09

	35.26
	0.93
	134.97
	30.68
	234.63
	65.37
	362.86
	42.31

	38.28
	1.19
	137.97
	32.09
	237.65
	66.29
	367.90
	42.50

	41.30
	1.51
	141.01
	33.05
	240.68
	67.02
	372.88
	42.75

	44.32
	1.89
	144.03
	34.19
	243.69
	67.73
	377.90
	42.94

	47.34
	2.33
	147.06
	35.35
	246.71
	68.35
	382.93
	43.15

	50.37
	2.83
	150.08
	36.50
	249.73
	68.95
	387.94
	43.33

	53.39
	3.41
	153.11
	37.67
	252.75
	69.68
	392.96
	43.49

	56.41
	4.03
	156.13
	38.82
	255.77
	70.37
	398.01
	43.65

	59.43
	4.71
	159.16
	39.99
	258.78
	71.05
	
	

	62.44
	5.43
	162.16
	41.16
	261.80
	71.75
	
	

	65.46
	6.21
	165.18
	42.29
	264.82
	72.47
	
	

	68.49
	7.03
	168.20
	43.43
	267.83
	73.11
	
	

	71.51
	7.89
	171.22
	44.54
	270.85
	73.71
	
	

	74.53
	8.77
	174.22
	45.84
	273.87
	74.18
	
	

	77.56
	9.71
	177.24
	46.96
	276.88
	74.68
	
	

	80.58
	10.68
	180.25
	48.05
	279.88
	75.31
	
	

	83.60
	11.70
	183.27
	49.10
	282.89
	76.37
	
	

	86.62
	12.71
	186.29
	50.17
	285.89
	77.78
	
	

	89.64
	13.73
	189.32
	51.24
	288.90
	78.38
	
	

	92.66
	14.81
	192.34
	52.23
	291.91
	80.08
	
	

	95.68
	15.90
	195.37
	53.24
	294.93
	79.17
	
	

	98.71
	17.01
	198.39
	54.26
	297.96
	78.34
	
	




Supplementary Table 3. Elastic moduli of single-crystal Fe10-Al14-Bgm at high pressures. Errors in parentheses are standard deviation (±1σ) from error propagation analyses.
	Pressure (GPa)
	25.0(3)
	35.0(5)
	45.0(5)
	54.4(6)
	65.8(8)
	70.4(7)
	76.0(9)
	82.0(14)

	C11 (GPa)
	542(9)
	596(15)
	654(15)
	693(16)
	743(16)
	760(15)
	773(17)
	800(23)

	C22 (GPa)
	653(3)
	697(5)
	740(4)
	791(5)
	829(4)
	852(5)
	860(6)
	868(8)

	C33 (GPa)
	598(9)
	636(13)
	687(14)
	744(15)
	793(14)
	839(16)
	895(18)
	922(22)

	C44 (GPa)
	207(2)
	223(3)
	246(2)
	256(3)
	276(2)
	279(3)
	295(5)
	306(6)

	C55 (GPa)
	213(5)
	221(7)
	235(6)
	242(6)
	246(7)
	250(9)
	249(10)
	258(12)

	C66 (GPa)
	235(3)
	253(3)
	270(3)
	285(4)
	299(3)
	303(4)
	311(4)
	316(5)

	C12 (GPa)
	162(5)
	186(3)
	198(5)
	204(6)
	218(5)
	225(6)
	227(6)
	229(5)

	C13 (GPa)
	192(4)
	212(6)
	224(6)
	250(5)
	245(5)
	264(7)
	278(8)
	280(9)

	C23 (GPa)
	225(5)
	247(8)
	260(8)
	290(12)
	329(10)
	340(13)
	376(14)
	390(20)

	KS 
(GPa)
	326(4)
	356(5)
	382(6)
	412(6)
	437(8)
	455(8)
	473(9)
	485(11)

	µ
 (GPa)
	211(2)
	224(2)
	242(2)
	254(2)
	268(3)
	273(3)
	279(4)
	287(5)

	ρ (g/cm3)
	4.56(1)
	4.71(1)
	4.83(1)
	4.94(2)
	5.05(2)
	5.10(2)
	5.16(2)
	5.21(3)

	VP (km/s)
	11.52(8)
	11.80(8)
	12.08(10)
	12.33(11)
	12.54(12)
	12.67(13)
	12.79(14)
	12.90(16)

	VS (km/s)
	6.79(4)
	6.90(4)
	7.09(5)
	7.18(5)
	7.28(5)
	7.32(5)
	7.35(6)
	7.42(6)











Supplementary Table 4. Pressure derivatives of Cij for single-crystal Fe10-Al14-Bgm at ambient conditions using a finite-strain theory.
	ij
	Cij0 (GPa)
	C’ij0
	
	M0 (GPa)
	M’0

	11
	425(13)
	5.75(9)
	Vogit bound

	22
	538(6)
	5.64(14)
	KVS0
	245.5(27)
	3.56(6)

	33
	425(18)
	6.88(28)
	µVS0
	170.7(13)
	1.90(2)

	44
	159(3)
	2.15(6)
	Reuss bound

	55
	187(5)
	1.41(5)
	KRS0
	245.8(17)
	3.50(4)

	66
	195(2)
	2.02(4)
	µRS0
	170.0(15)
	1.87(2)

	12
	134(4)
	1.62(7)
	Voigt-Reuss-Hill average

	13
	151(6)
	1.97(10)
	KVRHS0
	245.7(30)
	3.53(5)

	23
	140(8)
	3.17(12)
	µVRHS0
	170.4(14)
	1.88(2)


















Supplementary Table 5. Comparisons of bulk and shear moduli of bridgmanite and their pressure derivatives at room temperature
	Brillouin Light Scattering
	Composition
	KS0 (GPa)
	μ0 (GPa)
	K′S0
	μ′0

	This study
	Mg0.93Fe3+0.048Fe2+0.032Al0.10Si0.90O3
	248(4)
	164(2)
	3.69(8)
	1.85(6)

	Fu et al.52
	Mg0.96(1)Fe2+0.036(5)Fe3+0.014(5)Si0.99(1)O3 (<42.6 GPa)
	254(8)
	166.2(5)
	3.3(3)
	1.91(2)

	Fu et al.52
	Mg0.96(1)Fe2+0.036(5)Fe3+0.014(5)Si0.99(1)O3 (> 58 GPa)
	234(11)
	190.0(7)
	3.5(4)
	1.54(11)

	Jackson et al.18
	Al-Bgm (5.1 wt.% Al2O3)
	252(5)
	165(2)
	3.7(3)
	1.7(2)

	Murakami et al.20
	MgSiO3
	
	172.9(2)
	
	1.56(4)

	Murakami et al.53
	Al-Bgm (4 wt.% Al2O3)
	
	166(1)
	
	1.57(5)

	Kurnosov et al.19
	(Mg0.9Fe0.1 Al0.1Si0.9)O3
	250.8(4)
	159.7(2)
	3.44(3)
	2.05(2)

	Ultrasonic Interferometry
	Composition
	KS0 (GPa)
	μ0 (GPa)
	K′S0
	μ′0

	Li and Zhang21
	MgSiO3
	253(2)
	173(1)
	4.4(1)
	2.0(1)

	Chantel et al.15
	MgSiO3
	247(4)
	176(2)
	4.5(2)
	1.6(1)

	Chantel et al.15
	(Mg0.95Fe0.05)SiO3
	236(2)
	174(1)
	4.7(1)
	1.56(5)

	X-Ray Diffraction
	Composition
	KT0 (GPa)
	
	K′T0
	

	This study
	Mg0.93Fe3+0.048Fe2+0.032Al0.10Si0.90O3
	
	
	
	

	Fu et al.52
	Mg0.96(1)Fe2+0.036(5)Fe3+0.014(5)Si0.99(1)O3 (<40 GPa)
	258(1)
	
	4 (fixed)
	

	Fu et al.52
	Mg0.96(1)Fe2+0.036(5)Fe3+0.014(5)Si0.99(1)O3 (>60 GPa)
	252(2)
	
	4 (fixed)
	

	Chantel et al.15
	MgSiO3
	257(2)
	
	4 (fixed)
	

	Chantel et al.15
	(Mg0.95Fe0.05)SiO3
	246(2)
	
	4 (fixed)
	

	Boffa Ballaran et al.4
	MgSiO3
	251(2)
	
	4.11(7)
	

	Boffa Ballaran et al.4
	(Mg0.95Fe0.05)SiO3
	253(3)
	
	3.99(7)
	

	Boffa Ballaran et al.4
	(Mg0.6Fe0.4)( Al0.36Si0.62)O3
	240(2)
	
	4.12(8)
	

	Mao et al.5
	(Mg0.94Fe0.06) (Al0.01Si0.99)O3
	255(2)
	
	4 (fixed)
	

	Mao et al.5
	(Mg0.89Fe0.11) (Al0.11Si0.89)O3
	264(2)
	
	4 (fixed)
	


Supplementary Table 6. Thermoelastic parameters of mantle minerals for high P-T modeling
	
	V0 (Å3)
	K0 (GPa)
	K′0
	μ0 (GPa)
	μ′0
	θ0
	γ0
	q0
	ηS0

	a(Al,Fe)-bearing Bridgmanite
	-
	-
	-
	-
	-
	900
	1.57
	1.1
	2.4

	aFerropericlase
(HS)
	-
	-
	-
	-
	-
	760
	1.4
	1.2
	2.6

	aFerropericlase (LS)
	-
	-
	-
	-
	-
	760
	1.4
	0.3
	2.6

	bCaSiO3 perovskite30
	45.4
	248
	4
	126
	1.6
	1000
	1.42
	2.65
	1.54

	bRingwoodite42
	525
	188
	4.22
	118.7
	1.28
	820
	1.02
	0.39
	2.07

	bMajoritic garnet43
	1528.82
	159.7
	4.52
	93.2
	1.3
	700
	0.79
	-0.81
	1.29



aSee details in Methods for Fe and/or Al effects on V0, K0, K′0, μ0, and μ′0 of (Al,Fe)-bearing bridgmanite and ferropericlase. Values of θ0, q0, γ0, and ηS0 for (Al,Fe)-bearing bridgmanite and ferropericlase are constrained by benchmarking from literature experimental data together with ab initio calculations3,6,27,35,36,54,55.
bThermoelastic parameters for CaSiO3 perovskite, ringwoodite, and majoritic garnet are derived by refitting literature data30,42,43 with the model6.














Supplementary Table 7. KD effect on the derived lower-mantle mineralogy
	Best fits
	Model I
	Model II
	Model III
	Model IV

	KD value (fixed)
	Irifune et al.38
	0.74
	0.44
	0.33

	Total Fe content (at%)
	9.65
	9.61
	9.65
	9.70

	Al content in Bridgmanite (at%)
	5.2
	5.1
	5.2
	5.3

	Bridgmanite (vol%)
	88.7
	88.1
	88.6
	89.2

	Ferropericlase (vol%)
	4.3
	4.9
	4.4
	3.8

	Ca-bearing perovskite (vol%, fixed)
	7.0
	7.0
	7.0
	7.0
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