

1 **Supplementary material**

2 **Network model**

3 The derivation of functional connectivity and the subsequent mathematical modelling follows
4 from multiple works looking for an optimal resection site using intracranial EEG ^{1, 2, 3}. In
5 order to derive functional networks from the ViEEG time-series, 20 second epochs of seizure
6 data containing clear ictal waveforms were chosen by MC, SV and CP. In the event that a
7 seizure was shorter than 20s, the whole seizure was used. In the event that the entire recording
8 showed semi-continuous ictal runs, epochs closer to the onset of the seizure were favoured
9 (Supplementary Table 4). We then down-sampled the data to 512 Hz and band-pass filtered
10 between 1 and 25 Hz using a 4th order Butterworth filter. We used these epochs to compute
11 univariate iterated amplitude adjusted Fourier transform surrogates for each epoch. We used
12 199 surrogates unless otherwise noted. Each epoch was then divided into 10 minimally
13 overlapping sub-segments of 0.25 times the length of the original epoch. This resulted in 10
14 subsegments of the original time series and usually 1990 subsegments for the surrogates. We
15 considered two functional connectivity methods: (1) Pearson correlation coefficient between
16 amplitude envelopes (AEC) ^{4, 5} and (2) mutual information (MI) ^{1, 6, 7}. In order to accurately
17 estimate the mutual information, we used the publicly available MILCA package ⁶. To make
18 the analyses computationally tractable, we reduced the number of surrogates to 19 when using
19 mutual information to infer functional connectivity. We then used the Mann-Whitney-
20 Wilcoxon U-test to assess whether the connections were significantly larger in the original
21 time series (ρ_0) against the surrogate time series' (ρ_{surr}). The surrogate-corrected
22 connectivity matrix is as follows:

$$23 \quad CC_{ij} = \frac{\langle \rho_{0ij} \rangle - \langle \rho_{surr_{ij}} \rangle}{1 - \langle \rho_{surr_{ij}} \rangle} h_{ij},$$

24 where $h = 1$ if the null hypothesis of the statistical test was rejected, or $h = 0$ otherwise. $\langle \cdot \rangle$
25 indicates the median values over subsegments and surrogates.

26 We considered each of the nodes in each in ViEEG as connected neural masses using the
27 theta model ^{2, 3}. The phase of each node follows the ODE:

$$28 \quad \theta'_j = (1 - \cos) + (1 + \cos(\theta_j)) I_j(t),$$

29 where the inputs are described by $I_j(t)$:

$$30 \quad I_j(t) = I_0^j + \xi^j(t) + \frac{K}{N} \sum_{i \neq j} CC_{ij} (1 - \cos(\theta_i - \theta_i^S)).$$

31 The index j denotes the node j , N is the total number of nodes, $I_0^j + \xi^j(t)$ is Gaussian
 32 noise, K is the global scaling parameter, a_{ij} is the $i, j - th$ entry in the functional
 33 connectivity network, and θ_i^S is the steady state of node i . Each node is initially in a 'normal
 34 state', which is a stable fixed point for the system, but can transition into the 'seizure state',
 35 a limit cycle, by passage through a saddle-node on invariant circle (SNIC) bifurcation.

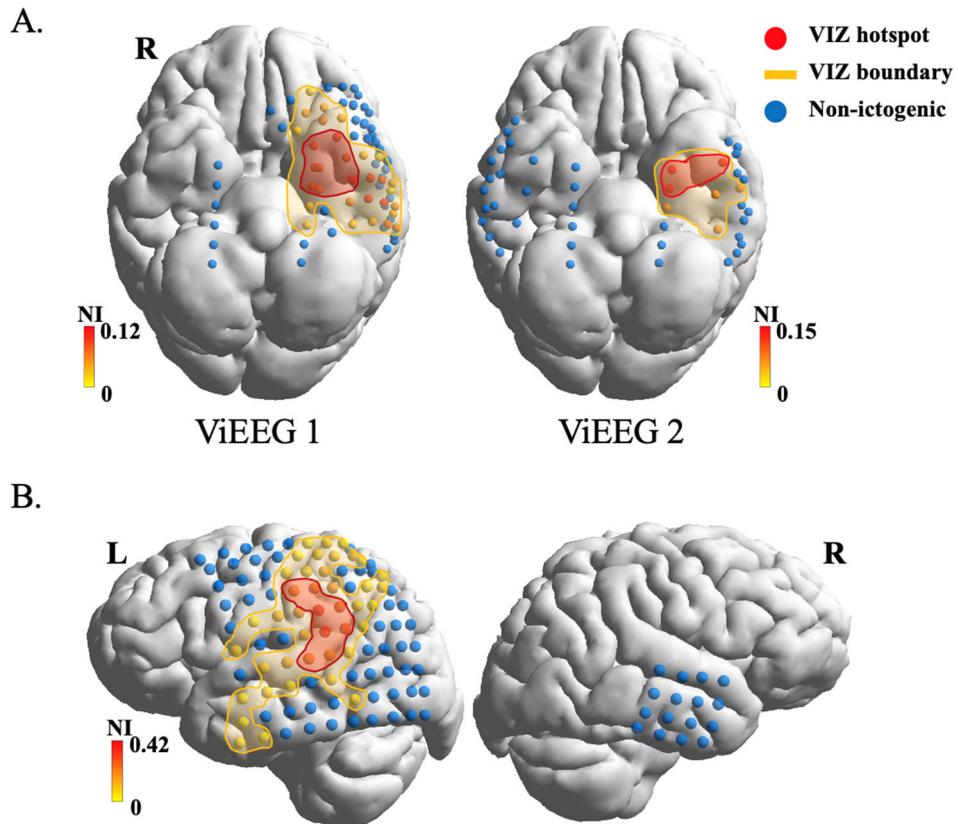
36

37 As in Goodfellow *et al.* (2016), we quantified the dynamics of the system using the notion of
 38 brain network ictogenicity BNI , which is the average fraction of time that each node spends
 39 in the seizure state. This value is obtained by computing the dynamical system over a long
 40 period of time (46 timesteps), with multiple runs to mitigate the effects of noise (128 noise
 41 runs) and averaging the time spent in the seizure state over all nodes, times, and runs. For a
 42 given network, the value of BNI will depend on the global scaling parameter, K . Therefore,
 43 for the full network, we find the value of K such that $BNI = 0.5$. We then use this value of K
 44 when simulating the surgical resection, as follows. In order to simulate surgical resection, we
 45 quantify the node ictogenicity (NI) of each node. To do this, we remove each node i
 46 individually and rerun the dynamical system to calculate a new BNI value, BNI_{post}^i . The
 47 value NI is then given by:

$$48 \quad NI^i = \frac{BNI_{pre} - BNI_{post}^i}{BNI_{pre}},$$

49 where $BNI_{pre} = 0.5$. If BNI_{post}^i is small (aka NI^i is large), then the node is considered
 50 ictogenic, or a candidate for resection, because removing it as the effect of reducing the
 51 fraction of time the dynamical system spends in the seizure state. Again, we run each of these
 52 'virtual resections' 128 times for 46 timesteps. This generates a distribution of NI^i values for
 53 each node removed. We then used a Mann-Whitney-Wilcoxon U-test and Bonferroni-Holms
 54 multiple comparisons correction to assess whether NI^i is greater than the NI over all removed
 55 nodes. The nodes i that have significantly large and positive NI^i become the VIZ.

56 **Features of ictal ViEEG signals**


57 We visually inspected each ViEEG seizure and ensured all ViEEG seizures analysed by
58 dynamical network models have 1) visible transition from background activity to ictal
59 waveforms that is aligned in time with seizure onset annotated by C.P. using MEG sensor
60 signals and 2) distinctive morphological features and spatial distribution of ictal waveforms
61 that are similar to seizures recorded by iEEG, if iEEG is done. Example ictal ViEEG signals
62 from each seizure are presented in Supplementary Figs. 4-15. Ictal ViEEG signals were
63 plotted in a 10-second window using seizure onset as time zero and 2 seconds before seizure
64 onset and 8 seconds after seizure onset. As shown in Fig. 2 (main paper), ictal ViEEG signals
65 present distinctive ictal rhythms akin to an ictal event independently recorded by iEEG. This
66 finding supports the previous studies that MEG can ‘see’ activities from deep structures ^{8, 9,}
67 ^{10, 11} and seizures can be reconstructed from those sources with similar features to an iEEG
68 seizure.

69

70

71 **Considerations for ViEEG locations**

72 iEEG locations play a critical role in clinically characterising the EZ. Therefore, whether
73 ViEEG locations affect our proposed model to characterise the EZ non-invasively is an
74 important question to ask. As discussed in the main paper, ViEEG locations are defined to
75 extensively cover the early-, mid-, and late-phase MSL solutions as well as the entirety of the
76 resection margin. It is important to note that the choice of location, shape and orientation of
77 ViEEG does not take into account any other information (such as shape of resection or
78 pathology) – they are defined in a non-regularised fashion to sufficiently sample the targeted
79 brain areas along the cortical surface (like subdural grid electrodes) and linearly (like
80 stereotactic depth electrodes) along deep cortical structures, such as hippocampal structures.
81 As well, ViEEG and network models do not require the resection margin and MSL solutions
82 to be in any specific locations within the ViEEG, such as the centre of the ViEEG. When
83 defining the ViEEG, we always ensure there is sufficient brain tissue between the ViEEG
84 boundary and the boundary of resection and MSL solutions. In Patient 5 (Supplementary Fig.
85 1A), we demonstrate the same AEC-VIZ ‘hotspot’ location is found by two different ViEEGs
86 modelled independently. ViEEG1 and ViEEG2 grid and depth electrode set-ups differ but the
87 resulting left baso-mesial temporal VIZ localisations are similar. Providing the area of interest
88 is covered for the VIZ analysis, these results suggest our proposed model is less likely to be
89 affected by how the ViEEG is initially defined. A second example is given by Patient 11
90 (Supplementary Fig. 1B), where a 4-by-4 grid like ViEEG is defined at the contralateral
91 temporal area (less clinically concerning) together with a 10-by-10 grid covering the resection
92 margin and MSL locations. The additional 16 nodes from the 4-by-4 grid covering a
93 contralateral brain area does not affect the model in identifying the VIZ hotspot location that
94 is concordant with the iEEG SOZ.

95

96 **Supplementary Figure 1.** Variation in the initial ViEEG set-up appears to have minimal effect on
 97 the VIZ result, providing the area of interest is covered. The VIZ for Patient 5 (Supplementary Fig.
 98 1A) remains left temporal baso-mesial despite differences in the initial ViEEG configuration. The
 99 VIZ for Patient 11 (Supplementary Fig. 1B) is unaffected by the introduction of a contralateral
 100 (right) 16-electrode ViEEG grid. VIZ boundary and hotspot results have been derived from the
 101 AEC-VIZ method.

102

103 **ViEEG signal reconstruction**

104 We defined ViEEG electrodes to cover brain areas that have been source localised using MEG
105 (early, mid and late) from the previous publication ¹⁰ and ensured to contain the entire
106 resection bed with sufficient margin between the boundaries of resection and ViEEG
107 electrodes. In other words, ViEEG was only guided by MEG source localisation and resection
108 margins (and not the iEEG array or other clinical information). Next, we attempted to
109 reconstruct ictal source signals of each ViEEG electrode akin to what is recorded invasively
110 with iEEG. Bad MEG channels were identified and omitted from raw MEG recordings during
111 and after data acquisition. A temporal extension to signal source separation (tSSS) was then
112 applied to MEG sensor signals using *Maxfilter v2.2.10-15* (Elekta Oy) for interference
113 suppression. After tSSS, a notch filter was applied to remove line noise at 50 Hz and its
114 harmonics up to 300 Hz and an IIR filter to bandpass filter signals between 0.1 and 200 Hz.

115

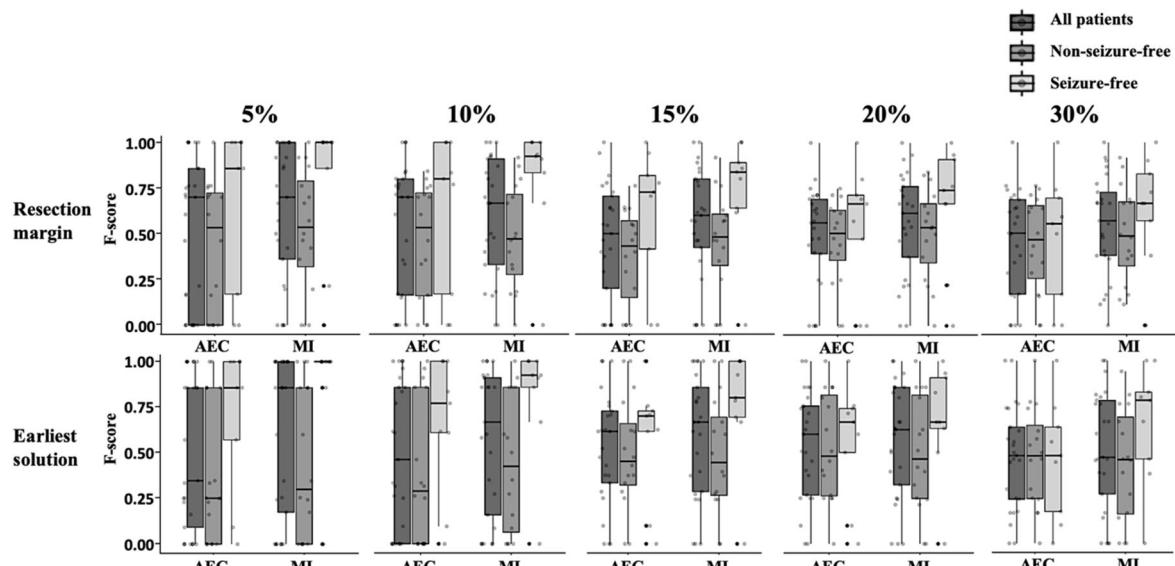
116 Pre-processed MEG signals were then segmented into epochs of 10 minutes before seizure
117 onset and the whole seizure event from seizure onset to seizure termination. Onset and offset
118 of each seizure were annotated by C.P. and also reported in the previous publication ¹⁰. Long
119 epochs and broad frequency bands were used for source reconstruction to more reliably
120 estimate noise covariance matrices and alleviate the suppression of correlated sources by
121 beamformer techniques ^{12, 13}. Empirically, we also found shorter epochs often resulted in less
122 distinctive morphologies and more smeared spatial distributions of ictal source signals.

123

124 A scalar beamformer technique was employed to reconstruct ictal ViEEG signals ¹⁴. The
125 orientation of each dipolar source was computed to maximise source power ^{15, 16}. Beamformer
126 techniques have been used to successfully reconstruct source signals for various applications
127 at high spatial resolution, particularly in the context of MEG virtual electrodes ^{16, 17}. More
128 specifically, given a ViEEG electrode, we constructed a set of beamformer weights that
129 spatially filter source activity at this location without contribution from other sources. We
130 used an implementation of linearly constrained minimum variance (LCMV) beamformer with
131 orientations optimised by maximal source power from MNE-Python Version 0.19.0 ¹⁸. To
132 construct a beamformer at each ViEEG electrode, the data covariance matrix was estimated
133 using the whole seizure event (from seizure onset to seizure termination), while the noise
134 covariance matrix was estimated using a pre-seizure segment (i.e., -600 second to -10 second

135 if seizure onset is defined as 0 second). The pre-seizure segment had been visually inspected
136 to ensure no ictal activity is included. We used realistic boundary element method (BEM)
137 models generated from individualised MRI scans to compute forward solutions. Triangulated
138 mesh surfaces of inner-skull and pial surface were generated using the patient-specific MRI
139 scan, Freesurfer¹⁹ and CURRY 8® (Compumedics Neuroscan®, Hamburg) software. After
140 source signal reconstruction, we visually inspected ictal ViEEG signals and identified 25/36
141 seizures from 12 patients that presented a distinctive morphology and spatial distribution from
142 background activity. These 25 seizures were then analysed by dynamical network models.

143 **Volume conduction and functional networks**


144 Volume conduction introduces source signal leakage that affects source signal reconstruction
145 and structures of time-evolving EEG and MEG source networks. We explored extensively in
146 parameter space to optimise the spatial resolution and signal strength of ictal ViEEG signals.
147 However, these efforts are not guaranteed to completely remove spurious interactions from
148 MEG source networks. Palva *et al.* (2018) using simulations and realistic head models
149 demonstrated that the currently available methods cannot completely remove spurious
150 connections. In other words, when there is a true connection, spurious connections always
151 accompany. Another study from Hincapie *et al.* (2017) suggests different source
152 reconstruction techniques, size and locations of correlated sources also change the extent to
153 which field leakage impacts source signals. However, a limitation of both studies is that only
154 two genuinely correlated sources were taken into account in their simulations ^{4,20}. Moreover,
155 the connectivity methods used to reduce instantaneous phase synchrony may have been too
156 conservative to preserve important network structures, particularly if more than two sources
157 genuinely correlate. For iEEG studies and our proposed ViEEG approach, the assumption of
158 only two correlated sources in the network is less likely to be valid when a seizure occurs.

159

160 Because we aimed to explore clinical biomarkers that pre-surgically characterise the EZ in a
161 non-invasive fashion, the connectivity methods we employed did not remove instantaneous
162 spurious connections in an effort to better preserve key functional network structures ²¹. Note
163 also that we did not attempt to interpret our findings in the context of neural mechanisms
164 related to seizure generation. Biomarkers and limitations are discussed with the support of
165 statistical analysis (main paper and below).

166

167 **Different thresholds to define the VIZ hotspot**

168

169 **Supplementary Fig. 2.** F-scores of AEC-VIZ and MI-VIZ in predicting the resection margin and the
170 earliest solution using different thresholds to define the VIZ hotspot.

171 An additional four thresholds, 5%, 10%, 15% and 30%, were explored along with 20%
172 threshold to define the VIZ hotspot through ranking all VIZ nodes by NI values. Although
173 MI-VIZ achieve remarkable F-scores to predict the resection margin and the earliest solution,
174 the top 5% and 10% thresholds do not fully represent the predictive power of the models, as
175 too few VIZ nodes are defined as hotspot sources. For example, the MI-VIZ from Patient 1
176 Seizure 1 (Supplementary Fig. 4) has 34 VIZ nodes, which results in two and three hotspot
177 nodes respectively if 5% and 10% thresholds are applied. When thresholds are over 10%, such
178 as 15%, 20% and 30%, F-scores of AEC-VIZ and MI-VIZ are relatively similar. Although
179 15% threshold seems to offer the optimal predictive power among five thresholds we
180 explored, in this paper we presented results from the top 20% threshold of VIZ nodes to be
181 defined as hotspots to ensure that our work has the same thresholding strategy that was used
182 by HDEEG and MEG source localisation in our previous publication¹⁰
183 .

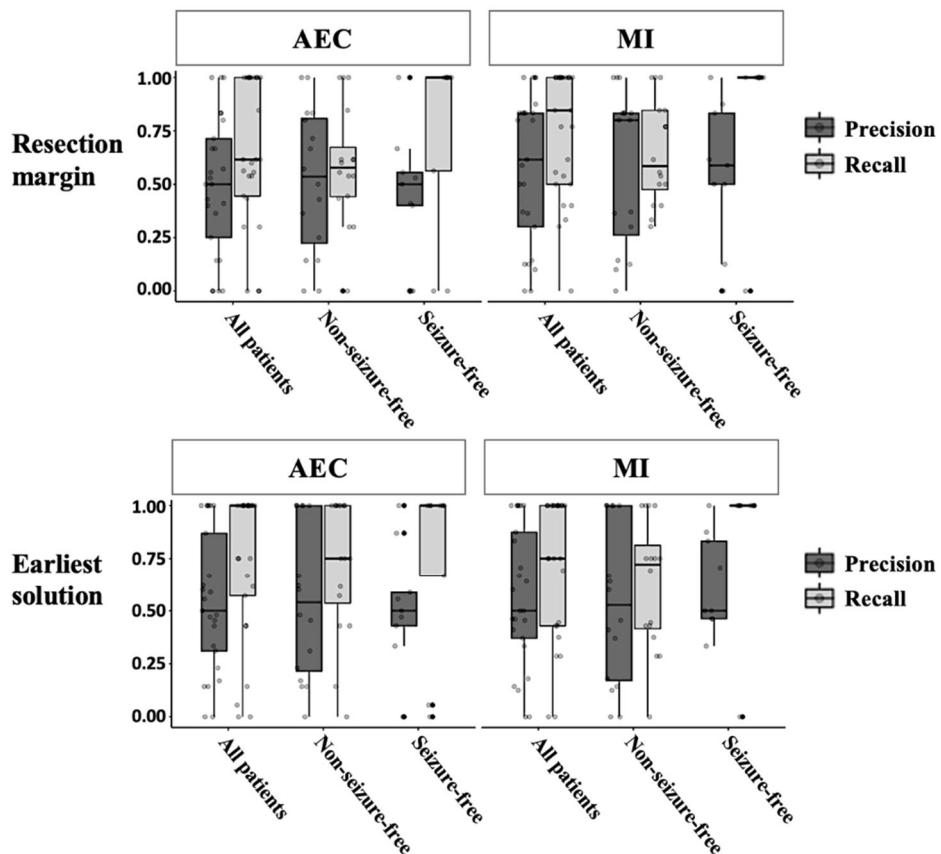
184 **Statistical analysis**

185 First, we evaluated whether there is any association between VIZ hotspots and boundaries
 186 against the clinical localisation. Mixed-effects logistic regression modelling was used, with
 187 the outcome being resection margin, iEEG SOZ, early-MSL, mid-MSL, late-MSL, and the
 188 earliest solution (whether given by early-MSL or early-ESL). The variable in the modelling
 189 was a binary variable with 1 if a node was in VIZ hotspot or VIZ boundary and 0 if a node
 190 was not in VIZ hotspot or VIZ boundary. Results are expressed as odds ratios (OR) with 95%
 191 confidence interval (CI), p-values, Akaike Information Criterion (AIC) ²² and Bayesian
 192 Information Criterion (BIC) ²³ (Supplementary Table 1, Supplementary Table 2).

193

AEC-VIZ hotspot					MI-VIZ hotspot				
Outcome	OR (95% CI)	AIC	BIC	P-value	OR (95% CI)	AIC	BIC	P-value	
Resection margin	4.701 (3.185, 6.595)	1825	1843.2	<0.001	7.232 (4.853, 10.56)	1773.5	1791.7	<0.001	
iEEG SOZ	6.758 (3.225, 9.902)	599.1	617.4	<0.001	5.268 (2.101, 9.219)	615.4	633.6	<0.001	
Earliest solution	4.158 (2.738, 6.147)	1451.1	1469.4	<0.001	5.658 (3.891, 8.139)	1431.7	1449.9	<0.001	
Early-MSL	3.617 (2.4, 5.326)	1373.5	1391.8	<0.001	3.786 (2.495, 5.74)	1365.2	1383.4	<0.001	
Mid-MSL	1.492 (0.644, 2.011)	1423.7	1441.9	0.061	1.847 (1.057, 2.927)	1427.3	1445.5	0.002	
Late-MSL	1.08 (0.556, 1.917)	1216.8	1235.1	0.802	1.452 (0.797, 2.47)	1215.3	1233.5	0.185	

194 **Supplementary Table 1.** Odds ratios (95% CI), AIC, BIC and p-values from mixed-effect logistic
 195 regression model of assessing statistical relationship between VIZ hotspot and clinical localisation
 196 (resection margin, iEEG SOZ, early-MSL, mid-MSL, late-MSL, and the earliest solution).

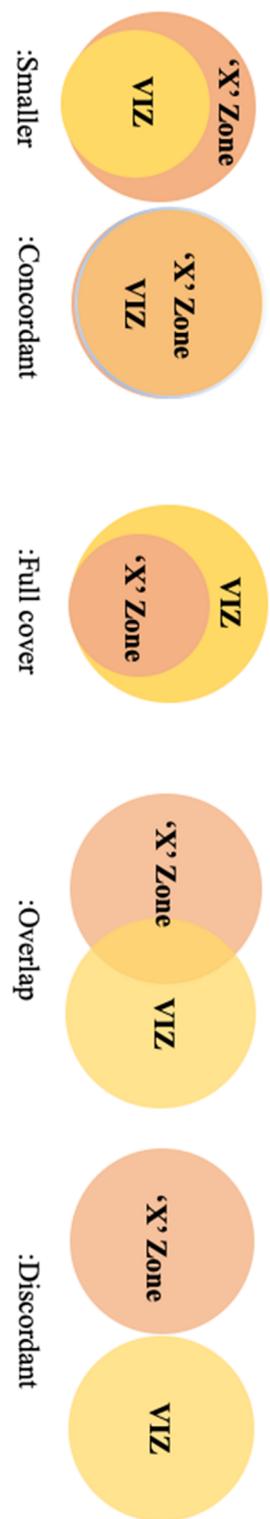

197

AEC-VIZ boundary					MI-VIZ boundary				
Outcome	OR (95% CI)	AIC	BIC	P-value	OR (95% CI)	AIC	BIC	P-value	
Resection margin	2.52 (2.02, 3.14)	2261.8	2280.2	<0.001	4.67 (3.70, 5.91)	2151.6	2170	<0.001	
iEEG SOZ	3.04 (1.95, 4.75)	648.55	664.66	<0.001	3.74 (2.37, 5.89)	639.5	655.6	<0.001	
Earliest solution	3.22 (2.47, 4.18)	1784.5	1802.9	<0.001	3.51 (2.70, 4.57)	1729.9	1748.3	<0.001	
Early-MSL	1.42 (1.06, 1.91)	1734.67	1753.1	<0.001	1.59 (1.18, 2.13)	1723	1741.4	<0.001	
Mid-MSL	1.11 (0.81, 1.54)	1482.9	1501.3	0.02	1.44 (1.04, 1.98)	1479.2	1479.6	0.002	
Late-MSL	3.19 (2.46, 4.13)	1314	1332.4	0.518	4.61 (3.53, 6.03)	1309.6	1328	0.027	

198 **Supplementary Table 2.** Odds ratios (95% CI), AIC, BIC and p-values from mixed-effect logistic
 199 regression model of assessing statistical relationship between VIZ boundary and clinical localisation
 200 (resection margin, iEEG SOZ, early-MSL, mid-MSL, late-MSL, and the earliest solution).

201 Next, we calculated precision (or positive predictive values) and recall (or sensitivity) of VIZ
202 hotspot and VIZ boundary for predicting the resection margin and clinical localisation. The
203 precision of VIZ hotspot and recall of VIZ boundary were used to compute F-scores to assess
204 the performance of our proposed model in predicting the clinical localisation. Supplementary
205 Fig. 3 demonstrates the precision and recall of VIZ (hotspot and boundary) in predicting the
206 resection margin and the earliest solution when the top 20% VIZ nodes ranked by NI values
207 are defined as the VIZ hotspot.

208


209

210 **Supplementary Figure 3.** VIZ hotspot precision and VIZ boundary recall in predicting the resection
211 margin (above) and the earliest solution (below). The hotspot is defined as the top 20% VIZ nodes
212 ranked by NI values.

213 Supplementary Fig. 3 shows that the MI-VIZ recall (for VIZ boundary) sufficiently captures
214 the entirety of resection margin and the earliest solution and identifies non-ictogenic brain
215 areas that are less likely to overlap with the EZ and are therefore potentially less concerning
216 for iEEG coverage. Moderate precision values (for VIZ hotspot) are found for both AEC-VIZ
217 and MI-VIZ in predicting the resection margin and earliest solution. MI-VIZ hotspots appear

218 to have higher precision than AEC-VIZ hotspots in predicting the resection margin and, to a
219 lesser degree, the earliest solution. The spatial overlap between VIZ and clinical localisation
220 are demonstrated on a per patient and per seizure basis in Supplementary Table 3.

221

		Patient seizure		Patient seizure		Patient seizure		Patient seizure	
		AEC	MI	AEC	MI	AEC	MI	AEC	MI
'X' zone	Outcome								
Resection margin	Seizure-free	-/6	-/9	-/9	4	6	8	1	1
	Non-seizure-free	-/6	-/16	-/16	1	2	2	4	8
		-/2	-/3	-/3	1	1	3	1	1
iEEG SOZ		-/4	-/8	-/8	2	3	3	1	1
Earliest solution		-/6	-/9	-/9	4	6	8	1	1
								-	-
								1	2
								1	1
Early-MSL		-/6	-/16	-/16	2	5	4	2	5
								6	6
Mid, late - MSL		-/6	-/9	-/9	3	4	6	1	1
								-	-
								2	4
								3	3

223

224 **Supplementary Table 3.** Per-patient and per-seizure concordance between VIZ (AEC and MI) and
 225 clinical localisation. The five categories of concordance (at top) are based on spatial overlap relations
 226 between the VIZ boundary (VIZ) and clinical localisation ('X' zone), and are given as smaller VIZ,
 227 concordant, VIZ fully covers X zone, VIZ and X zone overlap, discordant. X zones (at left) are given
 228 as resection margin, iEEG SOZ, MSL solutions (early-, mid-, late-MSL) and the earliest source
 229 localisation solution. Patients and seizures are grouped based on surgical outcome (seizure-free or
 230 non-seizure-free). No VIZ boundary is found to be smaller or completely concordant with any X zone.

231

232

233

234

235

236

237

238

239

240

Outcome	Boundary concordant with the same 'hotspot'/seizure	Boundary concordant with the different 'hotspot'/seizure	Boundary discordant
Seizure-free	7/9	-	2
Non-seizure-free	9/16	1	6

241 **Supplementary Table 4.** Spatial overlap between respective hotspots and boundaries for AEC-VIZ
 242 and MI-VIZ . Seizure counts are grouped based on surgical outcomes (seizure-free and non-seizure-
 243 free). 16/25 seizures have AEC-VIZ hotspot and boundary concordance with MI-VIZ, while 9 seizures
 244 have AEC-VIZ with a different hotspot from MI-VIZ, with the majority of these (8/9 seizures)
 245 discordant for the VIZ boundary as well.

246 It is also worth noting that AEC-VIZ and MI-VIZ do not always present concordant hotspots
 247 or boundaries. As shown in Supplementary Table 4, 16/25 seizures show AEC-VIZ and MI-
 248 VIZ concordance for both hotspot and boundary, 9/25 seizures show AEC-VIZ and MI-VIZ
 249 discordance for hotspot, with the majority of these patients experiencing seizure recurrence
 250 post-operatively. Thus, discordance of AEC-VIZ and MI-VIZ hotspots may offer
 251 complementary information and additional insights to alternative surgical strategies for non-
 252 seizure-free patients.

253

254

255

256

Notes: NDS for non-disabling seizure; DS for disabling seizures; FC for Full Cover; PO for Partial Overlap; NO for No Overlap; VIZ for virtual ictogenic zone; iEEG SOZ for iEEG seizure onset zone; MSL is magnetoencephalographic source localisations. CD for cortical dysplasia.

*Only iEEG report available for patient 7 and 9.

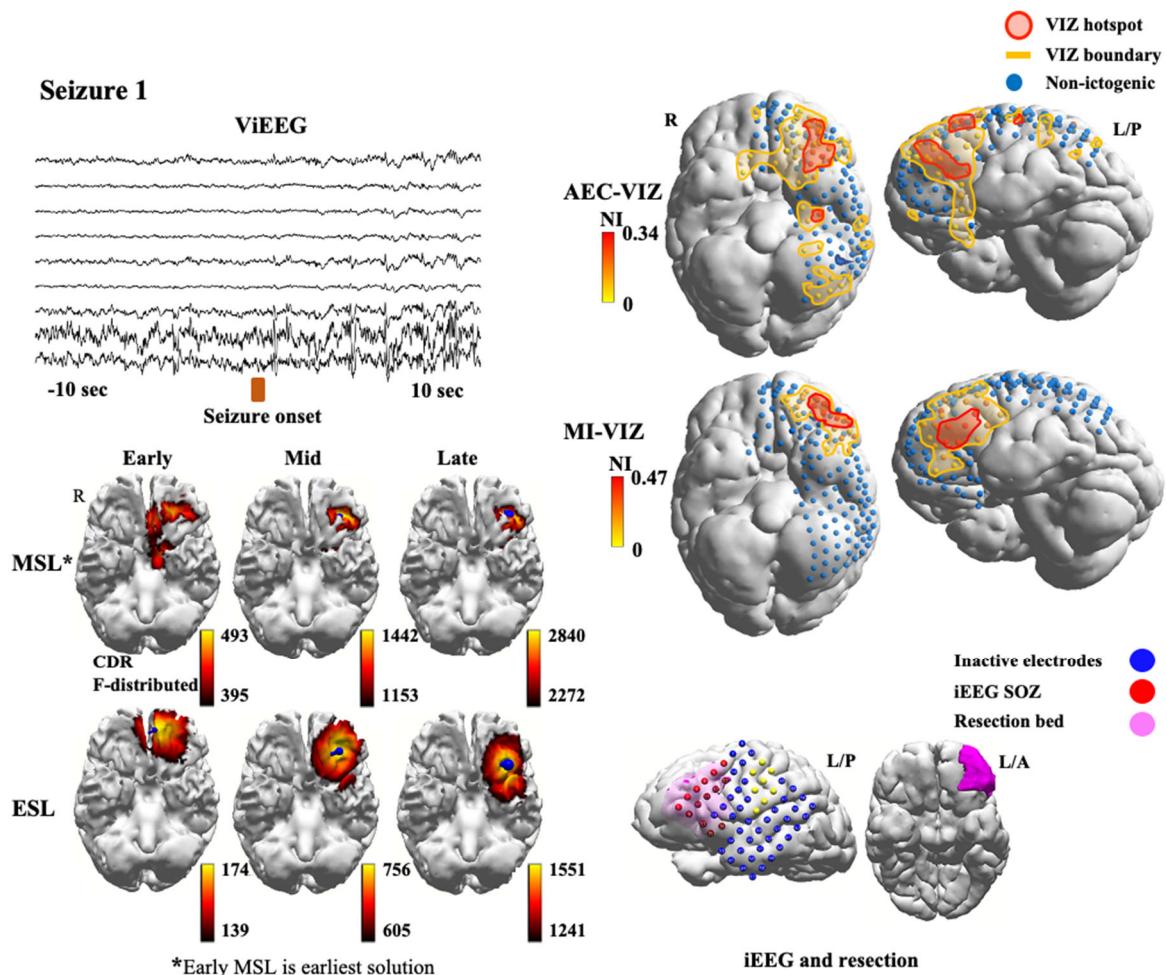
Patient ID	MRI	Histology	Surgical outcome	VIZ vs Resection margin			VIZ vs iEEG SOZ			VIZ vs Early-MSL			VIZ vs Earliest solution			
				Seizure	AEC	MI	Seizure	AEC	MI	Seizure	AEC	MI	Seizure	AEC	MI	
1	Normal	CD 1A	Engel class I	1	PO	PO	1	PO	PO	1	FC	PO	Early-MSL	1	FC	PO
			Rare NDS													
2	Normal	CD 1	Engel class I	1	FC	FC	iEEG is not done			1	FC	FC	Early-ESL	1	FC	FC
			Seizure free	2	FC	FC				2	FC	FC		2	FC	FC
3	Normal	CD 2A	Engel class I	1	PO	PO	2	PO	PO	2	PO	PO	2	PO	PO	PO
			Rare NDS	3	PO	PO	4	PO	PO	3	PO	PO	3	PO	PO	PO
4	Normal	Non-specific	Engel class III	1	NO	NO	2	NO	NO	1	NO	NO	1	NO	NO	NO
			Fewer DS	3	NO	NO	4	FC	FC	2	NO	NO	2	NO	NO	NO
5	Normal	CD 1C	Engel class I	1	FC	FC	1	FC	FC	1	FC	FC	1	FC	FC	FC
			Seizure free													
6	Normal	CD 2A	Engel class I	1	FC	FC	iEEG is not done			1	FC	FC	Early-ESL	1	FC	FC
			Seizure free													
7	Normal	CD 2A	Engel class I	1	NO	NO	Only iEEG report available*			1	NO	NO	Non-localising	1	NO	NO
			Seizure free													
8	Normal	CD 1	Engel class I	1	FC	FC	iEEG is not done			1	NO	NO	Early-ESL	1	FC	FC
			Seizure free	2	FC	FC				2	NO	NO		2	FC	FC

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

Patient ID	MRI	Histology	Surgical outcome	VIZ vs Resection margin			VIZ vs iEEG SOZ			VIZ vs Early-MSL			VIZ vs Earliest solution			
9	Normal	CD 2B	Engel class II Rare DS	Seizure 1	AEC PO	MI PO	Seizure Only iEEG report available*	AEC 1	MI NO	Seizure 1	AEC NO	MI NO	Earliest solution Early-ESL	Seizure 1	AEC NO	MI NO
10	Multi-lobar dysplasia	Normal	Engel class I NDS only	1	FC	FC	1	FC	FC	1	FC	FC	Early-MSL	1	FC	FC
11	Multi-lobar dysplasia	Ischemia	Engel class III Fewer DS	1	NO	PO	1	FC	FC	1	FC	FC	Early-MSL	1	FC	FC
12	Right frontal gliosis	Gliosis	Engel class I Seizure free	1	PO	FC	1	PO	FC	1	PO	FC	Early-ESL	1	PO	FC
				2	NO	FC	2	NO	FC	2	NO	FC		2	NO	FC

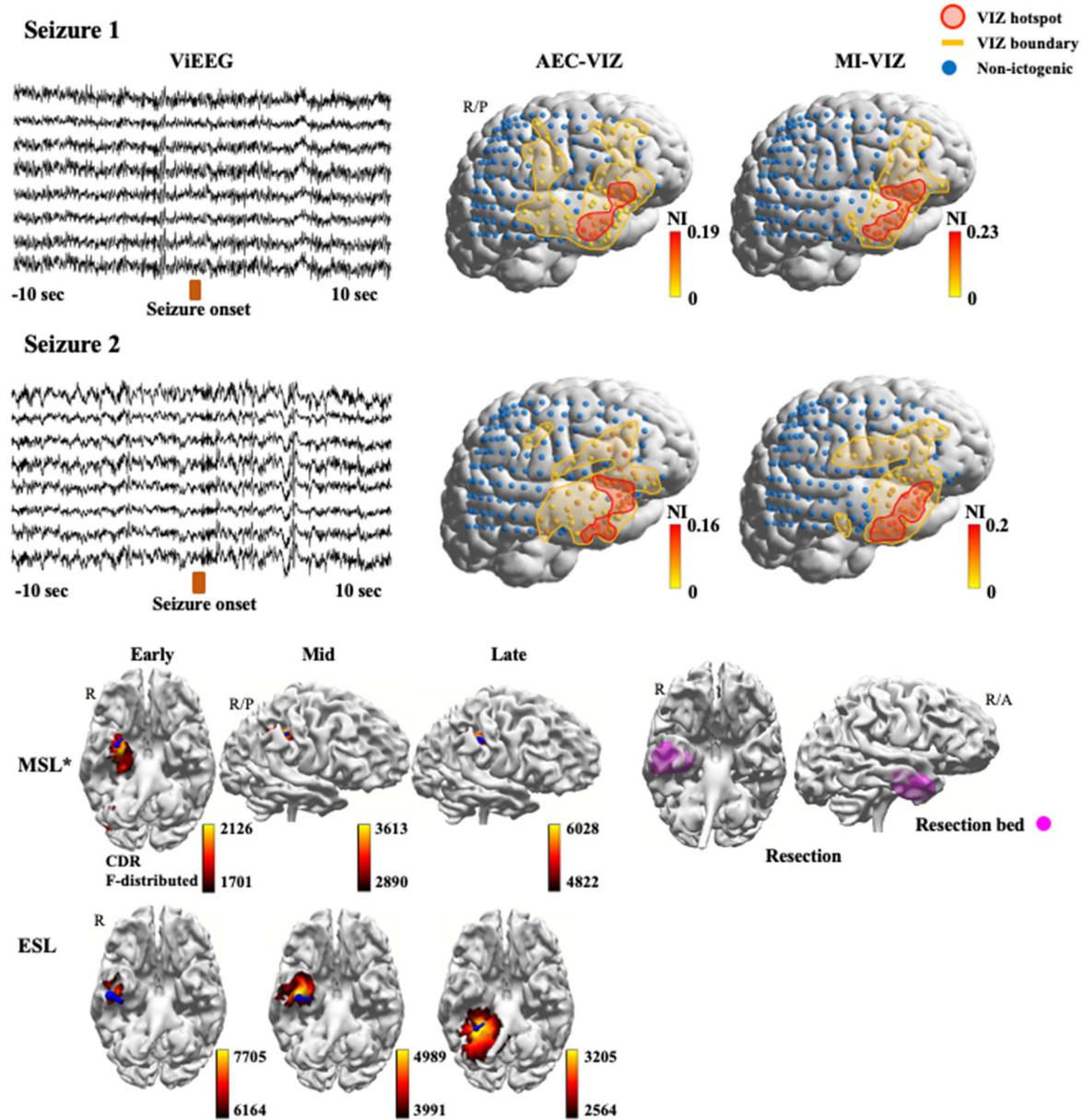
Notes: NDS for non-disabling seizure; DS for disabling seizures; FC for Full Cover; PO for Partial Overlap; NO for No Overlap; VIZ for virtual ictogenic zone; iEEG SOZ for iEEG seizure onset zone; MSL is magnetoencephalographic source localisations. CD for cortical dysplasia.

*Only iEEG report available for patient 7 and 9.

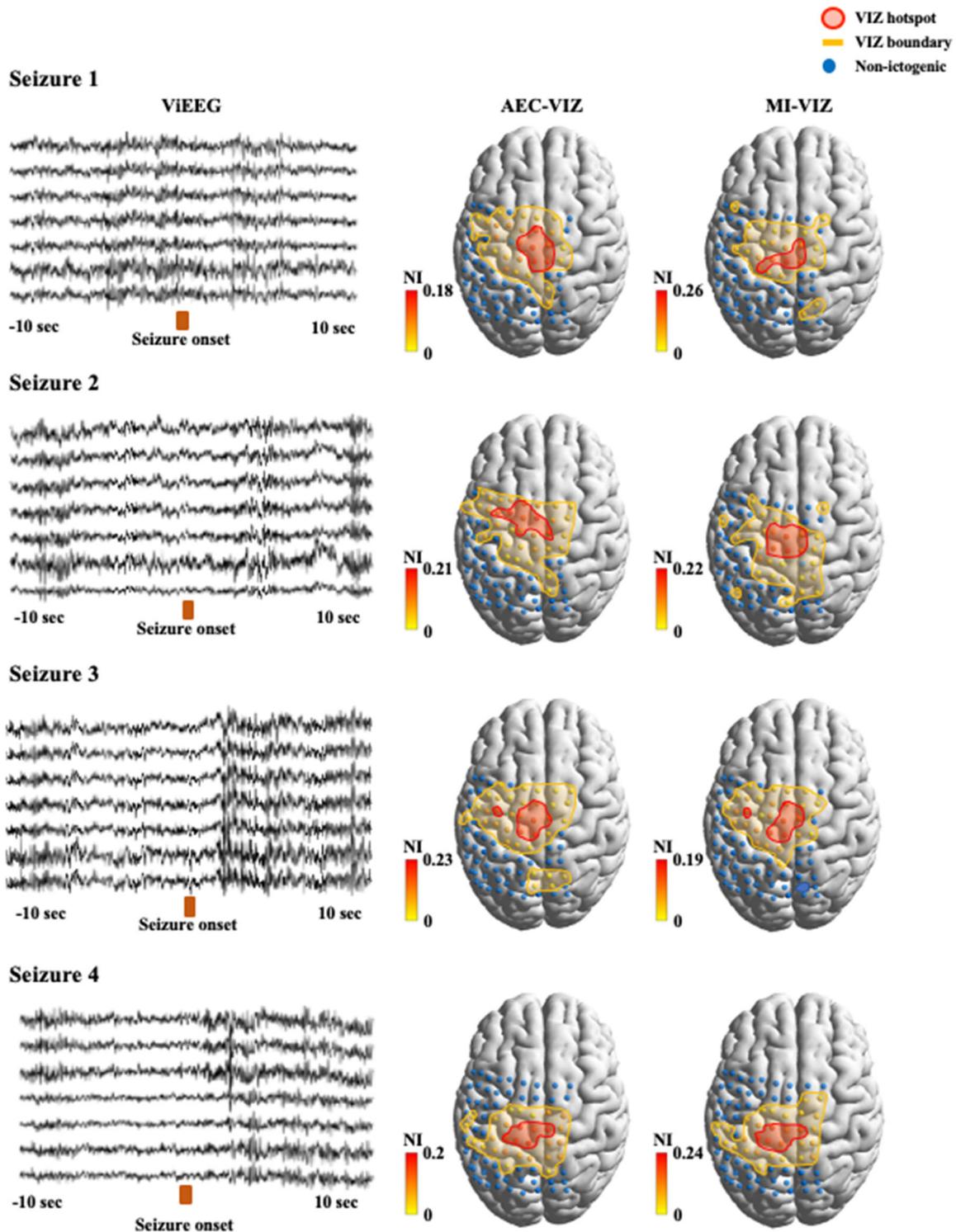

280

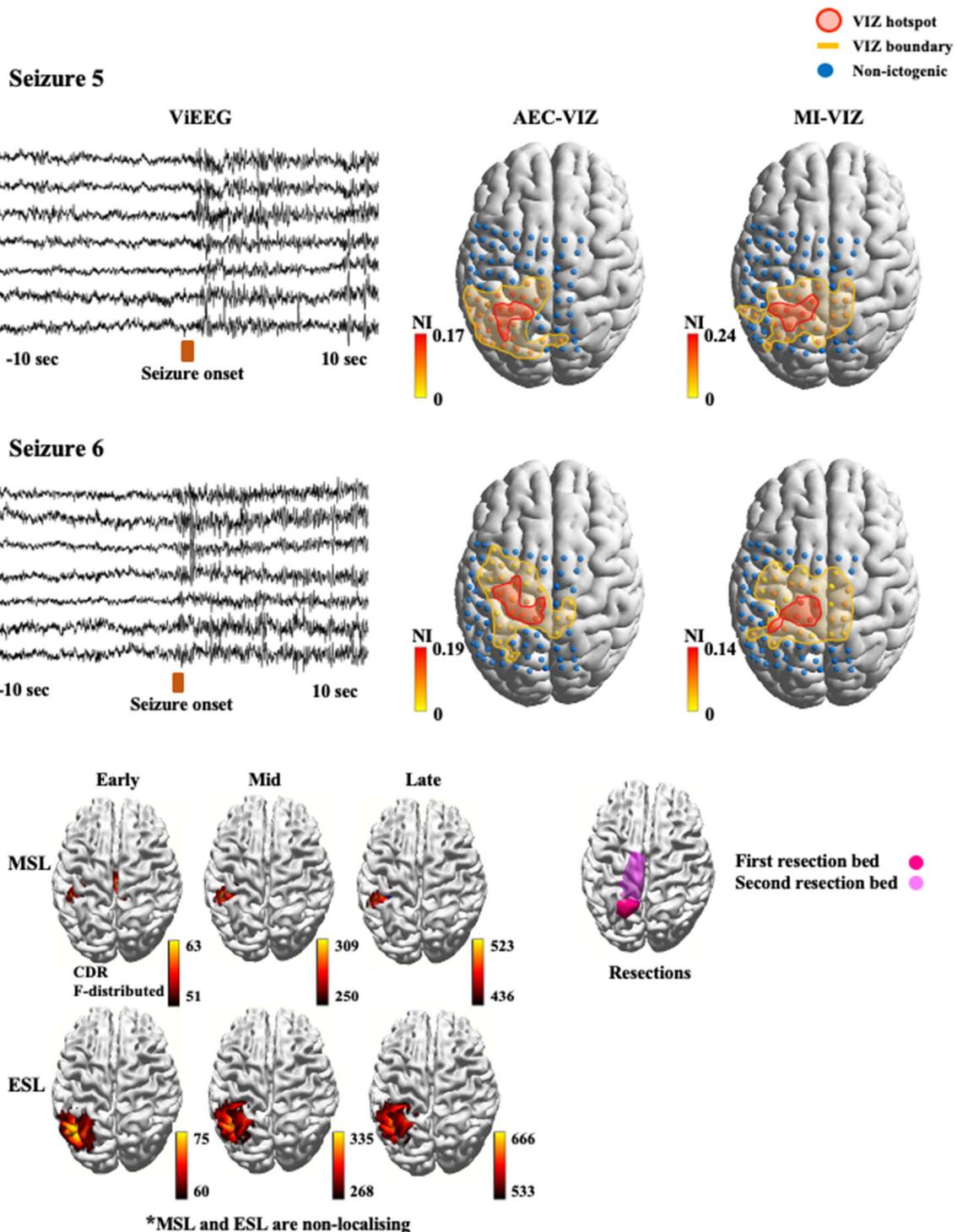
281 **Supplementary Table 5.** Patient data and overlap with VIZ results for all seizures.

282 **Abbreviations: CD (Cortical Dysplasia), PO (partial overlap), FC (full cover), NO (no overlap).**


283 **Results summary (also refer to Supplementary Table 5)**

284 **Patient 1**

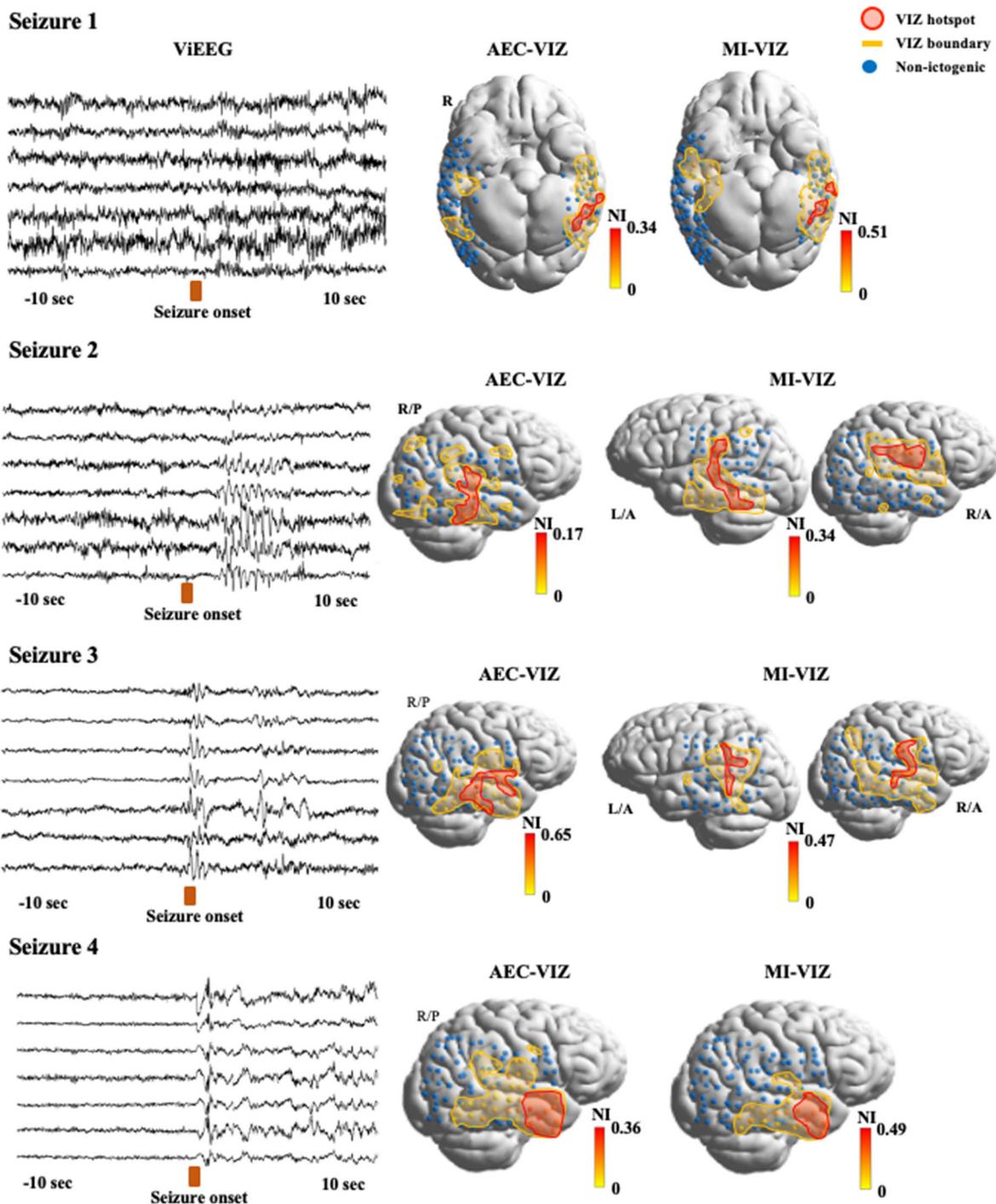

285

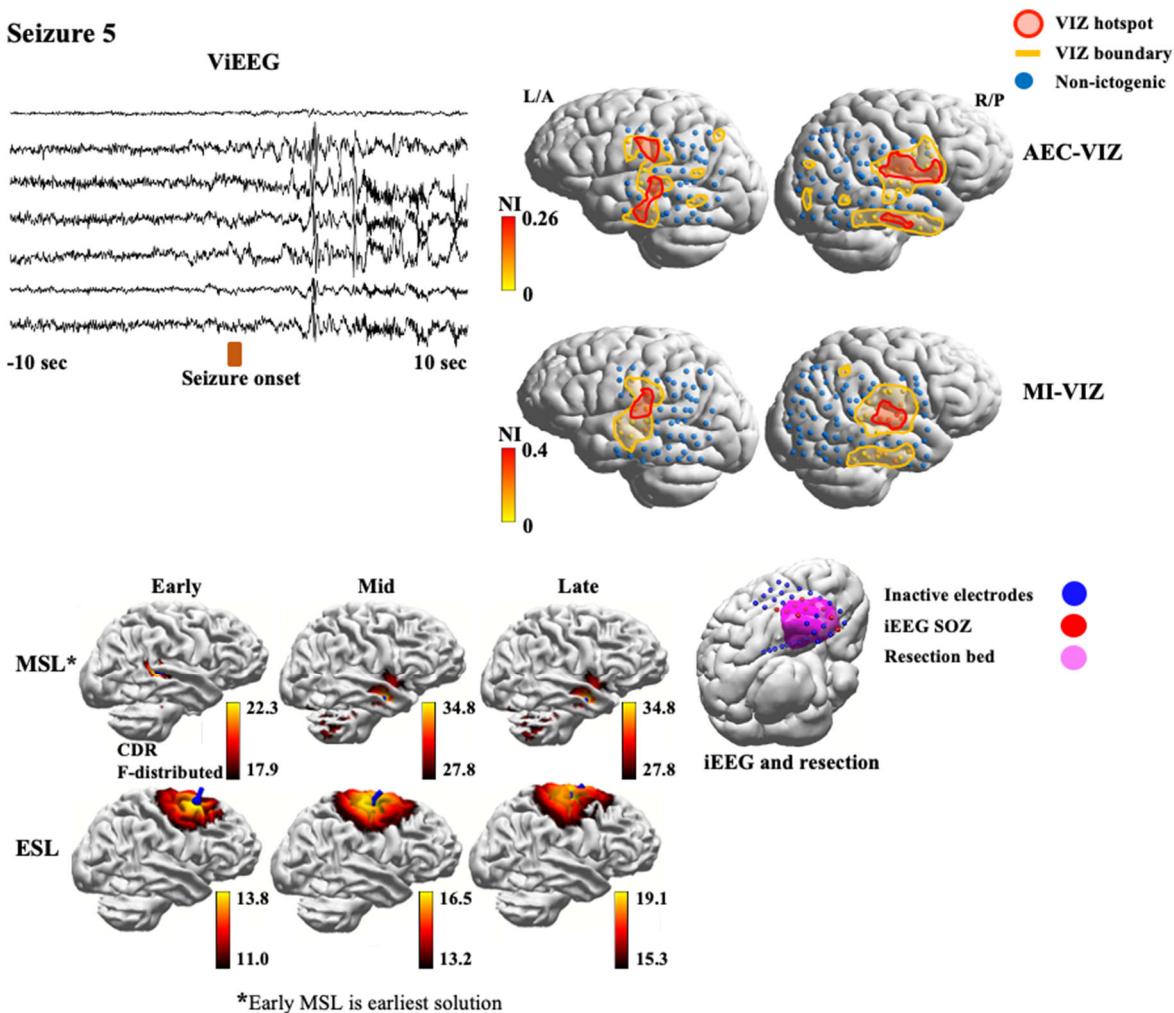

286 **Supplementary Figure 4.** Patient 1 had a normal MRI with over 10 disabling seizures per month
 287 before surgery. The patient had five disabling seizures when medication was adjusted but is now
 288 seizure-free again at month 39. MEG sLORETA ictal early source localisation suggested a focus at
 289 the left medial orbitofrontal gyrus and rectal gyrus. Guided by MSL solutions, ViEEGs were defined
 290 to extensively cover the left orbitofrontal, lateral frontal, and temporo-parietal areas. Source signals
 291 of six seizure events were reconstructed but only the first seizure gave a distinct morphology for ictal
 292 spikes. AEC-VIZ and MI-VIZ identified hotspot (nodes in red line and shade) encompassing two
 293 isolated islands: one in the orbitofrontal and the other in dorsolateral frontal convexity. The
 294 orbitofrontal component of AEC-VIZ and MI-VIZ best overlap the MSL sLORETA solutions and
 295 partially overlap the surgical resection bed. This patient has achieved Engel I outcome with rare non-
 296 disabling seizures. Based on the surgical outcome, the MEG derived AEC-VIZ and MI-VIZ results
 297 suggest another epileptic focus outside the current resection volume.

300 **Supplementary Figure 5.** Patient 2 had a normal MRI with an average of 5 seizures per month before
 301 surgery and is seizure free at 26 months follow-up. MEG sLORETA ictal early source localisation
 302 suggested a focus at right temporal pole. Guided by MSL solutions, ViEEG was defined to extensively
 303 cover the right temporal pole, lateral temporal, parietal, and lateral frontal areas. Source signals of two
 304 MEG captured seizure events are reconstructed. Ictal discharges can be seen in the representative
 305 ViEEG channels. Both AEC-VIZ and MI-VIZ identified hotspots (nodes in red line and shade) over
 306 the right lateral temporal pole. Note the overlap with the early MSL solution and the surgical resection
 307 and the lack of overlap with the ESL solutions, which were more postero-basal in location. This patient

308 has achieved an Engel I seizure-free outcome. Both the AEC-VIZ and MI-VIZ successfully captured
309 the EZ.

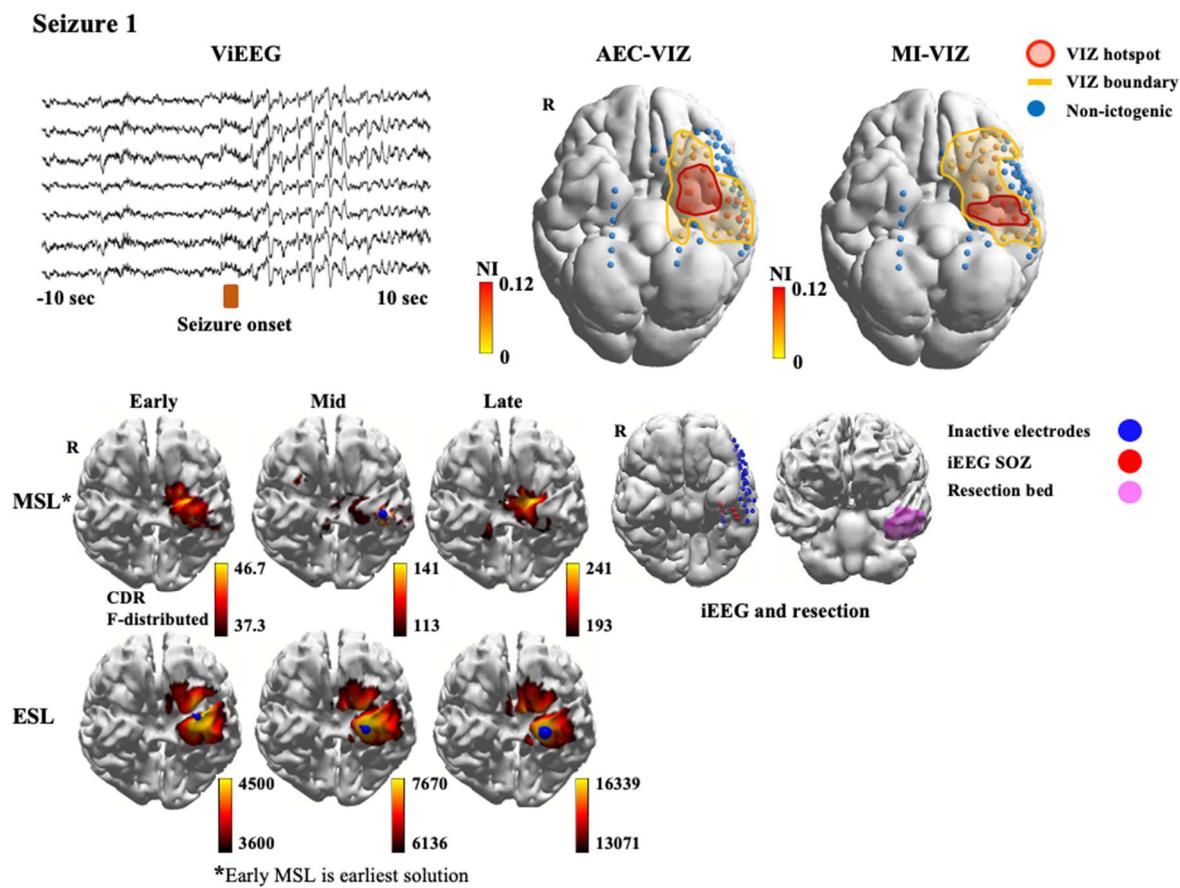
312

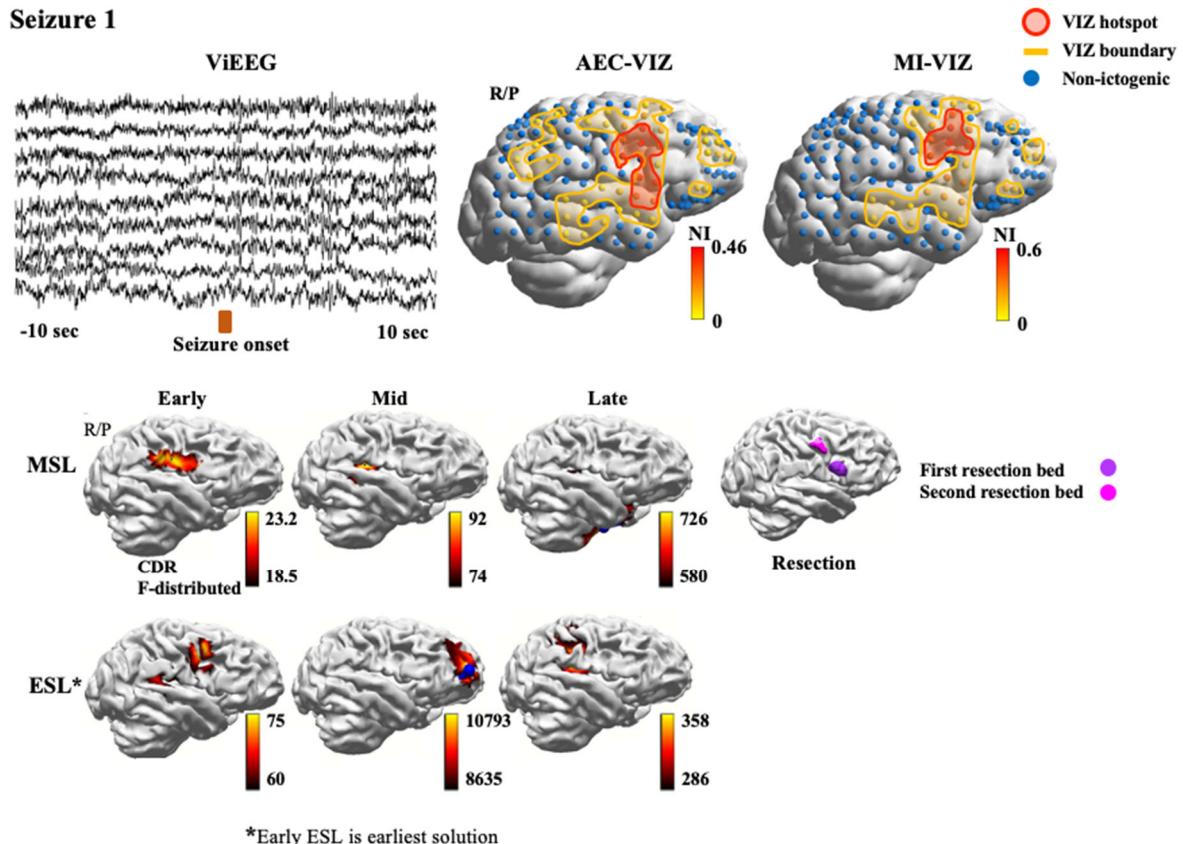

313 **Supplementary Figure 6.** Patient 3 had a normal MRI with over 100 seizure events per month before
 314 surgery and infrequent non-disabling seizures at 23 months post-surgery (Engel I). MEG sLORETA
 315 ictal early source localisation suggested a focus at the left paracentral lobule. Guided by MSL
 316 solutions, ViEEGs were defined to extensively cover vertex, left parietal, and lateral temporal areas.
 317 Source signals of seven MEG captured seizure events are reconstructed while six seizures present


318 distinct morphology of ictal spikes. Ictal discharges can be seen in the representative ViEEG channels
319 with a spatial distribution that is similar across the seizure events. Both AEC-VIZ and MI-VIZ
320 identified hotspots (nodes in red line and shade) encompassing the left paracentral lobule. This area is
321 highlighted by five seizures (Seizure 1, Seizure 2, Seizure 3, Seizure 4, Seizure 6). AEC-VIZ derived
322 from Seizure 5 spreads laterally while MI-VIZ extends medially. Therefore, both AEC-VIZ and MI-
323 VIZ from MEG data better concord with the earliest solution given by MSL. This patient has achieved
324 Engel I outcome with rare non-disabling seizures. Based on the surgical outcome, the MEG derived
325 AEC-VIZ and MI-VIZ successfully captured the bulk of the EZ.

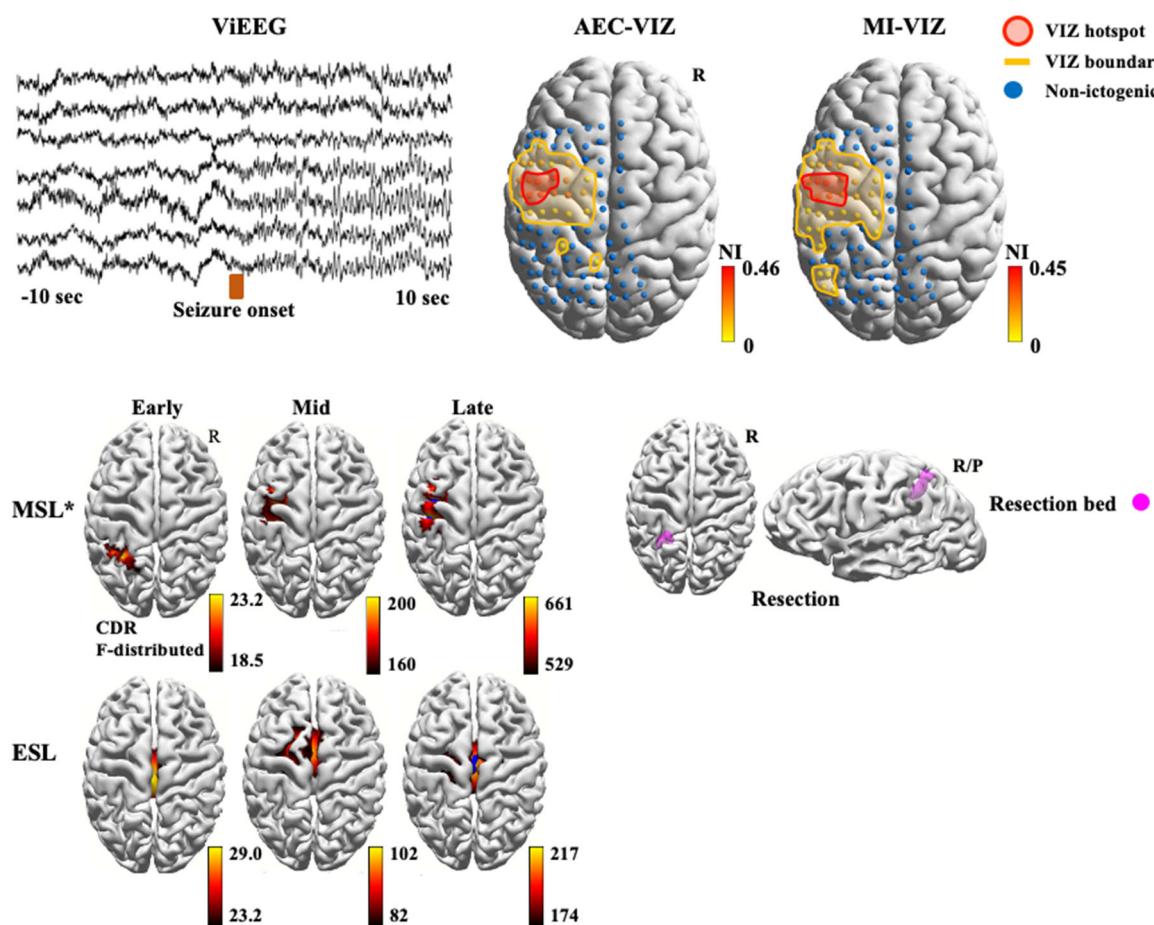
326

327

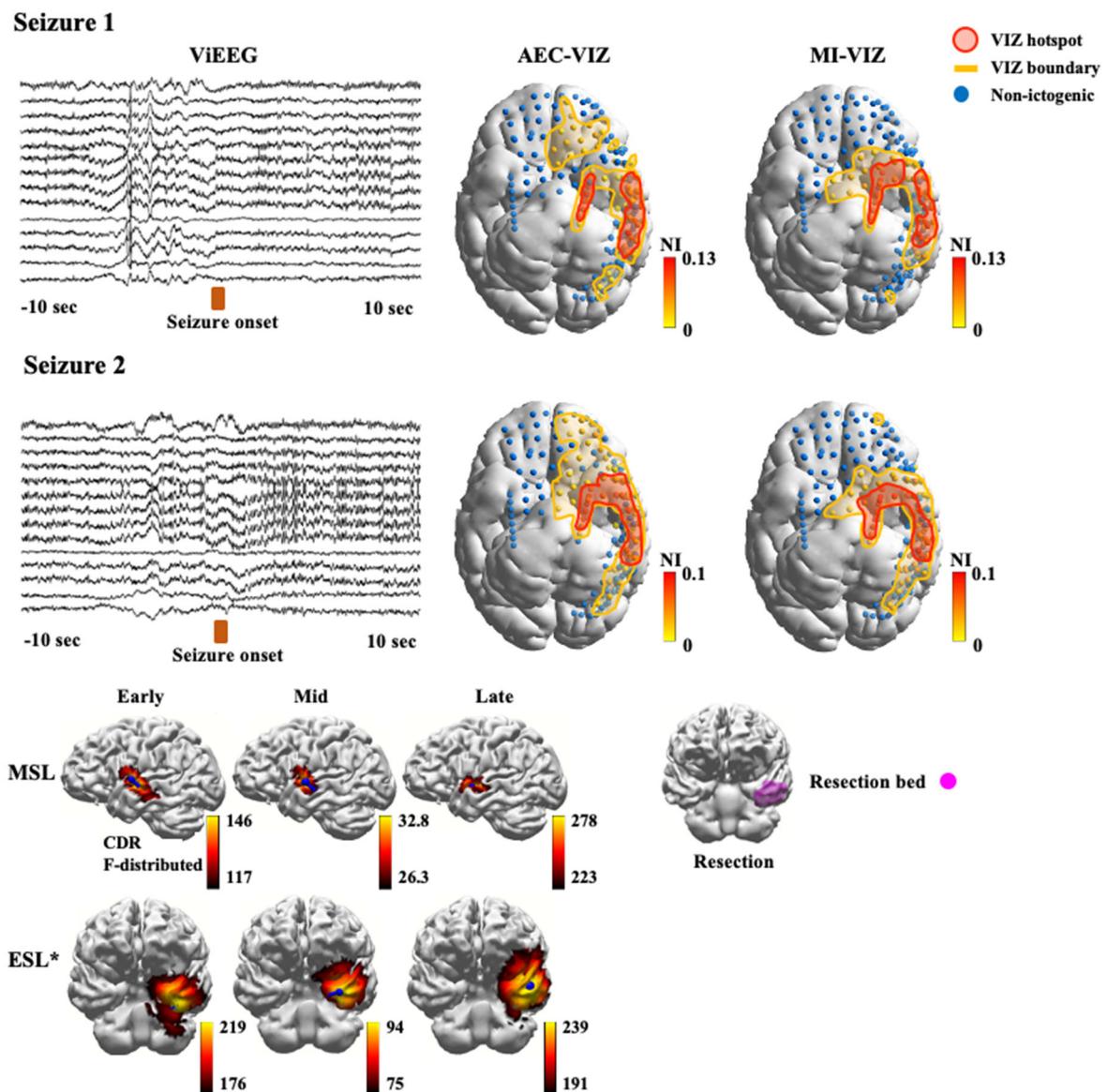

328



331


332 **Supplementary Figure 7.** Patient 4 had a normal MRI with over 20 seizure events per month before
333 surgery. After surgery, the patient had infrequent disabling and non-disabling seizures at 21 months
334 follow-up. MEG sLORETA ictal early source localisation suggested a focus at the posterior superior
335 temporal gyrus. Guided by MSL solutions, ViEEGs were defined to extensively cover bilateral
336 temporal, parietal, and occipital areas in a non-regularized pattern to enhance detection of VIZ beyond
337 regular iEEG configurations. Source signals of eight MEG captured seizure events are reconstructed
338 while five seizures present distinct morphology of ictal spikes. Ictal discharges can be seen in the
339 representative ViEEG channels. AEC-VIZ and MI-VIZ identified different hotspots using Seizure 2,
340 Seizure 3, and Seizure 5, while AEC-VIZ and MI-VIZ hotspots agree in Seizure 1 and Seizure 4.
341 Variability of AEC-VIZ and MI-VIZ boundaries is observed between seizures; multiple, bilateral
342 regions are identified to be VIZ hotspots (high NI values). This patient has achieved Engel III outcome
343 with fewer disabling seizures. Based on the suboptimal surgical outcome, the MEG derived AEC-VIZ
344 and MI-VIZ may suggest epileptic foci outside the current resection.

347 **Supplementary Figure 8.** Patient 5 had a normal MRI with over 20 seizures per month before surgery
348 and is seizure free at 20 months follow-up. MEG sLORETA ictal source localisation suggested a focus
349 at the mesial temporal region before propagation to the temporal pole. Guided by MSL solutions,
350 ViEEGs were defined to extensively cover basal, inferior and lateral temporal areas. Two depth
351 electrode-like ViEEGs were also defined to cover both hippocampi. Source signals of two MEG
352 captured seizures are reconstructed while only the first seizure presents distinct morphology for ictal
353 spikes. Ictal discharges can be seen in the representative ViEEG channels. Both AEC-VIZ and MI-
354 VIZ identified hotspots (nodes in red line and shade) encompassing the left mesio-basal temporal
355 region. AEC-VIZ and MI-VIZ hotspots concord with both MSL and ESL solutions. However, the
356 extent of both AEC-VIZ and MI-VIZ are broader than resection margins and MSL solutions. This
357 patient has achieved Engel I seizure-free outcome. Based on the seizure-free outcome, the MEG
358 derived AEC-VIZ and MI-VIZ successfully captured the EZ.

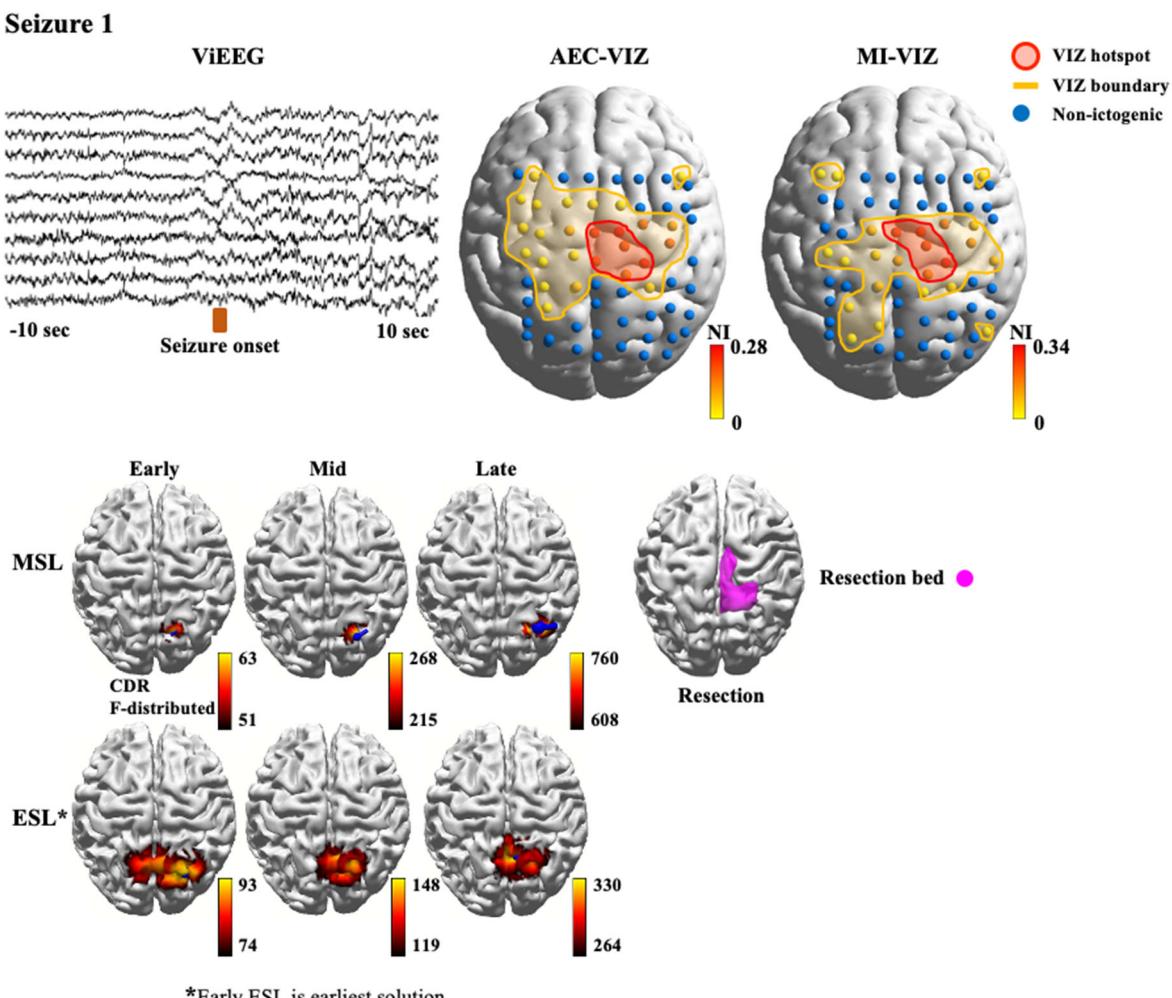

362 **Supplementary Figure 9.** Patient 6 had a normal MRI with over 100 seizures per month before
 363 surgery, which led to an Engel I outcome. MEG and EEG sLORETA ictal early source localisation
 364 suggested a focus in the region of the right central sulcus and pre-motor cortex. Guided by MSL
 365 solutions, ViEEGs were defined to extensively cover lateral parietal, temporal, and frontal areas
 366 including the frontal pole. Source signals of MEG captured continuous spikes are reconstructed.
 367 Continuous spikes can be seen in the representative ViEEG channels. AEC-VIZ and MI-VIZ identified
 368 hotspots (nodes in red line and shade) encompassing a focus at the right pre-motor cortex. Note the
 369 overlap with the early ESL solution and the surgical resection and the lack of overlap with the MSL
 370 solutions. Hence, AEC-VIZ and MI-VIZ from MEG data better concords with the earliest solution
 371 given by the EEG rather than the corresponding MEG sLORETA solution. This patient has achieved
 372 Engel I seizure-free outcome according to the latest review (over two years since surgery that showed
 373 a cortical dysplasia). Based on the surgical outcome, the MEG derived AEC-VIZ and MI-VIZ
 374 successfully captured the EZ, while the MEG derived sLORETA solution did not.

Seizure 1

*Early MSL is earliest solution

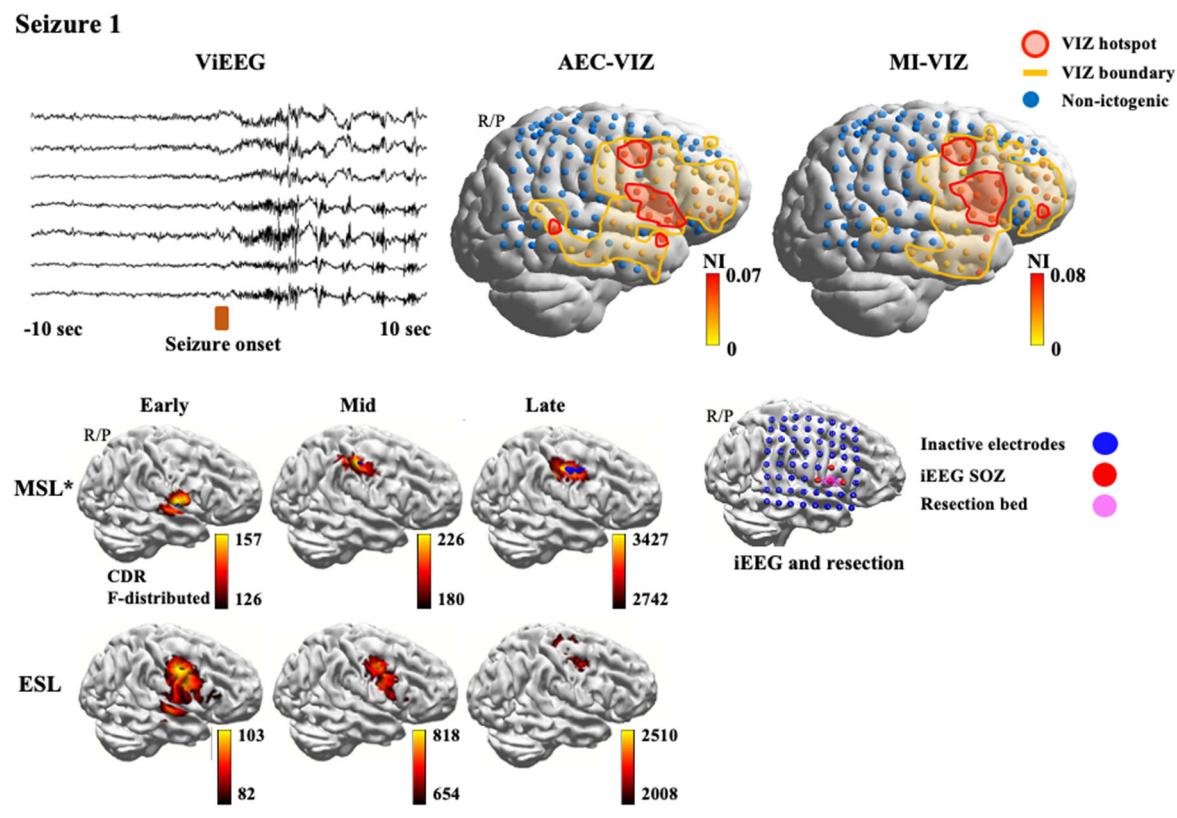
377 **Supplementary Figure 10.** Patient 7 had a normal MRI with over 100 seizures per month before
 378 surgery and is seizure-free at 20 months follow-up. EEG and MEG sLORETA source localisation of
 379 ictal discharges was non-localising while MEG sLORETA early source localisation of interictal
 380 discharges suggested a focus at the junction of post-central sulcus and superior parietal lobule (ESL
 381 and MSL solutions using interictal spikes shown). Guided by MSL solutions using interictal spikes,
 382 ViEEGs were defined to extensively cover frontal, parietal and anterior occipital areas. Source signals
 383 of a MEG captured seizure is reconstructed. Ictal discharges can be seen in the representative ViEEG
 384 channels. Both AEC and MI-VIZ identified hotspots (nodes in red line and shade) encompassing a
 385 localised area of the left central sulcus extending laterally. AEC-VIZ and MI-VIZ do not overlap the
 386 early-MSL (interictal) nor the surgical resection but better concords with mid-MSL (interictal) and
 387 late-MSL (interictal). This patient has achieved Engel I seizure-free outcome (histology was cortical

388 dysplasia). Based on the seizure free outcome, the MEG derived AEC and MI-VIZ did not capture the
389 EZ.



*Early ESL is earliest solution

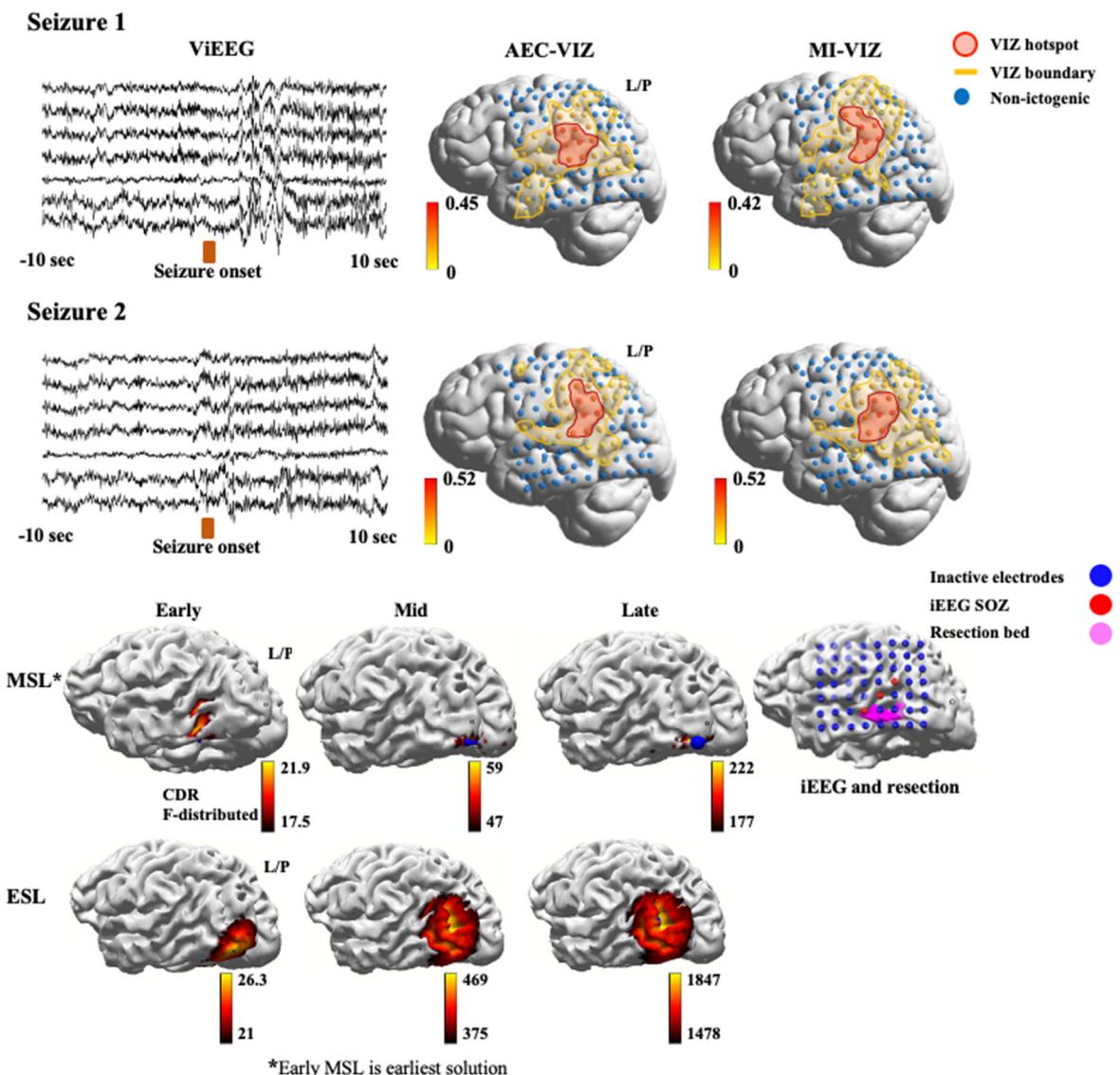
392 **Supplementary Figure 11.** Patient 8 had a normal MRI with over 20 seizures per month before
 393 surgery and is seizure free at 22 months follow-up. MEG sLORETA ictal early source localisation
 394 suggested a focus at the left superior temporal gyrus. Based on this, ViEEGs were defined to
 395 extensively cover left lateral temporal, basal temporal, temporal pole, orbitofrontal, and frontal pole
 396 surfaces. Source signals of two MEG captured seizure events are reconstructed. Ictal discharges can
 397 be seen in the representative ViEEG channels with a spatial distribution that is similar across the two
 398 seizure events. Both AEC-VIZ and MI-VIZ identified hotspot (nodes in red line and shade)
 399 encompassing the left basal and mesial temporal structures including anterior hippocampus and
 400 temporal pole. Note the overlap with the ESL solutions and the surgical resection and the lack of


401 overlap with the MSL solutions. Hence, AEC-VIZ and MI-VIZ from MEG data better concords with
402 the earliest solution given by the EEG rather than the corresponding MEG sLORETA solution. This
403 patient has achieved Engel I seizure-free outcome according to the latest review (cortical dysplasia on
404 histology). Based on the seizure free outcome, the MEG derived AEC-VIZ and MI-VIZ successfully
405 captured the EZ while the MEG derived sLORETA solution, that sat well outside the resection bed,
406 did not.

407

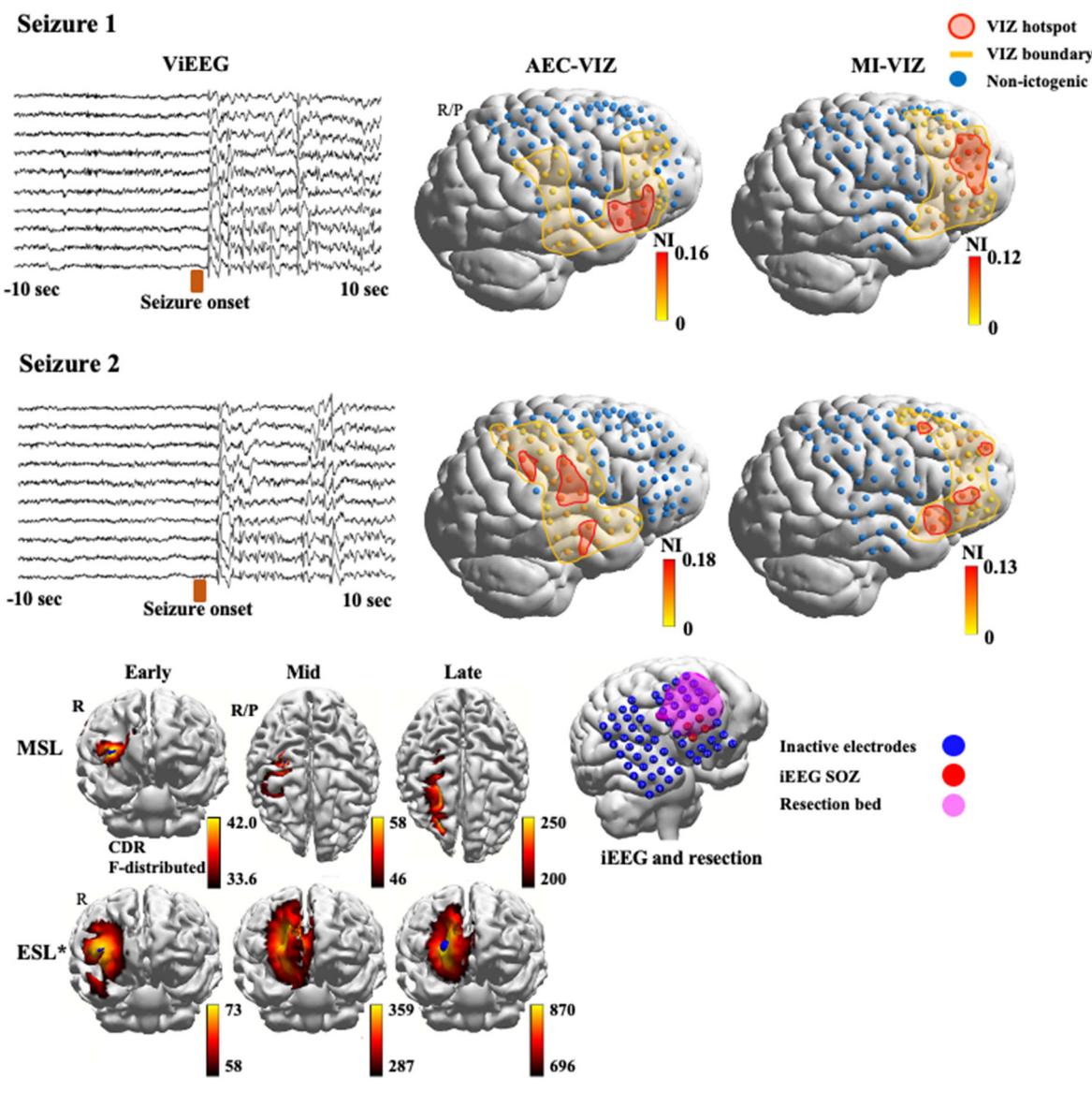
409

410 **Supplementary Figure 12.** Patient 9 had a normal MRI with over 100 seizures per month (motor left
411 leg) before surgery. After surgery, the patient was seizure free for 6 months but then developed new
412 left arm motor events. MEG sLORETA ictal early source localisation suggested a focus at the right
413 posterior paracentral lobule and precuneus. Guided by MSL solutions, ViEEGs were defined to
414 extensively cover the vertex, biparietal and posterior bifrontal areas. Source signals of two MEG
415 captured seizures are reconstructed while only the first seizure presents a distinct morphology for ictal
416 spikes. Ictal discharges can be seen in the representative ViEEG channels. Both AEC and MI-VIZ
417 identified hotspots (nodes in red line and shade) encompassing the right paracentral lobule which does
418 not concord with MSL or ESL solutions. This patient has achieved Engel II outcome with rare
419 disabling seizures. The MEG derived AEC-VIZ and MI-VIZ overlap the surgical resection (that
420 showed cortical dysplasia) but the return of seizures suggests that the EZ was not sufficiently removed.



422

423 **Supplementary Figure 13.** Patient 10 had an extensive cortical dysplasia of the right fronto-temporo-
424 parietal area with over 100 seizures per month before surgery, which was successful in stopping her
425 disabling events. MEG sLORETA ictal early source localisation suggested a focus at the base of the
426 pre-central gyrus. Guided by MSL solutions and by the extent of the dysplasia, ViEEGs were defined
427 to extensively cover much of the right hemisphere. Source signals of MEG captured continuous spikes
428 that are reconstructed and shown in the representative ViEEG channels. Both AEC-VIZ and MI-VIZ
429 identified hotspots (nodes in red line and shade) containing two isolated areas (one inferior and the
430 other superior) at the lateral frontal convexity where the inferior hotspot better concords with the
431 resection margin, iEEG SOZ and the earliest solution given by MEG while the superior hotspot
432 overlaps with the late-MSL and late-ESL. This patient has achieved Engel I outcome with non-
433 disabling seizures. Based on surgical outcome, the MEG derived AEC-VIZ and MI-VIZ successfully
434 captured the surgical resection and may represent the wider extent of the EZ.


435

436

439 **Supplementary Figure 14.** Patient 11 had an extensive lesion at the left temporo-parieto-occipital
440 (TPO) area on MRI with frequent disabling seizures (average 15 seizures per month) before surgery.
441 Resection only gave an Engel III outcome. MEG sLORETA ictal early source localisation suggested
442 a focus at the TPO junction. Guided by MSL solutions, ViEEGs were defined to extensively cover
443 TPO junction and posterior frontal, superior parietal and lateral temporal areas. Source signals of two
444 MEG captured seizure events are reconstructed. Ictal discharges can be seen in the representative
445 ViEEG channels. Both AEC-VIZ and MI-VIZ identified hotspots (nodes in red line and shade)
446 encompassing the left parieto-temporal convexity, with their boundaries including the TPO junction.
447 AEC-VIZ and MI-VIZ from MEG data better concords with the earliest solution given by the MEG.
448 This patient has achieved Engel III outcome with fewer disabling seizures. Based on surgical outcome,
449 the MEG derived AEC-VIZ and MI-VIZ may represent the wider extent of the EZ. Indeed, the iEEG

450 SOZ was concordant with the VIZ solutions and extended beyond the limited resection zone. The
451 resection area was limited by adjacent eloquent visual tracts.
452

*Early ESL is earliest solution

454
 455 **Supplementary Figure 15.** Patient 12 had a large right frontal gliotic lesion with over 4 disabling
 456 seizures per month before resection which led to complete seizure freedom at 14 months. MEG
 457 sLORETA ictal early source localisation suggested a focus at right inferior frontal gyrus. Guided by
 458 MSL solutions, ViEEGs were defined to extensively cover right frontal, fronto-parietal and superior
 459 temporal areas. Source signals of two MEG captured seizure events are reconstructed. Ictal discharges
 460 can be seen in the representative ViEEG channels. Variability of hotspot and boundary results for
 461 AEC-VIZ and MI-VIZ is present across both seizures. MI-VIZ boundary from Seizure 1 and Seizure
 462 2 fully contain the resection margin and the earliest solution given by the EEG rather than the MEG
 463 while MI-VIZ hotspot from Seizure 1 better predicts the EZ, iEEG SOZ and early-ESL (the earliest
 464 solution in this case). AEC-VIZ is discordant with the resection margin, iEEG SOZ and source

465 localisation solutions. This patient has achieved Engel I seizure-free outcome. Based on the seizure-
466 free outcome, the MEG derived MI-VIZ successfully captured the EZ.
467

468 **References**

- 469 1. Goodfellow M, Rummel C, Abela E, Richardson MP, Schindler K, Terry JR.
470 Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. *Sci
471 Rep* **6**, 29215 (2016).
- 472
- 473 2. Lopes MA, *et al.* An optimal strategy for epilepsy surgery: Disruption of the rich-
474 club? *PLoS Comput Biol* **13**, e1005637 (2017).
- 475
- 476 3. Lopes MA, *et al.* Elevated Ictal Brain Network Ictogenicity Enables Prediction of
477 Optimal Seizure Control. *Front Neurol* **9**, 98 (2018).
- 478
- 479 4. Palva JM, *et al.* Ghost interactions in MEG/EEG source space: A note of caution on
480 inter-areal coupling measures. *Neuroimage* **173**, 632-643 (2018).
- 481
- 482 5. Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. *Hum
483 Brain Mapp* **30**, 1857-1865 (2009).
- 484
- 485 6. Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. *Phys Rev E
486 Stat Nonlin Soft Matter Phys* **69**, 066138 (2004).
- 487
- 488 7. Rummel C, *et al.* Resected Brain Tissue, Seizure Onset Zone and Quantitative EEG
489 Measures: Towards Prediction of Post-Surgical Seizure Control. *PLoS One* **10**,
490 e0141023 (2015).
- 491
- 492 8. Enatsu R, *et al.* Usefulness of MEG magnetometer for spike detection in patients
493 with mesial temporal epileptic focus. *Neuroimage* **41**, 1206-1219 (2008).
- 494
- 495 9. Oishi M, *et al.* Fusiform gyrus epilepsy: the use of ictal magnetoencephalography -
496 Case report. *Journal of Neurosurgery* **97**, 200-204 (2002).
- 497
- 498 10. Plummer C, Vogrin SJ, Woods WP, Murphy MA, Cook MJ, Liley DTJ. Interictal
499 and ictal source localization for epilepsy surgery using high-density EEG with MEG:
500 a prospective long-term study. *Brain* **142**, 932-951 (2019).
- 501
- 502 11. Ruzich E, Crespo-Garcia M, Dalal SS, Schneiderman JF. Characterizing
503 hippocampal dynamics with MEG: A systematic review and evidence-based
504 guidelines. *Hum Brain Mapp* **40**, 1353-1375 (2019).
- 505
- 506 12. Brookes MJ, *et al.* A general linear model for MEG beamformer imaging.
507 *Neuroimage* **23**, 936-946 (2004).
- 508
- 509 13. Handy TC. *Brain Signal Analysis: Advances in Neuroelectric and Neuromagnetic
510 Methods*. The MIT Press (2009).
- 511
- 512 14. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain
513 electrical activity via linearly constrained minimum variance spatial filtering. *IEEE
514 Trans Biomed Eng* **44**, 867-880 (1997).

515

516 15. Sekihara K, Hild KE, 2nd, Nagarajan SS. A novel adaptive beamformer for MEG
517 source reconstruction effective when large background brain activities exist. *IEEE*
518 *Trans Biomed Eng* **53**, 1755-1764 (2006).

519

520 16. Sekihara K, Nagarajan SS, Poeppel D, Marantz A. Asymptotic SNR of scalar and
521 vector minimum-variance beamformers for neuromagnetic source reconstruction.
522 *IEEE Trans Biomed Eng* **51**, 1726-1734 (2004).

523

524 17. Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR. A new approach to
525 neuroimaging with magnetoencephalography. *Hum Brain Mapp* **25**, 199-211 (2005).

526

527 18. Gramfort A, *et al.* MNE software for processing MEG and EEG data. *Neuroimage*
528 **86**, 446-460 (2014).

529

530 19. Fischl B, *et al.* Whole brain segmentation: automated labeling of neuroanatomical
531 structures in the human brain. *Neuron* **33**, 341-355 (2002).

532

533 20. Hincapie AS, *et al.* The impact of MEG source reconstruction method on source-
534 space connectivity estimation: A comparison between minimum-norm solution and
535 beamforming. *Neuroimage* **156**, 29-42 (2017).

536

537 21. Colclough GL, Woolrich MW, Tewarie PK, Brookes MJ, Quinn AJ, Smith SM.
538 How reliable are MEG resting-state connectivity metrics? *Neuroimage* **138**, 284-293
539 (2016).

540

541 22. Akaike H. A new look at the statistical model identification. *IEEE Trans Automat
542 Contr* **19**, 716-723
543 (1974).

544

545 23. Schwarz G. Estimating the Dimension of a Model. *Ann Stat* **6**, 461-464 (1978).

546

547