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1. Derivation of Eq.2 in the main text
Define:

: integrated incident beam intensity withing single exposure time t. 

: number of sub-angle intervals 

: integrated beam intensity after material absorption withing single exposure time t.

: beam intensity after material absorption at each angle interval, i=1,2,…,n

: averaged beam intensity after material absorption at each angle interval

: attenuation coefficient 
 


In this equation, we set the value of n to ensure that the blurring at the farthest distance from the image center is approximately 1 pixel. In this scenario, the blurring effect is linearly reduced and will be less than 1 pixel when approaching the image center. Therefore, the variation of the measured projection image intensity Ii at each sub-angle interval (i) is very small. We can approximate the image intensity Ii to be the averaged intensity, formulated as:       


which can be rewritten as:



At each small angle interval:













     Eq.2 in the main text




2. Loss function in ML training
To achieve a better performance, we have incorporated several loss functions in our model, which include (1) Mean Absolute Error (MAE), (2) Mean Squared Error (MSE), (3) VGG feature loss. The overall loss function is thus a combination of the above-mentioned losses, with different weighting factors, which can be tuned for the best performance:


3. Training dataset preparation
Our dataset consists of 1600 images (512x512 pixels) from the four different categories as shown in Figure 2 in the main text. All images have been normalized to the range of [0, 1]. We split the dataset by the ratio of 9:1 for training and validation purposes. We argue that even though the dataset is designed for this experiment, one can easily design and custom a training dataset to better suit a specific need. For example, to be applied in medical imaging of lungs, one may design a dataset containing lungs with prior known experimentally observed patterns. 

4. Implementation and Training
The whole workflow is implemented with Python, and the ML-based correction model is implemented within the framework of PyTorch[2]. Some training hyperparameters are listed in Table. S1. The training was performed with one Nvidia Quadro GTX 8000 graphic card and it finished in about 24 hours for 300 epoch training. To evaluate the performance in our training and validation procedures, we have used root mean squared error (RMSE), peak signal-noise ratio (PSNR), and structural similarity index (SSIM) as metrics to measure the similarity between the corrected tomogram and the ground truth tomogram. PSNR is a metric representing the similarity between two images, and a larger value means a better agreement. SSIM is a metric quantifying textural similarity. It falls into the range of [0, 1], where 0 means no similarity and 1 means two images are identical.

5. In-situ heating experiment
5.1 Tomography data collection 

We did fly-scan during the experiment. Sample was continuously rotating from 0-900 degrees at rotation speed of 15 deg/sec. Exposure time is 0.04 sec for individual projection image, and it took 1500 projection images totally for this scan. We then took dark image (without x-ray) and flat-field image (without sample) which introduces some time overhead before starting the next fly-scan (rotate from 900-0 degrees). For each 900-degree scan, we divide the 1500 images into 5 groups. Each image group covering a rotation range of 180 degrees was used to reconstruct the 3D structure. 

5.2 Crack extraction 
We use the output from ML to extract the volume fraction of cracks as presented in Fig 5. Specifically, we use Gaussian blurring to fill the cracks and threshold all voxels with value larger than 0 to get the volume of the particle. Within the particle (output from ML), voxel values smaller than 5% of the mean value (in the particle) are treated as crack. Volume fraction is calculated as the ratio of (number of crack voxels) / (volume of particle).

4.3 crack visualization
Fig. S1 shows a slice view of reconstruction at different heating states. Those images with red dots correspond to the images we presented in the main text. For comparison, Fig. S2 displays the outputs from ML model.  

[image: Background pattern
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Fig. S1. A slice view of tomography reconstruction of the particle during in-situ heating experiments. The images with red dots correspond to the images presented in Figure 5 in the main text.

[image: Background pattern
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Fig. S2. A slice view from the output of the machine learning model.
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