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S1 Datasets24

In this work, we use CheMBL [1] as the pre-trained dataset. CheMBL is a chemical database of bioactive25

molecules with drug-like properties and it is a free database open to the public. [2] The CheMBL26 is the26

current version of ChEMBL, updated in March 2020. There are over 1.9 million molecules in the CheMBL2627

dataset.28

Table S1: The quantitative summary of all datasets.

Datasets Total size Train set size Test set size Max value Min value

Unlabeled data
CheMBL 1936342 1926342 10000 - -

(pre-train)

LD50 7413 5931 1482 7.201 0.291

Labeled data IGC50 1792 1434 358 6.36 0.334

(fine-tune) LC50 823 659 164 9.261 0.037

LC50DM 353 283 70 10.064 0.117

LogP 8605 8199 406 8.42 -4.64

For downstream tasks, four toxicity datasets were studied in our work, namely oral rate LD50, 40 h29

Tetrahymenapyriformis IGC50, 96 h fathead minnow LC50, and 48 h Daphnia Magna LC50DM, the basic30

information of toxicity datasets are shown in Table S1. Among them, LD50 measures the number of chemicals31

that can kill half of the rats when orally ingested. The LD50 represents the amount of chemicals that can32

kill half of the rats when orally ingested. It was originally from https://chem.nlm.nih.gov/chemidplus/.33

IGC50 records the 50% growth inhibitory concentration of Tetrahymena pyriformis organism after 40h.[3, 4]34

LC50 reports at the concentration of test chemicals in the water in milligrams per liter that cause 50%35

of fathead minnows to die after 96h. The last one is LC50DM, which represents the concentration of test36

chemicals in the water in milligrams per liter that cause 50% Daphnia Magna to die after 48h. LC50 and37

LC50DM were original from http://cfpub.epa.gov/ecotox/. The unit of toxicity reported in these four38

data sets is −log10 mol/L. The sizes of these four data sets vary from 353 to 7413, which poses a challenge39

for a predictive model to achieve consistent accuracy and robustness. For the partition coefficient prediction40

task, the training set contained 8199 molecules and the test set included 406 components. All components in41

the test set were approved as organic drugs by the Food and Drug Administration (FDA). The logP values42

for all training and test sets were compiled by Cheng et al.[5], and all logP values ranged from -4.64 to 8.4243

(Table S1).44

Table S2: A total of 51 symbols are used to split SMILES strings

Index 0 1 2 3 4 5 6 7 8 9

Symbol c C ( ) O 1 2 = N @

Index 10 11 12 13 14 15 16 17 18 19

Symbol [ ] n 3 H F 4 - S Cl

Index 20 21 22 23 24 25 26 27 28 29

Symbol / s o 5 + # . \ Br 6

Index 30 31 32 33 34 35 36 37 38 39

Symbol P I 7 Na % 8 B 9 Si 0

Index 40 41 42 43 44 45 46 47 48 49

Symbol Se K se Li As Zn Ca Mg Al Te

Index 50

Symbol te

Additionally, we statistic the length of SMILES for all molecules. As listed in Table S2, a total of 5145
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symbols are used to split these SMILES strings. The distribution of SMILES string lengths in the CheMBL is46

shown in Figure S1a, and the majority of SMILES are within 254 in length. Therefore, in this work, we choose47

data with SMILES length no greater than 254 to pre-train. The exact number in the training set is 1,926,48

342, and 10 thousand SMILES strings were randomly selected as a validating set. The basic information of49

CheMBL used in pre-training is shown in Table S1. The distributions of SMILES string lengths for toxicity50

and logP datasets are shown in Figure S1b. Only one SMILES string on the LD50 dataset has a length51

of more than 254, with a length of 284. Therefore, in the downstream tasks, we truncate these sequences52

that exceeded the limit length and input only the first 254 symbols. All these datasets are also available at53

https://weilab.math.msu.edu/Database/.54

Figure S1: The distributions of SMILES string lengths. a. The ChEMBL database. b Four toxicity datasets.

S2 AGBT model parametrization55

S2.1 Input processing56

In this work, all input SMILES strings for bidirectional transformer need to be processing. A total of57

51 symbols, as listed in Table S2, are used to split these SMILES strings. We add a ‘< s >’ symbol and a58

‘< \s >’ at the beginning and end of each input SMILES, which represent the beginning and the end of each59

input, respectively. Besides, the ‘< unk >’ is used to represent some undefined symbols. Since the length of60

SMILES varies from molecule to molecule, the ‘< pad >’ is used as a padding symbol to fill in short inputs61

to reach the preset length. For the self-supervised learning (SSL) -based pre-training, the 15% symbol of the62

input SMILES needs to be operated. Among these 15% symbols, 80% of symbols were masked, 10% of the63

symbols were unchanged, and the remaining 10% were randomly replaced.64

S2.2 Bidirectional transformer model parametrization65

SSL-based pre-training Similar with the architecture of bidirectional encoder representations from trans-66

formers (BERT)[6], our pre-training model is a multi-layer bidirectional transformer encoder, as shown in67

Figure S2. Each transformer layer contains two sub-layers. The first is a multi-head self-attention layer, and68

the second is a fully connected feed-forward neural network. The residual connection is applied to each of69

the two sub-layers, followed by layer normalization.[7] Each transformer layer maps the output features from70

the former transformer layer or the embedded features from the input into different nonlinear space. The71

attention mechanism used in the transformer encoder is scaled dot-product attention and it is formulated as72
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Figure S2: The whole structure of the bidirectional encoder from transformers used in pre-training.

follow,73

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V. (1)

The Q, K, and V , named query matrix, key matrix, and value matrix, are mapping from input data. The74

dot products of the query matrix and key matrix are divides by the scaling factor
√
dk, where the dk is75

the embedding dimension. In practice, a multi-head self-attention mechanism is applied in the transformer76

encoder, where different heads could pay attention to various aspects and improve performance. On the77

top of the N transformer encoder layers, there is a linear layer transforming the embedding dimension into78

the vocabulary size. Finally, the softmax function is used to select the maximum probability value of each79

masked location and report the corresponding prediction result.80

The proposed model is based on Fairseq [8], which is a Sequence-to-Sequence Toolkit written in Python81

and PyTorch [9], and slightly modified so that it can be used for molecular analysis. In this work, the pre-82

training bidirectional transformer model contains 8 Transformer encoder layers, the embedding dimension is83

set to 512, the number of self-attention heads is 8, and the embedding size of fully connected feed-forward84

layers is 1024. The maximum sequence length is set to 256, including the start and terminate symbols. For85

better convergence, the Adam optimizer [10] is used in the pre-training and fine-tune, the Adam betas are86

(0.9, 0.999), and the weight decay is 0.1. Besides, a warming-up strategy is applied for the first 4000 updates87

and the total update steps are one million, the maximum learning rate is set to 0.0001 in this strategy. The88

cross-entropy was applied to measure the difference between the predicted symbols and the real symbols89

at the masked position. The model is trained on six Tesla V100-SXM2 GPUs and the maximum sequence90

number in each GPU is set to 64.91

SSL-based and SL-based fine-tuning There are two strategies to be used in the fine-tuning stage: self-92

supervised learning (SSL) -based fine-tuning of task-specific data without using their labels and sequential93

supervised learning (SL) -based fine-tuning of task-specific data with their labels. For SSL-based fine-tune,94

the pre-trained model is fed with the input data of the downstream task-specific datasets, including both95

training sets and test sets. For each SMILES string, we randomly select 15% symbols to be a training-96

validation set in our loss function. Only 50% symbols of the set were masked and the remaining 50%97

symbols of the set were unchanged. A warming-up strategy is also applied for the first 500 updates. The98

total update steps are 2000. The maximum learning rate is set to 0.00001 in this stage. In the last hidden99
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layer, the embedded vector of length 512 correspondings to the first special symbol < s > is used for100

molecular property prediction. Figure S3 shows the workflow of generating molecular fingerprints from the101

SSL-based fine-tuned model.102

Figure S3: Workflow for generating molecular fingerprints from the pre-trained and SSL-based fine-tuned model. Three two

mask operations, ’mask‘ and ’no changing‘, are retained in the self-supervised fine-tuning stage. The labels of task-specific

data are disregarded in the SSL-based fine-tuning stage. Here, < s > is a special leading symbol added in front of every input

SMILES, and < \s > is a terminating symbol. At the stage of fingerprints generation, < s >’s embedding vector from the

bidirectional encoder is utilized to represent the molecular fingerprint (BT-FP).

For sequential SL-based fine-tuning, the labels of task-specific data are utilized. The pre-trained model103

will be fed with data from the training set of the task-specific dataset, and no additional ’mask’ operations104

are required for the input SMILES. The Adam optimizer is set as the same as that of pre-training. The105

maximum learning rate is set to 10−5. The warming-up strategy is used for the first 500 updates and the106

total update steps are 5000 for each dataset. The mean square error metric is used in this fine-tuning stage,107

as shown in Figure S4. All models were trained on six Tesla V100-SXM2 GPUs and the maximum sequence108

number in each GPU is set to 64.109

Figure S4: Workflow for generating molecular fingerprints from the pre-trained and sequential supervised learning (SL) fine-

tuned model. Labeled task-specific data are employed in the sequential SL-based fine-tuning stage. At the stage of fingerprints

generation, < s >’s embedding vector before last linear layer is utilized to represent the molecular fingerprint (BTs-FP).

S2.3 Algebraic graph model parametrization110

In order to select a general AG-FP for all four toxicity data sets, we need to combine the kernel function111

and graph matrix type properly. For the sake of convenience, we use the notation AGMΩ,β,τ , to indicate the112

AG-FPs generated by using interactive matrix type M with kernel function ω and corresponding kernel113

parameters β and τ . Here, M = {Adj, Lap} represents a set of adjacency matrix and Laplacian matrix.114

5



ω = {E,L} refers to a set of generalized exponential and generalized Lorentz kernels. In addition, the kernel115

parameter β = κ if ω = E, and β = υ if ω = L. And τ is used such that ηk1k2 = τ(r̄k1 + r̄k2), where k̄k1116

and r̄k2 are the van der Waals radii of element type k1 and k2, respectively. Kernel parameters β and τ117

as selected based on the cross validation with a random split of the training data. It has been shown that118

multiscale information can boost the performance of predictor. [11, 12] In this work, we consider at most119

two kernels. As a straightforward notation extension, two kernels can be parametrized by AGM1,M2

ω1,β1,τ1;Ω2,β2,τ2
.120

To attain the best performance using AG-FP, the kernel parameters need to be optimized. We vary β, both121

τ and κ, from 0.5 to 6 with an increment of 0.5, while τ values are chosen from 0.5 to 6 with an increment of122

0.5. The high values of the power order such as β ∈ {10, 15, 20} are also considered to approximate the idea123

low-pass filter.[13] We use the method of 5-fold cross-validation (CV) to select the kernel hyperparameters124

M, Ω, β and τ . Figure S5a shows the CV results of the single-kernel model (AGM1

ω1,β1,τ1
), and R2 is used125

as the evaluation metrics. Then based on the optimal kernel parameters in the single-kernel model, the126

two-kernel model, AGM1,M2

ω1,β1,τ1;Ω2,β2,τ2
, can be optimized by using 5-fold CV on training sets. Figure S5b in127

the supplement material reports the best models with associated R2 in this experiment. All cross-validations128

were performed for toxicity training sets, and the scores were based on the mean value of R2 in the four129

training sets.130

Figure S5: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGM
Ω,β,τ , and AGM1,M2

ω1,β1,τ1;Ω2,β2,τ2
on

the training data of four toxicity datasets are plotted against different values of τ and β. a. The best hyperparameters

and R2 for these one-scale models are found to be (AGAdj
E,1.5,0.5, average R2 = 0.616), (AGAdj

L,4.5,0.5, average R2 = 0.616),

(AGLap
E,5.5,0.5, average R2 = 0.610) and (AGLap

L,10,0.5, average R2 = 0.620) from left to right separately. b. Based on the best

one-scale model, the best hyperparameters and R2 for these multiscale models are found to be (AGLap,Adj
L,10,0.5;E,6,0.5, average

R2 = 0.628), (AGLap,Adj
L,10,0.5;L,20,0.5, average R2 = 0.629), (AGLap,Lap

L,10,0.5;E,6,0.5, average R2 = 0.627) and (AGLap,Lap
L,10,0.5;E,20,0.5,

average R2 = 0.631) from left to right separately.

For the toxicity and logP datasets, there are 10 commonly occurring element types, i.e., {H, C, N,131

O, F, P, S, Cl, Br, I}, which means 100 element interactive pairs will form based on the combinations of132

these 10 element types in molecules. For adjacency matrices, only positive eigenvalues are considered. Note133

that Laplacian matrices are positive semidefinite. As discussed in the Methods section, we can compute134

nine descriptive statistical values, namely the maximum, minimum, average, summation, median, standard135

deviation, and variance of all eigenvalues. Another two values are the number of considered eigenvalues136

and the sum of the second power of eigenvalues. This gives rise to a total of 900 features for one kernel,137
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which means that we can get an 1800 dimension AG-FP for each molecule if we use two-kernel information.138

The optimal two-kernel algebraic graph models are AGLap,Lap
L,10,0.5;L,20,0.5, and the average R2 of all four toxicity139

datasets is 0.631.140

Figure S6: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGM
Ω,β,τ , and AGM1,M2

ω1,β1,τ1;Ω2,β2,τ2
on

the training data of partition coefficient data sets are plotted against different values of τ and β. a. The best hyperparameters

and R2 for these one-scale models are found to be (AGAdj
E,4.5,1.0, R2 = 0.798), (AGAdj

L,2.0,1.0, R2 = 0.799), (AGLap
E,1.5,1.0,

R2 = 0.81) and (AGLap
L,10,1.5, R2 = 0.811) from left to right separately. b. Based on the best one-scale model, the best

hyperparameters and R2 for these multiscale models are found to be (AGLap,Adj
L,10,1.5;E,5,4, R2 = 0.831), (AGLap,Adj

L,10,1.5;L,0.5,5.5,

R2 = 0.829), (AGLap,Lap
L,10,1.5;E,0.5,1, R2 = 0.823) and (AGLap,Lap

L,10,1.5;E,1,4.5, R2 = 0.826) from left to right separately.

For the partition coefficient dataset, we also use two-kernel information as the final AG-FPs. There141

are the same 10 element types as for toxicity datasets and there are also 100 element interactive pairs will142

form in each molecule. As shown in Figure S6a, we firstly selected the best hyperparameters for these one-143

scale models, which are AGAdj
E,4.5,1.0 (R2 = 0.798), AGAdj

L,2.0,1.0 (R2 = 0.799), AGLap
E,1.5,1.0 (R2 = 0.81), and144

AGLap
L,10,1.5 (R2 = 0.811). Based on the optimal one-scale model (AGLap

L,10,1.5), the best multiscale model is145

found to be AGLap,Adj
L,10,1.5;E,5,4, as shown in Figure S6b, the value of R2 is 0.831. The gradient boosting decision146

tree (GBDT) is used to select optimal algebraic graph model hyperparameters. The parameters of GBDT147

vary with the size of the training set, which are listed in Table S3.148

S2.4 Feature fusion149

Based on a large amount of unlabeled data, BT-FP can capture the overall information of molecules150

after pre-training and fine-tuning. AG-FP, on the other hand, as insight based on physical and chemical151

knowledge, can obtain more detailed information of molecular structure, including dihedral angle and relative152

distance of atoms, with the help of algebraic graph theory. The proposed AGBT-FP in this work is a fusion153

of BT-FP and AG-FP. The random forest (RF) is used to fuse BT-FP and AG-FP. First, we combine BT-FP154

and AG-FP. Then the RF algorithm was used to select top 512 features. The parameters of RF vary with155

the size of the training set. All parameters are listed in Table S3. The final AGBT-FP’s dimension is set to156

512, which is the same as BT-FP’s.157
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S2.5 Downstream machine learning algorithms158

To compare the AGBT and other fingerprints’ performance on specific tasks, three machine learning159

algorithms are used: gradient boosting decision tree (GBDT), single-task deep neural network (ST-DNN),160

and multitask deep neural network (MT-DNN).161

Gradient boosting decision tree (GBDT). GBDT is a robust machine learning regressor. In this162

approach, individual decision trees are successively combined in a stage-wise fashion to achieve the capability163

of learning complex features. It uses both gradient and boosting strategies to reduce model errors. Compared164

to the deep neural network (DNN) approaches, this ensemble method is robust, relatively insensitive to165

hyperparameters, and easy to implement. Moreover, they are much faster to train than DNN. In fact,166

for small data sets, GBDT can perform even better than DNN or other deep learning algorithms.[14, 15]167

Therefore, GBDT has been applied to a variety of QSAR prediction problems, such as toxicity, solvation,168

and binding affinity predictions.[16, 17]169

The GBDT is used to predict the toxicity and logP in this work and implemented by the scikit-learn170

package.[18] In this work, there are five data sets with their training data size varying from 283 to 8199. To171

better compare feature performance, we set only two sets of parameters according to the size of the training172

set for GBDT. The detailed values of these hyperparameters are given in Table S3.173

Table S3: RF and GBDT parameters for different toxicity training-set sizes

Training-set Szie RF Parameters GBDT Parameters

> 1000 n estimators = 10000 n estimators = 10000

criterion = ‘mse’ max depth = 8

max depth = 8 min samples split = 4

min samples split = 4 learning rate = 0.01

min samples leaf = 1 subsample = 0.3

min weight fraction leaf = 0.0 max features=‘sqrt’

< 1000 n estimators = 10000 n estimators = 10000

criterion = ‘mse’ max depth = 7

max depth = 7 min samples split = 3

min samples split = 3 learning rate = 0.01

min samples leaf = 1 subsample = 0.2

min weight fraction leaf = 0.0 max features=‘sqrt’

Single-task deep neural network (ST-DNN). A DNN mimics the learning process of a biological174

brain by constructing a wide and deep architecture of numerous connected neuron units. A typical deep175

neural network often includes multiple hidden layers. In each layer, there are hundreds or even thousands176

of neurons. During learning stages, weights on each layer are updated by backpropagation. With a com-177

plex and deep network, DNN is capable of constructing hierarchical features and model complex nonlinear178

relationships. ST-DNN is a regular deep learning algorithm. It only takes care of one single prediction179

task. Therefore, it only learns from one specific training dataset. A typical four-layer ST-DNN is showed in180

Figure S7a, where Ni (i = 1, ..., 4), represents the number of neurons in the ith hidden layer.181

Multitask deep neural network (MT-DNN). The multitask (MT) learning technique has achieved182

much success in qualitative Merck and Tox21 prediction challenges.[19, 20, 21] In the MT framework, multiple183

tasks share the same hidden layers. However, the output layer is attached to different tasks. This framework184

enables the neural network to learn all the data simultaneously for different tasks. Thus, the commonalities185

and differences among various data sets can be exploited. It has been shown that MT learning typically can186

improve the prediction accuracy of relatively small data sets if it combines with relatively larger data sets187

in its training. Figure S7b is an illustration of a typical four-layer MT-DNN for training four different tasks188

simultaneously. Suppose there are totally T tasks and the training data for the tth task are (Xt
i , y

t
i)
Nt
i=1,189
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Figure S7: ST-DNN and MT-DNN framework. a) An illustration of a typical ST-DNN. Only one dataset is trained in this

network. Four hidden layers are included, ki (i = 1, 2, 3, 4) represents the number of neurons in the ith hidden layer and Ni,j
is the jth neuron in the ith hidden layer. Here, O1 is the single output for the model. b) An illustration of a typical MT-DNN

training four tasks (datasets) simultaneously. Four hidden layers are included in this network, ki (i = 1, 2, 3, 4) represents the

number of neurons in the ith hidden layer and Ni,j is the jth neuron in the ith hidden layer. Here O1 to O4 represent four

predictor outputs for four tasks.

where t = 1, ..., T , i = 1, ..., Nt, where Nt is the number of samples in the tth task, and Xt
i is the feature190

vector for the ith sample in the tth task, yti is the label value of the ith sample in the tth task, respectively.191

The purpose of MT learning is to simultaneously minimize the loss function:192

argmin

T∑
t=1

Nt∑
i=1

L(yti , f
t(Xt

i , θ
t)), (2)

where f t is the prediction for the ith sample in the tth task by our MT-DNN, which is a function of the193

feature vector Xt
i , L is the loss function, and θt is the collection of machine learning hyperparameters. A194

popular cost function for regression is the mean squared error, which is formulated as:195

L(yti , f
t(Xt

i , θ
t)) =

1

Nt

Nt∑
i=q

(yti − f t(Xt
i , θ

t))2. (3)

In this work, MT-DNN is only applied to predict the toxicity. The ultimate goal of MT-DNN learning196

is to potentially improve the overall performance of multiple toxicity prediction models, especially for the197

smallest dataset that performs relatively poorly in the ST-DNN. More concretely, it is reasonable to assume198

that different toxicity indices share a common statistic pattern so that these different tasks can be trained199

simultaneously when their feature vectors are constructed in the same manner. For our toxicity prediction,200

four different tasks (LD50, IGC50, LC50, LC50DM data sets) are trained together. This leads to four output201

neurons in the output layer, with each neuron being specific to one of four tasks.202

The performance of deep neural network models depends on their architecture, input data dimension,203

and hyperparameters. For BT-FP and AGBT-FP, the feature sizes are both 512, which means that the204

network with the same architecture can be used to train these two sets of features. The input layer contains205

512 neurons, followed by four hidden layers with 1024, 512, 512, and 512 neurons, respectively. For the206

present regression problem, only one neuron in the final output layer. For AG-FP, it contains 1800 features,207

and thus a more complex network structure is required. In this case, we set 1800 neurons in the input layer,208

followed by 5 hidden layers with 2048, 1024, 512, 512, and 512 neurons, respectively. The output layer has209

one neuron. Other network parameters are all the same for these three kinds of molecular features. The210
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stochastic gradient descent (SGD) with a momentum of 0.5 is used as an optimizer. We use 2000 epochs211

to train all the networks. The mini-batch size is set to 8. The learning rate is set to 0.01 in the first 1000212

epochs and 0.001 for the rest epochs. These hyperparameters are applied to both ST-DNN and MT-DNN.213

All the DNN models are built and trained in Pytorch.[9]214

S3 Supplementary Figures215

Figure S8: Data and results of AGBT. a, Predicted results of AGBT-FPs with MT-DNN model for LD50 dataset (R2=0.671,

RMSE=0.554 log(mol/L) for 20 repeated experiments). b, Predicted results of BT-FPs with MT-DNN model for LC50 dataset

(R2=0.783, RMSE=0.692 log(mol/L) for 20 repeated experiments). c, Predicted results of AGBTs-FPs with MT-DNN model

for LC50 dataset (R2=0.905, RMSE=0.615 log(mol/L) for 20 repeated experiments).

Figure S9: R2 values of BT-FP and AGBT-FP predictions on three machine learning algorithms, GBDT, STDNN, and MTDNN.

a LD50 dataset, b LC50 dataset, c LC50DM dataset.
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Figure S10: The AGBT-FPs of the four toxicity datasets were ranked by their feature importance. a Sorted feature importance

for the LD50 dataset. The top three features are from AG-FP. b Sorted feature importance for the IGC50 dataset. The top

three features are from AG-FP. c Sorted feature importance for the LC50 dataset. The top three features are from AG-FP. d

Sorted feature importance for the LC50 dataset. The most important feature is from BT-FP. The 2nd and 3rd most important

features are from AG-FP.

Figure S11: Distribution of molecules in the three most important features of AGBT-FP. a The distribution of the IGC50

dataset. b The distribution of the LC50 dataset. c The distribution of the LC50DM dataset.
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Figure S12: The ratio refers to the rate of variability (variance) of the data explained by each principal component through

principal component analysis (PCA). For AGBT-FP (orange), the first 112 components are needed to represent 90% variance,

whereas for AGBTs-FP (green), only the first 48 components are needed to represent 90% of the variance.

12



S4 Supplementary Tables216

Tanimoto coefficient, SA,B , is used in this work to calculate the degree of similarity between two217

molecules. A higher average SA,B of the two datasets implies a higher similarity. Tanimoto coefficient,218

SA,B , is defined as follow:219

SA,B =

∑N
i=1 xiAxiB∑N

i=1 x
2
iA +

∑N
i=1 x

2
iB −

∑N
i=1 xiAxiB

. (4)

In this study, the similarity between the largest dataset LD50, which contains 7413 molecules, with other220

three datasets are list in Table S4221

Table S4: Similarity between the Largest Dataset LD50 with the other three datasetsa

Fingerprints IGC50(1792) LC50(823) LC50DM(353)

Estate2 0.964 0.973 0.982

FP2 0.886 0.928 0.941
a The number in the bracket is the total size of the dataset.
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