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S1 Datasets

In this work, we use CheMBL [1] as the pre-trained dataset. CheMBL is a chemical database of bioactive
molecules with drug-like properties and it is a free database open to the public. [2] The CheMBL26 is the
current version of ChEMBL, updated in March 2020. There are over 1.9 million molecules in the CheMBL26
dataset.

Table S1: The quantitative summary of all datasets.

Datasets Total size Train set size Test set size Max value Min value
Unlabeled data | iy 1936340 1926342 10000 - ;
(pre-train)

LD50 7413 5931 1482 7.201 0.291
Labeled data IGC50 1792 1434 358 6.36 0.334
(fine-tune) LC50 823 659 164 9.261 0.037
LC50DM 353 283 70 10.064 0.117
LogP 8605 8199 406 8.42 -4.64

For downstream tasks, four toxicity datasets were studied in our work, namely oral rate LD50, 40 h
Tetrahymenapyriformis IGC50, 96 h fathead minnow LC50, and 48 h Daphnia Magna LC50DM, the basic
information of toxicity datasets are shown in Table S1. Among them, LD50 measures the number of chemicals
that can kill half of the rats when orally ingested. The LD50 represents the amount of chemicals that can
kill half of the rats when orally ingested. It was originally from https://chem.nlm.nih.gov/chemidplus/.
IGC50 records the 50% growth inhibitory concentration of Tetrahymena pyriformis organism after 40h.[3, 4]
LC50 reports at the concentration of test chemicals in the water in milligrams per liter that cause 50%
of fathead minnows to die after 96h. The last one is LC50DM, which represents the concentration of test
chemicals in the water in milligrams per liter that cause 50% Daphnia Magna to die after 48h. LC50 and
LCH0DM were original from http://cfpub.epa.gov/ecotox/. The unit of toxicity reported in these four
data sets is —logio mol/L. The sizes of these four data sets vary from 353 to 7413, which poses a challenge
for a predictive model to achieve consistent accuracy and robustness. For the partition coefficient prediction
task, the training set contained 8199 molecules and the test set included 406 components. All components in
the test set were approved as organic drugs by the Food and Drug Administration (FDA). The logP values
for all training and test sets were compiled by Cheng et al.[5], and all logP values ranged from -4.64 to 8.42
(Table S1).

Table S2: A total of 51 symbols are used to split SMILES strings

Index 0 1 2 3 4 5 6 7 8 9

Symbol | ¢ C ( ) @) 1 2 = N Q
Index 10 | 11 12 13 14 15 16 17 18 19
Symbol [ ] n 3 H F 4 - S Cl
Index 20 | 21 | 22 23 24 25 26 27 28 29
Symbol | / s ) 5 + # . \ Br | 6

Index 30 | 31 | 32 | 33 34 | 35 36 37 38 | 39
Symbol | P I 7 Na | % 8 B 9 Si 0

Index 40 | 41 | 42 | 43 | 44 | 45 46 47 48 | 49
Symbol | Se | K se Ii | As | Zn | Ca | Mg | Al | Te

Index 50
Symbol | te

Additionally, we statistic the length of SMILES for all molecules. As listed in Table S2, a total of 51
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symbols are used to split these SMILES strings. The distribution of SMILES string lengths in the CheMBL is
shown in Figure Sla, and the majority of SMILES are within 254 in length. Therefore, in this work, we choose
data with SMILES length no greater than 254 to pre-train. The exact number in the training set is 1,926,
342, and 10 thousand SMILES strings were randomly selected as a validating set. The basic information of
CheMBL used in pre-training is shown in Table S1. The distributions of SMILES string lengths for toxicity
and logP datasets are shown in Figure S1b. Only one SMILES string on the LD50 dataset has a length
of more than 254, with a length of 284. Therefore, in the downstream tasks, we truncate these sequences
that exceeded the limit length and input only the first 254 symbols. All these datasets are also available at
https://weilab.math.msu.edu/Database/.

a 0.04- b 0.08 -
—— Chembl26 [ LD50
1 IGC50
0.03 0.06 9 LGS0
2 > LC50DM
2 2 = logP
Q (]
© ©
2 0.02 2 0.04
3 3
[ ©
Qo Q
o o
o o
0.01+ 0.02
0.00 T T T T T 0.00 - T T T
0 64 128 192 256 0 64 128 192 256
SMILES length SMILES length

Figure S1: The distributions of SMILES string lengths. a. The ChEMBL database. b Four toxicity datasets.

S2 AGBT model parametrization

S2.1 Input processing

In this work, all input SMILES strings for bidirectional transformer need to be processing. A total of
51 symbols, as listed in Table S2, are used to split these SMILES strings. We add a ‘< s >’ symbol and a
‘< \s >’ at the beginning and end of each input SMILES, which represent the beginning and the end of each
input, respectively. Besides, the ‘< unk >’ is used to represent some undefined symbols. Since the length of
SMILES varies from molecule to molecule, the ‘< pad >’ is used as a padding symbol to fill in short inputs
to reach the preset length. For the self-supervised learning (SSL) -based pre-training, the 15% symbol of the
input SMILES needs to be operated. Among these 15% symbols, 80% of symbols were masked, 10% of the
symbols were unchanged, and the remaining 10% were randomly replaced.

S2.2 Bidirectional transformer model parametrization

SSL-based pre-training Similar with the architecture of bidirectional encoder representations from trans-
formers (BERT)[6], our pre-training model is a multi-layer bidirectional transformer encoder, as shown in
Figure S2. Each transformer layer contains two sub-layers. The first is a multi-head self-attention layer, and
the second is a fully connected feed-forward neural network. The residual connection is applied to each of
the two sub-layers, followed by layer normalization.[7] Each transformer layer maps the output features from
the former transformer layer or the embedded features from the input into different nonlinear space. The
attention mechanism used in the transformer encoder is scaled dot-product attention and it is formulated as


https://weilab.math.msu.edu/Database/

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

| True i 0 [ )
| . o
! Prediction ! prel
— e
: —'l Add & Norm |
[ f
1
: I Feed Forward |
Transformer [ S — ] e
X
Encoder i — Add &fNorm | i
i I Multi-head Attention |
1
1

Position Embedding

| Token Embedding _ (B E)(EE)E BV E) B E)E)
Masked SMILES mmmmmf}mmmmm
Canonical SMILES [T]mmmgmmmm

Figure S2: The whole structure of the bidirectional encoder from transformers used in pre-training.

follow,

QK"
Vi,
The @, K, and V, named query matrix, key matrix, and value matrix, are mapping from input data. The
dot products of the query matrix and key matrix are divides by the scaling factor /di, where the dj, is

Attention(Q, K, V) = Softmax( W (1)

the embedding dimension. In practice, a multi-head self-attention mechanism is applied in the transformer
encoder, where different heads could pay attention to various aspects and improve performance. On the
top of the N transformer encoder layers, there is a linear layer transforming the embedding dimension into
the vocabulary size. Finally, the softmax function is used to select the maximum probability value of each
masked location and report the corresponding prediction result.

The proposed model is based on Fairseq [8], which is a Sequence-to-Sequence Toolkit written in Python
and PyTorch [9], and slightly modified so that it can be used for molecular analysis. In this work, the pre-
training bidirectional transformer model contains 8 Transformer encoder layers, the embedding dimension is
set to 512, the number of self-attention heads is 8, and the embedding size of fully connected feed-forward
layers is 1024. The maximum sequence length is set to 256, including the start and terminate symbols. For
better convergence, the Adam optimizer [10] is used in the pre-training and fine-tune, the Adam betas are
(0.9, 0.999), and the weight decay is 0.1. Besides, a warming-up strategy is applied for the first 4000 updates
and the total update steps are one million, the maximum learning rate is set to 0.0001 in this strategy. The
cross-entropy was applied to measure the difference between the predicted symbols and the real symbols
at the masked position. The model is trained on six Tesla V100-SXM2 GPUs and the maximum sequence
number in each GPU is set to 64.

SSL-based and SL-based fine-tuning There are two strategies to be used in the fine-tuning stage: self-
supervised learning (SSL) -based fine-tuning of task-specific data without using their labels and sequential
supervised learning (SL) -based fine-tuning of task-specific data with their labels. For SSL-based fine-tune,
the pre-trained model is fed with the input data of the downstream task-specific datasets, including both
training sets and test sets. For each SMILES string, we randomly select 15% symbols to be a training-
validation set in our loss function. Only 50% symbols of the set were masked and the remaining 50%
symbols of the set were unchanged. A warming-up strategy is also applied for the first 500 updates. The
total update steps are 2000. The maximum learning rate is set to 0.00001 in this stage. In the last hidden
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layer, the embedded vector of length 512 correspondings to the first special symbol < s > is used for
molecular property prediction. Figure S3 shows the workflow of generating molecular fingerprints from the
SSL-based fine-tuned model.

SSL-based fine-turning Fingerprints generation
Poe i @ BT-FP
L Prediction 7: %:D:]
_Soﬂmax
=
Linear PN
Pre-trained model } " Fine-turned model ‘

> =
Masked SMILES  [<s>)((N)("=)("c )(mask( N )(<>) (=) (N)(=]Ce e )(N)(==)
Canonical SMILES @E@ @E@

Task-specific data Task-specific data

Figure S3: Workflow for generating molecular fingerprints from the pre-trained and SSL-based fine-tuned model. Three two
mask operations, 'mask‘ and 'no changing‘, are retained in the self-supervised fine-tuning stage. The labels of task-specific
data are disregarded in the SSL-based fine-tuning stage. Here, < s > is a special leading symbol added in front of every input
SMILES, and < \s > is a terminating symbol. At the stage of fingerprints generation, < s >’s embedding vector from the
bidirectional encoder is utilized to represent the molecular fingerprint (BT-FP).

For sequential SL-based fine-tuning, the labels of task-specific data are utilized. The pre-trained model
will be fed with data from the training set of the task-specific dataset, and no additional 'mask’ operations
are required for the input SMILES. The Adam optimizer is set as the same as that of pre-training. The
maximum learning rate is set to 107°. The warming-up strategy is used for the first 500 updates and the
total update steps are 5000 for each dataset. The mean square error metric is used in this fine-tuning stage,
as shown in Figure S4. All models were trained on six Tesla V100-SXM2 GPUs and the maximum sequence
number in each GPU is set to 64.
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Figure S4: Workflow for generating molecular fingerprints from the pre-trained and sequential supervised learning (SL) fine-
tuned model. Labeled task-specific data are employed in the sequential SL-based fine-tuning stage. At the stage of fingerprints
generation, < s >’s embedding vector before last linear layer is utilized to represent the molecular fingerprint (BTs-FP).

S2.3 Algebraic graph model parametrization

In order to select a general AG-FP for all four toxicity data sets, we need to combine the kernel function
and graph matrix type properly. For the sake of convenience, we use the notation AGQM)&T, to indicate the
AG-FPs generated by using interactive matrix type M with kernel function w and corresponding kernel
parameters $ and 7. Here, M = {Adj, Lap} represents a set of adjacency matrix and Laplacian matrix.
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w = {E, L} refers to a set of generalized exponential and generalized Lorentz kernels. In addition, the kernel
parameter 3 = k if w = E, and 8 = v if w = L. And 7 is used such that ng,, = 7(7%, + 7,), where kj,
and 7, are the van der Waals radii of element type ki and ko, respectively. Kernel parameters g and 7
as selected based on the cross validation with a random split of the training data. It has been shown that

multiscale information can boost the performance of predictor. [11, 12] In this work, we consider at most
u/:/lt}éi\j‘tle;ﬂz,ﬁz,m'
To attain the best performance using AG-FP, the kernel parameters need to be optimized. We vary 3, both
7 and k, from 0.5 to 6 with an increment of 0.5, while 7 values are chosen from 0.5 to 6 with an increment of
0.5. The high values of the power order such as 8 € {10, 15,20} are also considered to approximate the idea
low-pass filter.[13] We use the method of 5-fold cross-validation (CV) to select the kernel hyperparameters

M, Q, B and 7. Figure SHa shows the CV results of the single-kernel model (AGMl ), and R? is used

wi, \T
as the evaluation metrics. Then based on the optimal kernel parameters in the silnﬁglle—lkernel model, the
two-kernel model, AGﬁf}éﬁi;Qz, 8,.7,> Can be optimized by using 5-fold CV on training sets. Figure S5b in
the supplement material reports the best models with associated R? in this experiment. All cross-validations
were performed for toxicity training sets, and the scores were based on the mean value of R? in the four

training sets.

two kernels. As a straightforward notation extension, two kernels can be parametrized by AG
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Figure S5: Squared Pearson correlation coefficients (R?) from 5-fold cross-validation of AGQ/V}B,T, and AGWM1 ,1[’3?,/17_21;927 8o,y O1

the training data of four toxicity datasets are plotted against different values of 7 and 8. a. The best hyperparameters

and R? for these one-scale models are found to be (AGAE?£.5,0.57 average R? = 0.616), (AGéijﬁ,o.s’ average R?> = 0.616),
(AGI;;‘?gE),OAs’ average R? = 0.610) and (AGIi?fO’OAS, average R2 = 0.620) from left to right separately. b. Based on the best

Lap,Adj
L,10,0.5;E,6,0.5

R? = 0.628), (AGIZ?(’)%(E;LQO,O.& average R?> = 0.629), (AGE‘:‘%F&;EG’O& average R? = 0.627) and (AGE?{)(;FO%IS);EQO,O.B’

average R? = 0.631) from left to right separately.

one-scale model, the best hyperparameters and R? for these multiscale models are found to be (AG average

For the toxicity and logP datasets, there are 10 commonly occurring element types, i.e., {H, C, N,
O, F, P, S, Cl, Br, I}, which means 100 element interactive pairs will form based on the combinations of
these 10 element types in molecules. For adjacency matrices, only positive eigenvalues are considered. Note
that Laplacian matrices are positive semidefinite. As discussed in the Methods section, we can compute
nine descriptive statistical values, namely the maximum, minimum, average, summation, median, standard
deviation, and variance of all eigenvalues. Another two values are the number of considered eigenvalues
and the sum of the second power of eigenvalues. This gives rise to a total of 900 features for one kernel,
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which means that we can get an 1800 dimension AG-FP for each molecule if we use two-kernel information.

The optimal two-kernel algebraic graph models are AGIZ?{’(;%&_E; 1.20.0.5» and the average R? of all four toxicity

datasets is 0.631.
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Figure S6: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGéVlB > and AGﬂ}éffé;Q%B%Tz on

the training data of partition coefficient data sets are plotted against different values of 7 and ’B’. a. The best hyperparameters

and R? for these one-scale models are found to be (AG‘gdi.B 1o, B2 = 0.798), (AG?de'O Lo B% = 0.799), (AGI;;?S 1.0°

R? = 0.81) and (AGIiafO 1.50 R? = 0.811) from left to right separately. b. Based on the best one-scale model, the best
hyperparameters and R2 for these multiscale models are found to be (AGIZaféAfg,E 5.4 R? = 0.831), (AGIZB%ASQL 0.5.5.5

R? = 0.829), (AGIE,?{)(S?EE;E,O@U R? =0.823) and (AGE,a{)(Sng;E,lA.& R? = 0.826) from left to right separately.

For the partition coefficient dataset, we also use two-kernel information as the final AG-FPs. There
are the same 10 element types as for toxicity datasets and there are also 100 element interactive pairs will
form in each molecule. As shown in Figure S6a, we firstly selected the best hyperparameters for these one-
scale models, which are AG3Y ;| o (R? = 0.798), AG} Y, o (R? = 0.799), AGE? . |, (R? = 0.81), and
AG‘:IL‘%I’O’L5 (R? = 0.811). Based on the optimal one-scale model (AGIL‘?lpo’LE)), the best multiscale model is

found to be AGIZ?fdﬁflg‘Eﬁ 4> as shown in Figure S6b, the value of R? is 0.831. The gradient boosting decision
tree (GBDT) is used to select optimal algebraic graph model hyperparameters. The parameters of GBDT
vary with the size of the training set, which are listed in Table S3.

S2.4 Feature fusion

Based on a large amount of unlabeled data, BT-FP can capture the overall information of molecules
after pre-training and fine-tuning. AG-FP, on the other hand, as insight based on physical and chemical
knowledge, can obtain more detailed information of molecular structure, including dihedral angle and relative
distance of atoms, with the help of algebraic graph theory. The proposed AGBT-FP in this work is a fusion
of BT-FP and AG-FP. The random forest (RF) is used to fuse BT-FP and AG-FP. First, we combine BT-FP
and AG-FP. Then the RF algorithm was used to select top 512 features. The parameters of RF vary with
the size of the training set. All parameters are listed in Table S3. The final AGBT-FP’s dimension is set to
512, which is the same as BT-FP’s.
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S2.5 Downstream machine learning algorithms

To compare the AGBT and other fingerprints’ performance on specific tasks, three machine learning
algorithms are used: gradient boosting decision tree (GBDT), single-task deep neural network (ST-DNN),
and multitask deep neural network (MT-DNN).

Gradient boosting decision tree (GBDT). GBDT is a robust machine learning regressor. In this
approach, individual decision trees are successively combined in a stage-wise fashion to achieve the capability
of learning complex features. It uses both gradient and boosting strategies to reduce model errors. Compared
to the deep neural network (DNN) approaches, this ensemble method is robust, relatively insensitive to
hyperparameters, and easy to implement. Moreover, they are much faster to train than DNN. In fact,
for small data sets, GBDT can perform even better than DNN or other deep learning algorithms.[14, 15]
Therefore, GBDT has been applied to a variety of QSAR prediction problems, such as toxicity, solvation,
and binding affinity predictions.[16, 17]

The GBDT is used to predict the toxicity and logP in this work and implemented by the scikit-learn
package.[18] In this work, there are five data sets with their training data size varying from 283 to 8199. To
better compare feature performance, we set only two sets of parameters according to the size of the training
set for GBDT. The detailed values of these hyperparameters are given in Table S3.

Table S3: RF and GBDT parameters for different toxicity training-set sizes

Training-set Szie

RF Parameters

GBDT Parameters

> 1000 n_estimators = 10000 n_estimators = 10000
criterion = ‘mse’ max_depth = 8
max_depth = 8 min_samples_split = 4
min_samples_split = 4 learning_rate = 0.01
min_samples_leaf = 1 subsample = 0.3
min_weight_fraction_leaf = 0.0 max_features=‘sqrt’

< 1000 n_estimators = 10000 n_estimators = 10000

criterion = ‘mse’

max_depth = 7
min_samples_split = 3
min_samples_leaf = 1
min_weight_fraction_leaf = 0.0

max_depth =7
min_samples_split = 3
learning_rate = 0.01
subsample = 0.2
max_features=‘sqrt’

Single-task deep neural network (ST-DNN). A DNN mimics the learning process of a biological
brain by constructing a wide and deep architecture of numerous connected neuron units. A typical deep
neural network often includes multiple hidden layers. In each layer, there are hundreds or even thousands
of neurons. During learning stages, weights on each layer are updated by backpropagation. With a com-
plex and deep network, DNN is capable of constructing hierarchical features and model complex nonlinear
relationships. ST-DNN is a regular deep learning algorithm. It only takes care of one single prediction
task. Therefore, it only learns from one specific training dataset. A typical four-layer ST-DNN is showed in
Figure S7a, where N; (i = 1, ..., 4), represents the number of neurons in the ith hidden layer.

Multitask deep neural network (MT-DNN). The multitask (MT) learning technique has achieved
much success in qualitative Merck and Tox21 prediction challenges.[19, 20, 21] In the MT framework, multiple
tasks share the same hidden layers. However, the output layer is attached to different tasks. This framework
enables the neural network to learn all the data simultaneously for different tasks. Thus, the commonalities
and differences among various data sets can be exploited. It has been shown that MT learning typically can
improve the prediction accuracy of relatively small data sets if it combines with relatively larger data sets
in its training. Figure S7b is an illustration of a typical four-layer MT-DNN for training four different tasks
simultaneously. Suppose there are totally T tasks and the training data for the tth task are (X?,yf)Nt
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Figure S7: ST-DNN and MT-DNN framework. a) An illustration of a typical ST-DNN. Only one dataset is trained in this
network. Four hidden layers are included, k; (¢ = 1, 2, 3, 4) represents the number of neurons in the ith hidden layer and N; ;
is the jth neuron in the ith hidden layer. Here, O; is the single output for the model. b) An illustration of a typical MT-DNN
training four tasks (datasets) simultaneously. Four hidden layers are included in this network, k; (i = 1, 2, 3, 4) represents the
number of neurons in the ith hidden layer and N; ; is the jth neuron in the ith hidden layer. Here O; to O4 represent four
predictor outputs for four tasks.

where t = 1,...,T, i = 1,..., Ny, where N; is the number of samples in the tth task, and X/ is the feature
vector for the ith sample in the tth task, y! is the label value of the ith sample in the tth task, respectively.
The purpose of MT learning is to simultaneously minimize the loss function:

T N
argminy Y L(yl, f1(X{,6")), (2)
t=1 i=1
where f? is the prediction for the ith sample in the tth task by our MT-DNN, which is a function of the
feature vector X!, L is the loss function, and 6* is the collection of machine learning hyperparameters. A
popular cost function for regression is the mean squared error, which is formulated as:

1 X

N, ;(yf - fHX,00)% (3)

L(y;, f/(X7,0")) =

In this work, MT-DNN is only applied to predict the toxicity. The ultimate goal of MT-DNN learning
is to potentially improve the overall performance of multiple toxicity prediction models, especially for the
smallest dataset that performs relatively poorly in the ST-DNN. More concretely, it is reasonable to assume
that different toxicity indices share a common statistic pattern so that these different tasks can be trained
simultaneously when their feature vectors are constructed in the same manner. For our toxicity prediction,
four different tasks (LD50, IGC50, LC50, LC50DM data sets) are trained together. This leads to four output
neurons in the output layer, with each neuron being specific to one of four tasks.

The performance of deep neural network models depends on their architecture, input data dimension,
and hyperparameters. For BT-FP and AGBT-FP, the feature sizes are both 512, which means that the
network with the same architecture can be used to train these two sets of features. The input layer contains
512 neurons, followed by four hidden layers with 1024, 512, 512, and 512 neurons, respectively. For the
present regression problem, only one neuron in the final output layer. For AG-FP, it contains 1800 features,
and thus a more complex network structure is required. In this case, we set 1800 neurons in the input layer,
followed by 5 hidden layers with 2048, 1024, 512, 512, and 512 neurons, respectively. The output layer has
one neuron. Other network parameters are all the same for these three kinds of molecular features. The
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stochastic gradient descent (SGD) with a momentum of 0.5 is used as an optimizer. We use 2000 epochs
to train all the networks. The mini-batch size is set to 8. The learning rate is set to 0.01 in the first 1000
epochs and 0.001 for the rest epochs. These hyperparameters are applied to both ST-DNN and MT-DNN.

All the DNN models are built and trained in Pytorch.[9]

S3 Supplementary Figures
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Figure S8: Data and results of AGBT. a, Predicted results of AGBT-FPs with MT-DNN model for LD50 dataset (R2=0.671,
RMSE=0.554 log(mol/L) for 20 repeated experiments). b, Predicted results of BT-FPs with MT-DNN model for LC50 dataset
(R?=0.783, RMSE=0.692 log(mol/L) for 20 repeated experiments). c, Predicted results of AGBTs-FPs with MT-DNN model
for LC50 dataset (R2=0.905, RMSE=0.615 log(mol/L) for 20 repeated experiments).
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Figure S9: R? values of BT-FP and AGBT-FP predictions on three machine learning algorithms, GBDT, STDNN, and MTDNN.
a LD50 dataset, b LC50 dataset, ¢ LC50DM dataset.
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Figure S10: The AGBT-FPs of the four toxicity datasets were ranked by their feature importance. a Sorted feature importance
for the LD50 dataset. The top three features are from AG-FP. b Sorted feature importance for the IGC50 dataset. The top
three features are from AG-FP. ¢ Sorted feature importance for the LC50 dataset. The top three features are from AG-FP. d
Sorted feature importance for the LC50 dataset. The most important feature is from BT-FP. The 2nd and 3rd most important
features are from AG-FP.
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Figure S11: Distribution of molecules in the three most important features of AGBT-FP. a The distribution of the IGC50
dataset. b The distribution of the LC50 dataset. ¢ The distribution of the LC50DM dataset.
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S4 Supplementary Tables

Tanimoto coefficient, S4 p, is used in this work to calculate the degree of similarity between two
molecules. A higher average S4 p of the two datasets implies a higher similarity. Tanimoto coefficient,
Sa,B, is defined as follow:

N
Sap = Zizl TiATiB (4)
B~ &N N N :
Dim1 xz?A + 2 im1 I?B — D im1 TiATiB

In this study, the similarity between the largest dataset LD50, which contains 7413 molecules, with other
three datasets are list in Table S4

Table S4: Similarity between the Largest Dataset LD50 with the other three datasets®

Fingerprints IGC50(1792) LC50(823) LC50DM(353)
Estate2 0.964 0.973 0.982
FP2 0.886 0.928 0.941

% The number in the bracket is the total size of the dataset.
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