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Note 1: Calculation method of different molar ratios of polymers.
The molar ratio of the prepared monomer of the hybrid polymer can be known from the hydrogen spectrum, Eq. (S1) was used to calculate the value of x,
        Eq. (S1)
where x is the number of benzene rings, Integration 1 represents the hydrogen atoms in benzene rings, Integration 2 is hydrogen atoms of silioxyl group.

Note 2: Calculation method of the Light-to-thermal conversion efficiency.
Light-to-thermal conversion efficiency (η) of HP/CB-PCMs was estimated according to the ratio of heat stored in the composite with respect to the light energy stored by sample during the phase change process. By referring literatures 1, Eq. (S2) was used to calculate the value of η, 
              (Eq. S2)
where m is the mass of the HP/CB-PCMs composite, △H represents the phase change enthalpy obtained from DSC result, ρ is intensity of the simulant light source, tf and ts are the light driven phase change time of the sample before and after phase change, respectively.
	m/g
	S/cm2
	tf- ts/s
	ρ/mW.cm-2
	η

	3
	7.065
	362
	110
	93.7%




Fig. S1 1H NMR spectra of polymers with different mole ratios.
(a) The monomer molar ratio of polymer is 9:1.
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(b) The monomer molar ratio of polymer is 8.5:1.5.
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(c) The monomer molar ratio of polymer is 8:2.
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(d) The monomer molar ratio of polymer is 7.5:2.5.
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(e) The monomer molar ratio of polymer is 7:3.
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(f) The monomer molar ratio of polymer is 6:4.
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(g) The monomer molar ratio of polymer is 5:5.
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Fig. S2 (a) Proposed mechanism for the formation of polymer, schematic illustration of the materials preparation process of (b) polymer, (c) HP/CB-PCMs.(a)
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Fig. S3 Leakage testing of different HP/CB-OPCMs composite.
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Fig. S4 SEM images of (a) HP/CB-OPCMs (9:1), (b) HP/CB-OPCMs (8:2), (c) HP/CB-OPCMs (7:3), (d) HP/CB-OPCMs (6:4), (e) HP/CB-OPCMs (5:5).(a)
(b)
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Fig. S5 DSC curves of HP/CB-OPCMs composites with different monomer. (a) HP/CB-OPCMs (9:1); (b) HP/CB-OPCMs (8:2); (c) HP/CB-OPCMs (7:3); (d) HP/CB-OPCMs (6:4); (e) HP/CB-OPCMs (5:5). 
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Fig. S6 DSC curves of HP/CB-PCMs inorganinc composites with different monomer. (a) HP/CB-PCMs (9:1); (b) HP/CB-PCMs (8.5:1.5); (c) HP/CB-PCMs (8:2); (d) HP/CB-PCMs (7.5:2.5); (e) HP/CB-PCMs (7:3). (a)
(d)
(c)
(b)
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Fig. S7 SEM images of (a) HP/CB-IPCMs (9:1), (b) HP/CB-IPCMs (8.5:1.5), (c) HP/CB-IPCMs (8:2), (d) HP/CB-IPCMs (7.5:2.5), (e) HP/CB-IPCMs (7:3).(b)
(a)
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Fig. S8 Leakage testing of different HP/CB-IPCMs composite. 
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Fig. S9 (a) Photograph of light-to-thermal energy conversion and storage measuring platform; (b) photograph of Contact Angle test platform and (c) photograph of the thermal energy storage and release tests.(a)
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Fig. S10 Verification test of hypercrosslinked reaction of hybrid polymer, (a) Comparison diagram of polymer crosslinking with different monomer proportions. (b) General diagram of verification of all samples; (a)
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Fig. S11 Schematic diagram of the supercooling degree test.
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Table S1 Comparison of research work between different scholars.
	name
	Thermal conductivity(W (m-1 K-1))
	Photothermal conversion efficiency(%)
	Journal 
	Year

	Yang′s work1
	10.54
	95
	Applied Thermal Engineering
	2019

	Liu′s work2
	3.7
	93
	International Journal of Heat and Mass Transfer
	2019

	Liu′s work3
	55.37
	93.8
	Journal of Materials Chemistry A
	2020

	Mishra′s work4
	0.55
	68
	Energy
	2020

	Du′s work5
	0.448
	87.6
	Cellulose
	2020

	Zhang′s work6
	0.414
	88.7
	Applied Energy
	2018

	Du′s work7
	0.421
	89.3
	Acs Sustainable Chemistry & Engineering
	2019

	Yang′s work8
	0.54
	81
	International Journal of Energy Research
	2020





Table S2 Parameters of paraffin and carbon black composites.
	CB(g)-OPCMs(g)a
	Sample quality before leakage quality(g)
	Sample quality after leakage quality(g)
	Leakage rate(%)
	Timeb(min) 

	2-5
	3.0150
	2.3109
	23
	23

	2.5-5
	2.9992
	2.6455
	11.70
	23

	3-5
	3.0203
	2.7330
	9.50
	23

	3.5-5
	3.0394
	2.7624
	9.10
	23

	4-5
	3.0094
	2.8186
	6.30
	23

	4.5-5
	2.9416
	2.7624
	6.10
	23

	5-5
	3.024
	2.829
	6.40
	23

	6-5
	3.022
	2.850
	5.60
	23

	7-5
	2.962
	2.86
	3.40
	23

	8-5
	3.022
	2.955
	2.20
	23

	9-5
	3.023
	3g
	0.70
	23


a Unless otherwise stated, the melting phase transition temperature of paraffin is 60 oC. b 23min corresponds to the time it takes for the paraffin wax to melt completely during the leak test.


Table S3 Parameters of HP/CB-OPCMs sample.
	HP/CB-OPCMS a(g)
	Sample quality before leakage quality(g)
	Sample quality after leakage quality(g)
	Leakage rate(%)
	Time(min) b

	0.5/5-5
	3.0
	2.894
	3.50
	23

	1.0/5-5
	3.056
	3.011
	1.40
	23

	1.5/5-5
	3.0170
	2.9975
	0.60
	23

	2.0/5-5
	2.9977
	2.9810
	0.55
	23


a Unless otherwise stated, the ratio of polymer synthesized by monomer is 8:2, and the melting phase transition temperature of paraffin is 60 o C. b 23min corresponds to the time it takes for the paraffin wax to melt completely during the leak test.

Fig. S11 Leakage images of HP/CB-IPCMs.
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