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Abstract

Neuron morphology gives rise to distinct axons and dendrites and plays
an essential role in neuronal functionality and circuit dynamics. In rat
hippocampal neurons, morphological development occurs over roughly
one week in vitro. This development has been qualitatively described
as occurring in 5 stages. Still, there is a need to quantify cell growth
to monitor cell culture health, understand cell responses to sensory
cues, and compare experimental results and computational growth model
predictions. To address this need, embryonic rat hippocampal neurons
were observed in vitro over six days, and their processes were quan-
tified using both standard morphometrics (degree, number of neurites,
total length, and tortuosity) and new metrics (distance between change
points, relative turning angle, and the number of change points) based
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2 Neuron Development Quantification

on the Change-Point Test to track changes in path trajectories. Of the
standard morphometrics, the total length of neurites per cell and the
number of endpoints were significantly different between 0.5, 1.5, and
5 days in vitro, which are typically associated with Stages 2-4. Using
the Change-Point Test, the number of change points and the average
distance between change points per cell were also significantly different
between those key time points. This work highlights key quantitative
characteristics, both among common and novel morphometrics, that
can describe neuron development in vitro and provides a foundation
for analyzing directional changes in neurite growth for future studies.

Keywords: Neuron, Morphogenesis, Morphometrics, Change-Point Test,
Developmental Growth Stages
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1 Introduction

Mature neurons exhibit extensive arborization of their axons and dendrites
(collectively neurites) to form functional connections with neighboring cells
and receive sensory signals. The distinct neuronal structure is believed to
give rise to the neuron’s computational abilities (Cuntz, Borst, and Segev
(2007); Ferrante, Migliore, and Ascoli (2013); Kanari et al. (2018); van Elburg
and van Ooyen (2010); Zomorrodi, Ferecskó, Kovács, Kröger, and Timofeev
(2010)). In addition, morphological differences between neuronal cell types are
thought to result in their functional differences (Khalil, Farhat, and D lotko
(2021); Krichmar, Nasuto, Scorcioni, Washington, and Ascoli (2002); Mainen
and Sejnowski (1996); Schaefer, Larkum, Sakmann, and Roth (2003); Vetter,
Roth, and Häusser (2001)). During the development of this crucial structure
in primary neurons, several morphological changes occur in distinct stages,
but their features have not been statistically compared between days or stages
(Dotti, Sullivan, and Banker (1988); Powell, Rivas, Rodriguez-Boulan, and
Hatten (1997); Tahirovic and Bradke (2009)).

One common model for studying neuron morphological development is
the embryonic rodent hippocampal neuron (Tahirovic and Bradke (2009)).
Morphogenesis of hippocampal neurons can be qualitatively described in five
developmental stages occurring over seven days in vitro (DIV) (Figure 1): (1)
within the first hour of plating, small protrusions, or lamellipodia, form along
the cell periphery; (2) after around 0.5 days in vitro (DIV), the lamellipodia
transforms into a few distinct, minor processes that form the preliminary neu-
rites; (3) at around 1-2 DIV, one of the neurites will begin to elongate at a
faster rate than the other processes and differentiate into the axon; (4) after 4
DIV, the remaining neurites will develop into dendrites and begin to elongate
at a higher rate, but still slower than that of the axons; (5) after one week in
culture, the neuronal processes will continue to mature by forming networks
with functional synaptic connections, and the dendrites will begin to exhibit
dendritic spines (Dotti et al. (1988); Kaech and Banker (2006); Tahirovic
and Bradke (2009)). Previously, each stage has been qualitatively described
with limited quantitative descriptions of the axonal and dendritic lengths and
growth rates (Dotti et al. (1988)). However, it can be challenging to identify
the stage a culture is at using only those features, particularly when transition-
ing between stages if the same cells within a population were not tracked over
time. Nevertheless, these stages are still used as expected growth events when
assessing cultures (Kaech and Banker (2006)). Neurite growth quantification is
needed for consistent stage identification to monitor culture health, test intra-
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and extracellular sensory cues, and compare experiments and computational
models (Liao, Webster-Wood, and Zhang (2021); Qian et al. (2022)).

Fig. 1 Rat hippocampal neuron morphogenesis occurs in five stages (Dotti et al. (1988)).
First, small protrusions, or lamellipodia, form at the soma boundary (Stage 1). Subsequently,
a few lamellipodia will continue to elongate into the initial neurites (Stage 2). Next, one of
the neurites will begin to grow faster than the others to differentiate into the axon (Stage
3). After a few days, the remaining neurites will also accelerate growth to mature into the
dendrites (Stage 4). The final stage is the continued maturation of the entire cell, which is
dependent on environmental factors and interactions with neighboring cells (Stage 5).

Many different types of quantitative representations, such as density maps
(Jefferis et al. (2007); Laturnus, Kobak, and Berens (2020)), graph theory
(Gillette and Grefenstette (2009); Heumann and Wittum (2009)), topology
(Kanari et al. (2018)), and morphometric statistics (Laturnus et al. (2020);
Polavaram, Gillette, Parekh, and Ascoli (2014); Uylings and van Pelt (2002)),
have been applied to describe functionally different types of mature neurons.
In addition, machine learning techniques also have been used for identifying
neuron types (Laturnus et al. (2020)) and for identifying neuronal polarity (Su
et al. (2021)). Laturnus et al. (2020) noted the importance of the spatial extent
and shape describing neuron connectivity in distinguishing cell types, instead
of specific branching features. Although these quantitative representations can
characterize neuronal cell types, most have not been applied to discriminate
between neurite growth stages or time points. A few common morphometrics,
such as neurite length and number of branches, have been used to study neuron
development in vitro in rat hippocampal neurons (Dotti et al. (1988)) and
in stem cell differentiation to neural progenitor cells (Kang et al. (2017)).
However, the current quantitative representations of neuron morphology do not
capture details about changes in neurite growth direction, which can change in
response to chemotropic molecules in the surrounding environment and from
cell-to-cell signaling (Bicknell, Pujic, Dayan, and Goodhill (2018); Deinhardt
et al. (2011); Ferreira Castro et al. (2020); Tamariz and Varela-Echavarŕıa
(2015)).

To better characterize the stages of neuron growth and quantitatively cap-
ture changes in neurite growth direction, we analyzed the development of rat
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hippocampal neurons in vitro. Quantitative analysis was performed using both
common morphometrics used to describe mature neurons and new morpho-
metrics based on analysis using the Change-Point Test (CPT) (Byrne, Noser,
Bates, and Jupp (2009); Liao et al. (2021)). The CPT was originally developed
to identify locations along an animal walking path in which the direction was
changed towards a resource of interest (Byrne et al. (2009)). The meandering
neurite path is analogous to animal walking trajectories (Liao et al. (2021)).
The trajectories can be redirected in the presence of a relevant resource, such
as food for animals and growth cues in media for neurons. In addition, this test
can provide additional metrics to characterize cell growth stages by including
information, such as how many times the growing neurite changed direction
or how long it would grow until another significant directional change.

2 Methods

2.1 Data Set Generation

A data set, comprised of images of primary rat hippocampal neurons cul-
tured over 6 DIV and the resulting neurite traces, was created to characterize
neuron morphogenesis. To generate this data set, images of in vitro neurons
were obtained using inverted bright-field microscopy and then processed using
NeuronJ (Meijering et al. (2004)) to obtain traces of the developing neurites
(Figure 2) (Liao et al. (2021)).

2.1.1 Cell Culture

Cryopreserved primary, embryonic-day 18 (E18) rat hippocampal neurons
(A36513, Gibco, USA) were thawed and plated in 48-well plates (150687, Nunc,
USA) that were coated in poly-D-lysine (P6407, Sigma-Aldrich, USA), as per
manufacturer’s protocol (Thermo Fisher Scientific (2018)). Briefly, the plate
was treated with 50 µg/mL poly-D-lysine (P6407, Sigma-Aldrich, USA) and
incubated at room temperature for 1 hour before being rinsed with sterile,
deionized water. Once dry, the plates were wrapped with Parafilm (BM999,
Bemis, USA) and stored overnight in a refrigerator (2-8°C). After the wells
were treated, the neurons were seeded at a density of 10,000 cells/cm2 in
Neurobasal Plus (A3582901, Gibco, USA) supplemented with 2% B-27 Plus
(A3582801, Gibco, USA). The low densities allowed more neurites to be iden-
tified and traced before their arborization became too dense to distinguish
individuals using bright-field microscopy. The cultures were incubated at 37°C
and 5% CO2, except during media changes and imaging periods. Twenty-four
hours after initial seeding, 50% of the media was replaced with fresh media.
The cultures were imaged using inverted bright-field microscopy with the Echo
Revolve at 20X and 40X magnification during the following time points (DIV):
0.5, 1, 2, 3, 4, 6 (Figure 2).
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Fig. 2 There are four major steps for the methods workflow. (a-b) In the first step, cryop-
reserved embryonic day 18 (E18) primary rat hippocampal neurons were thawed, cultured,
and monitored using inverted bright-field microscopy over six days in vitro (DIV) . The
microscope and well plate diagram was created with BioRender.com. (c) In the second step,
images of the neurites were traced using NeuronJ and then (d) quantified using the CPT.
(e) Lastly, using the traces and CPT results, selected morphometrics (Figure 3) were mea-
sured and statistically analyzed using the 2-Sample Poisson Rate Test, Mann-Whitney U
Test, and the 2-Sample Kolmogorov-Smirnov Test.

2.1.2 Image Processing Workflow using Semi-Automated

Tracing

Neurites identified in the images were semi-automatically traced using NeuronJ
(Meijering et al. (2004)), a plugin in ImageJ (Rueden et al. (2017); Schin-
delin et al. (2012)). All neurons included in the dataset had broad, flat somas
with at least one distinct projection. This inclusion criteria ensured that the
neurons had adhered to the surface of the plate and is an indication of good
culture conditions (Kaech and Banker (2006)). In addition, to be included in
the dataset, all of a cell’s projections had to be visible within a single image,
ensuring that the whole cell was captured. Overlapping neurites were excluded
if their paths were not clear to prevent assigning neurites to the wrong cell or
not fully tracing a neurite path. After the neurites were traced (Figure 2b),
the coordinates of each neurite trace were exported out of NeuronJ as text
files to be automatically evaluated for their features. In addition, metadata
detailing which cell each trace belonged to were exported from NeuronJ as a
comma-separated values (CSV) file.

2.2 Automatic Morphometric Evaluation of Neurite

Features

After the data set was generated, the features of the developing neurites were
analyzed using the CPT and quantified using both select common neuron mor-
phometrics and novel morphometrics derived from the CPT results (Figures
2c, 2d,3). The text files detailing each neurite trace were processed using R
(4.1.2) (R Core Team (2021)) within RStudio (RStudio Team (2021)). The
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statistical analyses were completed using Minitab 19 (Minitab LLC (2020)),
and the violin plot distributions were generated using the seaborn package
(Waskom (2021)) in Python 3.7.6 (Python Core Team (2021)) using Jupyter
Notebook 6.0.3 (Kluyver, Ragan-Kelley, Pérez, and Granger (2016)).

Fig. 3 Seven metrics were used to characterize neurite morphogenesis. Among the common
morphometrics, there were four features: (a) degree or the number of endpoints for a given
cell represented by the black arrows with Arabic numerals, number of neurites for a given
cell represented by the colored brackets with Roman numerals, (b) total length of the cell
or the sum of the lengths of all of its neurites, and (c) tortuosity of a neurite, which is the
total path length divided by the shortest distance from its endpoints. The average tortuosity
of the cell was assessed in this work. (d) In addition, a novel application of the CPT led to
three new features: distance between change points indicated by l1 and l2, number of change
points represented by the numbered black circles, and relative turning angle defined by ϕ.

2.2.1 Common Morphometrics

Four common morphometrics were selected to characterize neurite develop-
ment (Figure 3a-c): number of neurites, degree, total length per cell, and
average tortuosity per cell (Kang et al. (2017); Laturnus et al. (2020);
Polavaram et al. (2014); Uylings and van Pelt (2002)). An R script was gener-
ated to calculate these features automatically based on the trace information.
For each cell, degree and number of neurites were counted. The lengths of all
of the neurite traces per cell were summed to calculate the total length. For
each neurite trace, the length was calculated by adding the distance between
consecutive coordinate points. The fourth metric, tortuosity, was calculated
by taking the length of a given trace and dividing it by the distance between
its two endpoint coordinates. The tortuosity was averaged for each cell.
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2.2.2 Novel Morphometrics Based on a Change-Point Test

The traces were also analyzed using the CPT, which was used initially for
identifying locations of significant directional changes in animal walking tra-
jectories (Byrne et al. (2009)). The original R script presented by Byrne et al.
(2009) was transformed into a callable function to process the neurite traces.
Using the change points identified by the CPT, three additional neurite mor-
phometrics were defined (Figure 3d): the number of change points, segment
length, and relative turning angle. An R script was generated to automatically
calculate these features based on the CPT results and the trace informa-
tion. The number of change points was summed per cell as a single metric.
Another metric, segment length, was defined to be the distance between two
consecutive change points. Segment length was calculated by summing the
distances between coordinate points between two consecutive change points.
Lastly, the relative turning angle was defined as the angle measured between
two consecutive segment lengths between 0°and 180°.

2.3 Statistics

Distributions of each morphometric were first tested for normality using the
Anderson-Darling test. All distributions were determined to be non-normal,
and therefore, non-parametric analyses were used. The continuous metrics
(total length, tortuosity, segment length, and relative turning angle) at dif-
ferent time points were compared using the Mann-Whitney U test. Discrete
metrics (degree, number of neurites, number of change points) at different
time points were compared using the 2-Sample Poisson Rate test. All of the
distributions were also compared using the 2-Sample Kolmogorov-Smirnov
test.

3 Results

3.1 Data Set

The data set generated is comprised of three types of data (Figure 4): micro-
scope images of neurons at seven time points, the associated traces for those
neurons that met the tracing criteria (Section 2.1.2), and the resulting mor-
phometrics (both common and new). The seven time points were selected to
observe the neurons undergo three key growth stages (Figures 1 and 4): 0.5 DIV
(estimated Stage 2, n = 31 cells, 47 traces), 1 DIV (n = 36 cells, 58 traces), 1.5
DIV (n = 80 cells, 169 traces), 2 DIV (n = 135 cells, 348 traces), 3 DIV (n =
234 cells, 830 traces), 4 DIV (n = 162 cells, 668 traces), and 6 DIV (n = 20 cells,
139 traces). This data is available at https://doi.org/10.5281/zenodo.6415474.

3.2 Common Metrics Performance

Several of the common metrics typically used for quantifying neuron mor-
phology also showed a significant ability to discriminate between growth time

https://doi.org/10.5281/zenodo.6415474
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Fig. 4 Over 6 DIV, rat hippocampal neurons progress through roughly four developmental
stages. The length and number of neurites and bifurcations have notable changes, which are
statistically represented in Figure 7.

points. The degree and total length of all of the neurites per cell were signifi-
cantly different between 20 pairs and 17 pairs out of a total of 21 pairs of time
points (Figure 7), respectively, including the time points typically associated
with Stages 2-4 (Figure 5). In addition, the number of neurites and average tor-
tuosity per cell were significantly different between 14 and between 2 pairs of
time points, respectively (Figure 7). The Kolmogorov-Smirnov 2-Sample test
is also in general agreement with the Mann-Whitney U test and the 2-Sample
Poisson Rate test.

3.3 Change-Point-Test-Based Novel Morphometrics

Performance

Two of the three CPT-based morphometrics introduced in this work varied
significantly between time points. The number of change points and average
segment length were significantly different between 18 pairs and all 21 pairs
of time points, respectively (Figure 7), including time points typically associ-
ated with Stages 2-4 (Figure 6). However, the relative turning angle was only
significantly different between 1 pair of time points (Figure 7). The 2-Sample
Kolmogorov-Smirnov Test results for the CPT-based morphometrics were sim-
ilar to the Mann-Whitney U test and the 2-Sample Poisson Rate test (Figure
7).

4 Discussion

Our study provides a method for the quantitative description of embryonic
rodent hippocampal neurons across the first week of culture through a combi-
nation of common and CPT-based morphometrics. By characterizing a sample
population of cells, the morphometrics and our presented dataset can be used
in the future to assess the effects of experimental conditions in combination
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Fig. 5 Of the common morphometrics, the (a) total length per cell and the (b) degree were
among the features that best distinguished between 0.5 DIV (≈ Stage 2), 1.5 DIV (≈ Stage
3), and 4 DIV (≈ Stage 4). Representative neurons are on the left panels, while the distri-
butions are on the right. The median, upper and lower quartiles, and significance from each
statistical test for each feature shown in the violin plots (a-b) are represented by the symbols
in the legend (c). The Mann-Whitney U test indicated that total length was significantly
different between all three time points. The 2-Sample Poisson Rate test indicated that the
degree was significantly different between all three time points. The 2-Sample Kolmogorov-
Smirnov test found that the distributions for degree differed significantly between 0.5 and 4
DIV and between 1.5 and 4 DIV. The distributions for total length were also significantly
different for all shown time point pairs.

with the qualitative expected growth stage milestones outlined by Kaech and
Banker (2006) and Dotti et al. (1988). At a population level, the distributions
of total length found in our study are in alignment with the single cell values
reported in Dotti et al. (1988).

When analyzing the data set at the time points associated with a specific
growth stage (Figure 1), specifically 0.5 DIV (Stage 2), 1.5 DIV (Stage 3),
4 DIV (Stage 4), several features, both common and derived from the CPT,
were significantly different (Figures 5-6). These differences indicate that total
length, degree, segment length, and the number of change points could be used
to characterize the morphological development of these neurons and possibly
be used to distinguish between the associated stages. However, additional anal-
ysis would be needed to match the stages, as classified by an expert observer,
with features characterized and time in vitro.

To quantify local changes that occur during neuron morphological devel-
opment, quantitative metrics of neurite growth direction are needed. Sholl
analysis (Sholl (1953)), branching angles, and tortuosity can provide a
snapshot representation of the neurite spatial organization and orientation.
However, they do not indicate if the difference in space or orientation is due
to specific intra- or extracellular signaling or due to stochastic processes. In
contrast, the CPT method (Byrne et al. (2009)) applied in the presented work
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Fig. 6 From the novel CPT-Based morphometrics, the (a) average segment length and the
(b) number of change points were among the features that best distinguished between 0.5
DIV (≈Stage 2), 1.5 DIV (≈Stage 3), and 4 DIV (≈Stage 4). On the left, representative
neurons with traces are shown. The distributions of each feature are on the right panels. The
symbols in the legend (c) represent the medians, upper and lower quartiles, and statistical
significance for each feature shown in the violin plots(a-b). The Mann-Whitney U Test
indicated that the average segment length was significantly different between all three time
points. The 2-Sample Poisson Rate test indicated that the number of change points was
significantly different between all three time points. Furthermore, the 2-Sample Kolmogorov-
Smirnov test found that the distributions for both features were different between 0.5 and
4 DIV and between 1.5 and 4 DIV.

identifies where along a path in which a statistically significant directional
change has occurred. From that information, the magnitude of the change
and the specific angle can be extracted. The CPT was developed initially as
an objective analysis of animal walking paths. Results from the CPT can be
used to identify locations where the animals decided to switch from randomly
meandering to being directed towards a desired resource (Byrne et al. (2009)).
Analogously, the CPT could be applied in future studies to identify changes in
neurite growth direction in the presence of external cues. Our study demon-
strated that the CPT leads to additional morphometrics that were significantly
different between key time points (Figure 6), which may indicate important
directional change events during the growth stages, even in media without a
controlled gradient of extracellular cues.

4.1 Limitations

This study has several limitations based on the imaging modality used for
tracking the cells over time. Bright-field microscopy at 20X and 40X magnifi-
cation is a method for imaging several cells over a short time-period without
the potential interference of dyes that could affect the cell’s structural develop-
ment. Bright-field imaging can also be used to quickly assess cell health during
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the culturing period. However, bright-field microscopy results in a lower con-
trast imaging modality than fluorescence microscopy, which is more challenging
for image processing techniques to extract the neurite trajectories.

The use of the bright-field imaging technique resulted in the choice of using
the semi-automatic tracing program, NeuronJ (Meijering et al. (2004)), to
trace the neurites since many other automatic programs are optimized for high-
contrast fluorescence images (Boulan et al. (2020); Ho et al. (2011); Kim, Son,
and Palmore (2015); Pool, Thiemann, Bar-Or, and Fournier (2008)). Although
the semi-automatic procedure may introduce some interobserver variability,
the process will still be more reproducible than a fully manual method (Mei-
jering et al. (2004)). Furthermore, due to the need for user input, the labor
intensiveness of this method scales with the number of neurites. However, it
is still an improvement over a completely manual method with better neurite
centerline representations and negligible differences in length results (Meijering
et al. (2004)).

In addition, without the use of fluorescence dyes, neurons cultured beyond 6
DIV become difficult to distinguish due to the development of long neurites and
dense networks at Stage 5 (Kaech and Banker (2006)). Furthermore, a distinct
qualitative morphological change is not present between Stage 4 and 5, and
Stage 5 is likely highly influenced by other cell interactions, unlike the previous
stages that are considered endogenously determined (Dotti et al. (1988)). Thus,
Stage 5 was not considered as part of the scope of the work presented here.
Additional studies controlling the cell interactions between developing neurons
would be required to characterize Stage 5 morphology based on environmental
conditions using our collection of quantitative morphometrics.

5 Conclusions

This study provided a semi-automated quantitative analysis method, includ-
ing both common and novel morphometrics. We used this method to analyze
growth during the initial 6 DIV for cultured neurons, which correspond to
three of the five growth stages qualitatively described for embryonic rodent
hippocampal neurons in culture. This semi-automated quantitative analysis
method has many potential applications, including assessing the cell culture
health and how certain intrinsic or extrinsic factors may alter neuron morpho-
logical development. The novel application of the Change-Point Test, which
was initially developed for studying animal walking paths, could also provide
additional insight on factors that alter the neurite trajectories in future stud-
ies. In addition, quantifying the development of neuron morphology can inform
parameters needed for computational simulations of neuron growth (Qian et
al. (2022)), materials transport (Li, Barati Farimani, and Zhang (2021); Li,
Chai, Yang, and Zhang (2019)), and molecular traffic jams (Li and Zhang
(2022a, 2022b)). More accurate computational models could help guide future
in vitro studies by exploring experimental parameters in silico prior to costly
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and time intensive experimentation. Finally, with our semi-automatic quanti-
tative method for characterizing neuron morphology, experimental results can
be consistently assessed by both novices and experts, and results can be easily
compared across studies.

Appendix A: Distributions and Analyses on All
Morphometrics for All Observed Time Points

Three statistical analyses were used to compare the samples of each feature
at each time point (Figure 7). First, the distributions of all features at each
time point were pairwise compared using the 2-Sample Kolmogorov-Smirnov
(K-S) test to determine whether the samples came from different distributions.
The continuous features (average segment length, average turning angle, total
length, average tortuosity) were also compared using the Mann-Whitney U
test, which analyzes the medians between each pair. Finally, the discrete count
features (total change points, number of neurites, degree) were compared using
the 2-Sample Poisson Rate test. All of the tests indicated significant differences
between several time points for many of the features (Figure 7). However, the
average turning angle and average tortuosity were not significantly different
for most of the time points (Figures 7b and 7f).
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