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1 Timestepping & numerical accuracy in the microbe1

IBM2

The buoyancy-driven DNS offers a level of spatial granularity and complexity in the velocity3

fields that poses technical challenges for accurate particle tracking. If the choice of timestep4

is too small, the computational cost of the microbe IBM will be too great; if the timestep is5

too large then particles will move too far a distance in a single timestep, ignoring too much6

of the velocity field as they do so. We establish a sensible upper bound for the timestep7

using the Courant-Friedrichs-Lewy (CFL) condition.8

The CFL condition provides a method for determining a maximal timestep without9

risking the introduction of inaccuracies or instabilities in an explicit time-integration scheme.10

The essential principle is to ensure that we do not allow particles to traverse a distance much11

greater than the separation of gridpoints in a single timestep. In the 3D case (and noting12

that in our case ∆x = ∆y = ∆z) we can express this mathematically as:13

∆tcfl

(
|ux|+ |uy|+ |uz|

∆x

)
. 1,

where ux, uy, uz are the velocities in the x, y and z directions respectively. One particu-14

larly conservative approach is to determine the maximum values of |ux|, |uy|, |uz| across all15

timesteps in the DNS and all cells, to obtain an IBM timestep with which no particle in any16

cell or at any time will violate the CFL condition (the analysis for motile particles is the17

same as for non-motile particle since the maximum fluid velocities are much greater than18

the maximum swim speed of our particles). For the simulations considered in this work this19

yields the following:20

∆x = 0.000833m and


max(|ux|)

max(|uy|)

max(|uz|)

 =


0.16472499

0.1493763

0.1672444

m s−1,

=⇒ ∆tcfl ≤
0.000833

0.48134569
s ≈ 0.0017 s.
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This is an extremely small timestep, requiring over 35,000 iterations to track particles21

through the full 60 seconds of each simulation. Recall, though, that this value of ∆t would22

ensure that not a single one of our particles would violate the CFL condition in any cell23

or at any timestep. We do not require this level of conservatism because we will be sim-24

ulating large numbers of particles – as long as the per-timestep error remains small, and25

sufficiently few particles are consistently found in cells with velocities as high as max(ux),26

max(uy) or max(uz), then we can employ a larger timestep without particle trajectories27

erring significantly. Below we demonstrate that an IBM timestep of ∆t = 0.01 s is sufficient.28

First consider the per-timestep error resulting from a switch to this new timestep. We ran29

two independent simulations for a total time of 0.1 s, each with 10,000 particles in identical30

initial positions, and with ∆t = 0.01 s and ∆t = 0.001 s respectively. The latter is less than31

∆tcfl, and therefore will yield results at least as accurate as ∆tcfl, and was chosen to simplify32

the following analysis. For each of the 10,000 particles we compare the endpoints of their33

trajectories in the ∆t = 0.01 s and ∆t = 0.001 s simulations to obtain an estimate of the34

error we can expect per-timestep for a run with ∆t = 0.01 s.35

Supplementary Fig 1 shows a histogram and empirical cumulative distribution function36

(CDF) of the results, with mean marked as a vertical green line and 95%, 99% confidence37

limits marked as vertical red lines. We can see immediately that the per-timestep error is38

generally extremely small; confined in 95% of cases to ≤ 0.06∆x, with the mean error at39

0.01∆x, and with only 1% of particles deviating by more than 0.09∆x per timestep.40

How important is this 1% edge-case of per-timestep errors? If a particle consistently found41

itself this deep in the upper end of the per-timestep error distribution then its trajectory could42

become inaccurate over the course of the full 60 s simulation. How might a particle find itself43

in such a situation? The error at a given timestep t will be highest for the particles which44

find themselves in high-velocity cells at t, since this will mean that those in the ∆t = 0.01 s45

simulation may jump over several cells by the next timestep t + 0.01 s, whereas their ∆tcfl46

counterparts will sample much more precisely the velocity field on the many timesteps they47

take to reach t + 0.01 s. Let us therefore also examine the distribution of velocities in each48

cell during the full 60 s IBM simulation period, to see how often we might expect a particle49

to find itself in a high-velocity cell.50
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Supplementary Fig 2 shows a histogram and empirical CDF of this data, with mean51

marked as a vertical green line and 95%, 99% confidence limits marked as vertical red lines.52

We can see that the distribution is heavily skewed; mean cell velocity over all timesteps53

is 0.01m s−1 and the fraction of data with velocities ≥ 0.07m s−1 is only 1%. Indeed with54

a timestep of ∆t = 0.01 s and a cell side-length of ∆x = 0.000833m, only in this 1% of55

cells would particles find themselves moving far enough in one timestep to violate the CFL56

condition. We conclude that with a timestep of ∆t = 0.01 s, DNS cells in which particles are57

at risk of violating the CFL condition are rare. Since such cells are those with the largest58

fluid velocities, particles encountering one will pass through rapidly, instead spending more59

time in low-velocity DNS cells where the CFL condition is safely met. Finally, we note60

that our analyses in this paper are concerned not with the final position of the particles61

given their initial position (i.e. not in the accumulated per-timestep errors by the end of the62

simulation), but rather in how the particles aggregate together and drift apart from each63

other as they move through the flow. The proposed ∆t = 0.01 s timestep is thus sufficient64

for our purposes.65

2 Deardorff velocity scales: Translating from the DNS to66

real-world flows.67

The computational cost of DNS prohibits the outright simulation of a 1:1 scale water column,68

even for computationally less costly turbulent regimes such as the homogeneous isotropic69

turbulent flows frequently employed in the literature[8, 9]. Nonetheless, well-understood70

scaling relationships allow us to demonstrate that the outcomes of to-scale experiments71

such as ours are robust and representative of expected behaviour even in larger, true-scale72

systems. Our fluid DNS models a small (0.6 m × 0.6 m × 0.3 m) cuboid representation of73

buoyancy-driven turbulence wherein buoyancy gradients (and thus induced turbulent fluid74

motion) rapidly decline with depth (see again Fig. 1). We found that, nearer the surface,75

intense turbulent fluid motion overpowered the swimming and reorienting capabilities of all76

our simulated motile microbes. In contrast, at greater depths with more quiescent waters,77
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the fluid motion was less intense and the most agile motile particles were able to attain the78

balance of viscous and stabilising torques needed to enable significant patch enhancement.79

What do fluid-dynamical scaling arguments tell us about interpreting these results in a real-80

world context? The convective velocity scale[1, 5] describes the dependency of the magnitude81

of turbulent velocity fluctuations on physical parameters of the flow in a 3D convective mixed82

layer and takes the following form:83

w∗ =
[
Bh
]1/3

, (1)

where h is the depth of the mixed layer and B is the surface buoyancy flux. To determine84

the ratio between velocity scales in a real-world context and in our simulated fluid, we need85

to compute the two velocity scales w∗
DNS and w∗

real. We will focus on comparison to oceanic86

conditions, for which reliable global datasets of the relevant physical parameters are available.87

In our DNS, the mixed layer depth h is approximately 0.15 m and the surface buoyancy flux88

B = βgφ is equal to −5× 10−4 m2 s−3, where φ = Q/ρcp is the surface temperature flux,89

Q is the surface heat flux, ρ is density, and cp is specific heat capacity. Here the negative90

sign simply indicates that buoyancy is being lost to the atmosphere; we will use the absolute91

value of the fluxes in computing the velocity scales. Plugging these values into equation 192

yields:93

w∗
DNS = 0.042 m s−1. (2)

To determine velocity scale associated with a cooling oceanic context, we need the mixed-94

layer depth and surface buoyancy flux. Oceanic mixed layer depth varies widely with season,95

latitude and weather conditions. If we exclude polar and sub-polar regions (where ocean96

temperature profiles do not resemble that of our DNS – see again Fig. 1) to which our fluid97

simulation is not comparable, then upper and lower limits for the ocean mixed layer depth98

lie between 10–1000 m[3].99

Global maps of mean air-sea buoyancy fluxes, converted to equivalent heat fluxes (W m−2)100

are published in [7, 2], and show large regions of the world’s oceans with average flux in the101

range of −25 to −150 W m−2, corresponding to cooling waters where heat is being lost to102
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the atmosphere. We converted these into a buoyancy flux (m2 s−3), assuming ocean surface103

temperatures in the range of 10 to 30 ◦C (again excluding very high latitudes where our fluid104

model is not appropriate) and salinity in the range of 20 to 40 g kg−1, and thus seawater105

densities and specific heat capacities of 1013.4 to 1028.8 kg m−3 and 3968.1 to 4078.3 J K−1
106

respectively[6, 4]. This yields oceanic buoyancy fluxes in the range of Bocean = −6.04× 10−6
107

to −3.68× 10−5 m2 s−3. Applying equation 1 again yields:108

0.039 m s−1 . w∗
ocean . 0.33 m s−1. (3)

We can now compute the ratio of velocity scales to compare the magnitude of turbulent109

velocity fluctuations in our DNS to that expected in a 1:1 scale simulation, or a real fluid.110

This yields upper and lower bounds on the ratio of the convective velocity scales in our DNS111

and in comparable ocean waters undergoing convective mixing:112

0.94 .
w∗
ocean

w∗
DNS

. 7.88. (4)

We conclude that a real-world ocean mixed-layer with weak surface cooling and a shallow113

mixed layer depth has turbulent velocities of a very similar (though slightly smaller) scale114

to our DNS, while in a real-world scenario with stronger surface cooling and a deeper mixed115

layer, velocities may be up to ∼ 8 times stronger. The greater (and more positive) the ratio of116

oceanic to DNS velocity scales, the more that the contribution of fluid advection to microbe117

transport will dominate over the contribution of gyrotactic motility, further suppressing118

patch enhancement relative to our simulations.119

3 Supplementary Figures120
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Supplementary Figure 1: Per-Timestep Error between ∆t = 0.01 s and ∆t = 0.001 s. Mean
marked as vertical green line, 95% and 99% confidence limits marked as vertical red lines.

Supplementary Figure 2: Distribution of Cellwise Velocity Magnitudes across all timesteps.
95% and 99% confidence limits marked as vertical red lines. Mean marked as vertical green
line, 95% and 99% confidence limits marked as vertical red lines.
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Supplementary Figure 3: Sample of 2 3D microbe trajectories with superimposed microbe
orientations from t = 0–30 s in the (B, vswim) = (5 s, 10 µm s−1) motile simulation. Axes are
labelled in units of DNS cell side-length. Each uniquely-coloured set of dots represents a
single microbe’s trajectory. Black arrows represent the instantaneous microbe orientation
every 0.5 s. Owing to the periodic boundaries in the longitudinal and latitudinal directions,
trajectories may appear discontinuous when a microbe moves through such a boundary (e.g.
green trajectory).
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Supplementary Figure 4: Q-statistic over time (solid green line) and mean Q-statistic (dashed
green line) for the 1% most aggregated cells in the Shallow region of each simulation.
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Supplementary Figure 5: Q-statistic over time (solid green line) and mean Q-statistic (dashed
green line) for the 1% most aggregated cells in the Mid region of each simulation.
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Supplementary Figure 6: Q-statistic over time (solid green line) and mean Q-statistic (dashed
green line) for the 1% most aggregated cells in the Deep region of each simulation.
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Supplementary Figure 7: Normalised distributions of polar angle of microbe orientation in
each simulation.

Supplementary Figure 8: A sample of 6 microbe depth trajectories in the (a) (B, vswim) =
(5 s, 10 µm s−1) and (b) (B, vswim) = (1 s, 500 µm s−1) simulations, which exhibit rapid ver-
tical movement due to transport in upwelling/downwelling fluid packets, along with ex-
ploratory sojourns in deeper, less turbulent regions.
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