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1 Timestepping & numerical accuracy in the microbe

IBM

The buoyancy-driven DNS offers a level of spatial granularity and complexity in the velocity
fields that poses technical challenges for accurate particle tracking. If the choice of timestep
is too small, the computational cost of the microbe IBM will be too great; if the timestep is
too large then particles will move too far a distance in a single timestep, ignoring too much
of the velocity field as they do so. We establish a sensible upper bound for the timestep
using the Courant-Friedrichs-Lewy (CFL) condition.

The CFL condition provides a method for determining a maximal timestep without
risking the introduction of inaccuracies or instabilities in an explicit time-integration scheme.
The essential principle is to ensure that we do not allow particles to traverse a distance much
greater than the separation of gridpoints in a single timestep. In the 3D case (and noting

that in our case Ax = Ay = Az) we can express this mathematically as:

g (oLt el o
Ax

where ug,u,,u, are the velocities in the z,y and z directions respectively. One particu-
larly conservative approach is to determine the maximum values of |u,|, |u,|, |u,| across all
timesteps in the DNS and all cells, to obtain an IBM timestep with which no particle in any
cell or at any time will violate the CFL condition (the analysis for motile particles is the
same as for non-motile particle since the maximum fluid velocities are much greater than
the maximum swim speed of our particles). For the simulations considered in this work this

yields the following:

max(|u,|) 0.16472499
Az =0.000833m  and max(|u,|)| = | 0.1493763 | ms ™",
max(|u,|) 0.1672444
0.000833
— At < — 20 2 0.0017s.
1= 0.48134569" i
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This is an extremely small timestep, requiring over 35,000 iterations to track particles
through the full 60 seconds of each simulation. Recall, though, that this value of At would
ensure that not a single one of our particles would violate the CFL condition in any cell
or at any timestep. We do not require this level of conservatism because we will be sim-
ulating large numbers of particles — as long as the per-timestep error remains small, and
sufficiently few particles are consistently found in cells with velocities as high as max(u,),
max(u,) or max(u,), then we can employ a larger timestep without particle trajectories
erring significantly. Below we demonstrate that an IBM timestep of At = 0.01s is sufficient.

First consider the per-timestep error resulting from a switch to this new timestep. We ran
two independent simulations for a total time of 0.1s, each with 10,000 particles in identical
initial positions, and with At = 0.01s and At = 0.001 s respectively. The latter is less than
At.q, and therefore will yield results at least as accurate as At.q, and was chosen to simplify
the following analysis. For each of the 10,000 particles we compare the endpoints of their
trajectories in the At = 0.01s and At = 0.001s simulations to obtain an estimate of the
error we can expect per-timestep for a run with At = 0.01s.

Supplementary Fig 1| shows a histogram and empirical cumulative distribution function
(CDF) of the results, with mean marked as a vertical green line and 95%, 99% confidence
limits marked as vertical red lines. We can see immediately that the per-timestep error is
generally extremely small; confined in 95% of cases to < 0.06Ax, with the mean error at
0.01Az, and with only 1% of particles deviating by more than 0.09Az per timestep.

How important is this 1% edge-case of per-timestep errors? If a particle consistently found
itself this deep in the upper end of the per-timestep error distribution then its trajectory could
become inaccurate over the course of the full 60 s simulation. How might a particle find itself
in such a situation? The error at a given timestep ¢ will be highest for the particles which
find themselves in high-velocity cells at ¢, since this will mean that those in the At = 0.01s
simulation may jump over several cells by the next timestep ¢ + 0.01s, whereas their At.q
counterparts will sample much more precisely the velocity field on the many timesteps they
take to reach t + 0.01s. Let us therefore also examine the distribution of velocities in each
cell during the full 60s IBM simulation period, to see how often we might expect a particle

to find itself in a high-velocity cell.
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Supplementary Fig [2| shows a histogram and empirical CDF of this data, with mean
marked as a vertical green line and 95%, 99% confidence limits marked as vertical red lines.
We can see that the distribution is heavily skewed; mean cell velocity over all timesteps
is 0.0lms™! and the fraction of data with velocities > 0.07ms™! is only 1%. Indeed with
a timestep of At = 0.01s and a cell side-length of Az = 0.000833m, only in this 1% of
cells would particles find themselves moving far enough in one timestep to violate the CFL
condition. We conclude that with a timestep of At = 0.01s, DNS cells in which particles are
at risk of violating the CFL condition are rare. Since such cells are those with the largest
fluid velocities, particles encountering one will pass through rapidly, instead spending more
time in low-velocity DNS cells where the CFL condition is safely met. Finally, we note
that our analyses in this paper are concerned not with the final position of the particles
given their initial position (i.e. not in the accumulated per-timestep errors by the end of the
simulation), but rather in how the particles aggregate together and drift apart from each
other as they move through the flow. The proposed At = 0.01s timestep is thus sufficient

for our purposes.

2 Deardorff velocity scales: Translating from the DNS to
real-world flows.

The computational cost of DNS prohibits the outright simulation of a 1:1 scale water column,
even for computationally less costly turbulent regimes such as the homogeneous isotropic
turbulent flows frequently employed in the literature[8, [9]. Nonetheless, well-understood
scaling relationships allow us to demonstrate that the outcomes of to-scale experiments
such as ours are robust and representative of expected behaviour even in larger, true-scale
systems. Our fluid DNS models a small (0.6m x 0.6m x 0.3m) cuboid representation of
buoyancy-driven turbulence wherein buoyancy gradients (and thus induced turbulent fluid
motion) rapidly decline with depth (see again Fig. 1). We found that, nearer the surface,
intense turbulent fluid motion overpowered the swimming and reorienting capabilities of all

our simulated motile microbes. In contrast, at greater depths with more quiescent waters,
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the fluid motion was less intense and the most agile motile particles were able to attain the
balance of viscous and stabilising torques needed to enable significant patch enhancement.
What do fluid-dynamical scaling arguments tell us about interpreting these results in a real-
world context? The convective velocity scale[ll [5] describes the dependency of the magnitude
of turbulent velocity fluctuations on physical parameters of the flow in a 3D convective mixed

layer and takes the following form:

w* = [Bh]l/g, (1)

where h is the depth of the mixed layer and B is the surface buoyancy flux. To determine

the ratio between velocity scales in a real-world context and in our simulated fluid, we need

*

a1 We will focus on comparison to oceanic

to compute the two velocity scales wpyyg and w
conditions, for which reliable global datasets of the relevant physical parameters are available.
In our DNS, the mixed layer depth A is approximately 0.15m and the surface buoyancy flux
B = Bg¢ is equal to =5 x 107*m?s™3, where ¢ = Q/pc, is the surface temperature flux,
@ is the surface heat flux, p is density, and ¢, is specific heat capacity. Here the negative
sign simply indicates that buoyancy is being lost to the atmosphere; we will use the absolute

value of the fluxes in computing the velocity scales. Plugging these values into equation

yields:

whys = 0.042ms™ . (2)

To determine velocity scale associated with a cooling oceanic context, we need the mixed-
layer depth and surface buoyancy flux. Oceanic mixed layer depth varies widely with season,
latitude and weather conditions. If we exclude polar and sub-polar regions (where ocean
temperature profiles do not resemble that of our DNS — see again Fig. 1) to which our fluid
simulation is not comparable, then upper and lower limits for the ocean mixed layer depth
lie between 10-1000 m[3].

Global maps of mean air-sea buoyancy fluxes, converted to equivalent heat fluxes (W m™—2)
are published in |7, 2], and show large regions of the world’s oceans with average flux in the

range of —25 to —150 W m™2, corresponding to cooling waters where heat is being lost to
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the atmosphere. We converted these into a buoyancy flux (m?s™2), assuming ocean surface
temperatures in the range of 10 to 30 °C (again excluding very high latitudes where our fluid
model is not appropriate) and salinity in the range of 20 to 40gkg™', and thus seawater
densities and specific heat capacities of 1013.4 to 1028.8kgm~2 and 3968.1 to 4078.3 J K~!
respectively[6], [4]. This yields oceanic buoyancy fluxes in the range of Bycean = —6.04 x 1076
to —3.68 x 107°m?s~3. Applying equation [1| again yields:

0.039ms™ ! < w, $0.33ms (3)

ocean ~v

We can now compute the ratio of velocity scales to compare the magnitude of turbulent
velocity fluctuations in our DNS to that expected in a 1:1 scale simulation, or a real fluid.
This yields upper and lower bounds on the ratio of the convective velocity scales in our DNS
and in comparable ocean waters undergoing convective mixing:

W,

0.04 < “ocean < 7 g8 (4)

*

WpNs
We conclude that a real-world ocean mixed-layer with weak surface cooling and a shallow
mixed layer depth has turbulent velocities of a very similar (though slightly smaller) scale
to our DNS, while in a real-world scenario with stronger surface cooling and a deeper mixed
layer, velocities may be up to ~ 8 times stronger. The greater (and more positive) the ratio of
oceanic to DNS velocity scales, the more that the contribution of fluid advection to microbe
transport will dominate over the contribution of gyrotactic motility, further suppressing

patch enhancement relative to our simulations.

3 Supplementary Figures
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Supplementary Figure 1: Per-Timestep Error between At = 0.01s and At = 0.001s. Mean
marked as vertical green line, 95% and 99% confidence limits marked as vertical red lines.
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Supplementary Figure 2: Distribution of Cellwise Velocity Magnitudes across all timesteps.
95% and 99% confidence limits marked as vertical red lines. Mean marked as vertical green
line, 95% and 99% confidence limits marked as vertical red lines.
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Supplementary Figure 3: Sample of 2 3D microbe trajectories with superimposed microbe
orientations from ¢t = 0-30s in the (B, vsyim) = (58,10 pms~1) motile simulation. Axes are
labelled in units of DNS cell side-length. Each uniquely-coloured set of dots represents a
single microbe’s trajectory. Black arrows represent the instantaneous microbe orientation
every 0.5s. Owing to the periodic boundaries in the longitudinal and latitudinal directions,
trajectories may appear discontinuous when a microbe moves through such a boundary (e.g.

green trajectory).
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Supplementary Figure 4: Q-statistic over time (solid green line) and mean Q-statistic (dashed
green line) for the 1% most aggregated cells in the Shallow region of each simulation.
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Supplementary Figure 7: Normalised distributions of polar angle of microbe orientation in
each simulation.
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Supplementary Figure 8: A sample of 6 microbe depth trajectories in the (a) (B, Vswim) =
(55,10 pms™!) and (b) (B, vswim) = (15,500 ums™!) simulations, which exhibit rapid ver-
tical movement due to transport in upwelling/downwelling fluid packets, along with ex-
ploratory sojourns in deeper, less turbulent regions.
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