

Small-scale convective turbulence constrains microbial patchiness.

A. K. Christensen¹, M. D. Piggott², E. van Sebille³, M. van Reeuwijk⁴, S. Pawar¹

¹Department of Life Sciences, Imperial College London, UK

²Department of Earth Science and Engineering, Imperial College London, UK

³Utrecht University, The Netherlands

⁴Department of Civil and Environmental Engineering, Imperial College London, UK

Supplementary Information

Contents

1 Timestepping & numerical accuracy in the microbe IBM	2
2 Deardorff velocity scales: Translating from the DNS to real-world flows.	4
3 Supplementary Figures	6

₁ 1 Timestepping & numerical accuracy in the microbe
₂ IBM

₃ The buoyancy-driven DNS offers a level of spatial granularity and complexity in the velocity
₄ fields that poses technical challenges for accurate particle tracking. If the choice of timestep
₅ is too small, the computational cost of the microbe IBM will be too great; if the timestep is
₆ too large then particles will move too far a distance in a single timestep, ignoring too much
₇ of the velocity field as they do so. We establish a sensible upper bound for the timestep
₈ using the Courant-Friedrichs-Lowy (CFL) condition.

₉ The CFL condition provides a method for determining a maximal timestep without
₁₀ risking the introduction of inaccuracies or instabilities in an explicit time-integration scheme.
₁₁ The essential principle is to ensure that we do not allow particles to traverse a distance much
₁₂ greater than the separation of gridpoints in a single timestep. In the 3D case (and noting
₁₃ that in our case $\Delta x = \Delta y = \Delta z$) we can express this mathematically as:

$$\Delta t_{\text{cfl}} \left(\frac{|u_x| + |u_y| + |u_z|}{\Delta x} \right) \lesssim 1,$$

₁₄ where u_x, u_y, u_z are the velocities in the x, y and z directions respectively. One particu-
₁₅ larly conservative approach is to determine the maximum values of $|u_x|, |u_y|, |u_z|$ across all
₁₆ timesteps in the DNS and all cells, to obtain an IBM timestep with which no particle in any
₁₇ cell or at any time will violate the CFL condition (the analysis for motile particles is the
₁₈ same as for non-motile particle since the maximum fluid velocities are much greater than
₁₉ the maximum swim speed of our particles). For the simulations considered in this work this
₂₀ yields the following:

$$\Delta x = 0.0008\overline{3}m \quad \text{and} \quad \begin{bmatrix} \max(|u_x|) \\ \max(|u_y|) \\ \max(|u_z|) \end{bmatrix} = \begin{bmatrix} 0.16472499 \\ 0.1493763 \\ 0.1672444 \end{bmatrix} \text{ m s}^{-1},$$

$$\implies \Delta t_{\text{cfl}} \leq \frac{0.0008\overline{3}}{0.48134569} \text{ s} \approx 0.0017 \text{ s.}$$

21 This is an extremely small timestep, requiring over 35,000 iterations to track particles
22 through the full 60 seconds of each simulation. Recall, though, that this value of Δt would
23 ensure that not a single one of our particles would violate the CFL condition in any cell
24 or at any timestep. We do not require this level of conservatism because we will be sim-
25 ulating large numbers of particles – as long as the per-timestep error remains small, and
26 sufficiently few particles are consistently found in cells with velocities as high as $\max(u_x)$,
27 $\max(u_y)$ or $\max(u_z)$, then we can employ a larger timestep without particle trajectories
28 erring significantly. Below we demonstrate that an IBM timestep of $\Delta t = 0.01$ s is sufficient.

29 First consider the per-timestep error resulting from a switch to this new timestep. We ran
30 two independent simulations for a total time of 0.1 s, each with 10,000 particles in identical
31 initial positions, and with $\Delta t = 0.01$ s and $\Delta t = 0.001$ s respectively. The latter is less than
32 Δt_{cfl} , and therefore will yield results at least as accurate as Δt_{cfl} , and was chosen to simplify
33 the following analysis. For each of the 10,000 particles we compare the endpoints of their
34 trajectories in the $\Delta t = 0.01$ s and $\Delta t = 0.001$ s simulations to obtain an estimate of the
35 error we can expect per-timestep for a run with $\Delta t = 0.01$ s.

36 Supplementary Fig 1 shows a histogram and empirical cumulative distribution function
37 (CDF) of the results, with mean marked as a vertical green line and 95%, 99% confidence
38 limits marked as vertical red lines. We can see immediately that the per-timestep error is
39 generally extremely small; confined in 95% of cases to $\leq 0.06\Delta x$, with the mean error at
40 $0.01\Delta x$, and with only 1% of particles deviating by more than $0.09\Delta x$ per timestep.

41 How important is this 1% edge-case of per-timestep errors? If a particle consistently found
42 itself this deep in the upper end of the per-timestep error distribution then its trajectory could
43 become inaccurate over the course of the full 60 s simulation. How might a particle find itself
44 in such a situation? The error at a given timestep t will be highest for the particles which
45 find themselves in high-velocity cells at t , since this will mean that those in the $\Delta t = 0.01$ s
46 simulation may jump over several cells by the next timestep $t + 0.01$ s, whereas their Δt_{cfl}
47 counterparts will sample much more precisely the velocity field on the many timesteps they
48 take to reach $t + 0.01$ s. Let us therefore also examine the distribution of velocities in each
49 cell during the full 60 s IBM simulation period, to see how often we might expect a particle
50 to find itself in a high-velocity cell.

51 Supplementary Fig 2 shows a histogram and empirical CDF of this data, with mean
52 marked as a vertical green line and 95%, 99% confidence limits marked as vertical red lines.
53 We can see that the distribution is heavily skewed; mean cell velocity over all timesteps
54 is 0.01m s^{-1} and the fraction of data with velocities $\geq 0.07\text{m s}^{-1}$ is only 1%. Indeed with
55 a timestep of $\Delta t = 0.01\text{s}$ and a cell side-length of $\Delta x = 0.0008\bar{3}\text{m}$, only in this 1% of
56 cells would particles find themselves moving far enough in one timestep to violate the CFL
57 condition. We conclude that with a timestep of $\Delta t = 0.01\text{s}$, DNS cells in which particles are
58 at risk of violating the CFL condition are rare. Since such cells are those with the largest
59 fluid velocities, particles encountering one will pass through rapidly, instead spending more
60 time in low-velocity DNS cells where the CFL condition is safely met. Finally, we note
61 that our analyses in this paper are concerned not with the final position of the particles
62 given their initial position (i.e. not in the accumulated per-timestep errors by the end of the
63 simulation), but rather in how the particles aggregate together and drift apart from each
64 other as they move through the flow. The proposed $\Delta t = 0.01\text{s}$ timestep is thus sufficient
65 for our purposes.

66 2 Deardorff velocity scales: Translating from the DNS to 67 real-world flows.

68 The computational cost of DNS prohibits the outright simulation of a 1:1 scale water column,
69 even for computationally less costly turbulent regimes such as the homogeneous isotropic
70 turbulent flows frequently employed in the literature[8, 9]. Nonetheless, well-understood
71 scaling relationships allow us to demonstrate that the outcomes of to-scale experiments
72 such as ours are robust and representative of expected behaviour even in larger, true-scale
73 systems. Our fluid DNS models a small ($0.6\text{m} \times 0.6\text{m} \times 0.3\text{m}$) cuboid representation of
74 buoyancy-driven turbulence wherein buoyancy gradients (and thus induced turbulent fluid
75 motion) rapidly decline with depth (see again Fig. 1). We found that, nearer the surface,
76 intense turbulent fluid motion overpowered the swimming and reorienting capabilities of all
77 our simulated motile microbes. In contrast, at greater depths with more quiescent waters,

78 the fluid motion was less intense and the most agile motile particles were able to attain the
 79 balance of viscous and stabilising torques needed to enable significant patch enhancement.
 80 What do fluid-dynamical scaling arguments tell us about interpreting these results in a real-
 81 world context? The convective velocity scale[1, 5] describes the dependency of the magnitude
 82 of turbulent velocity fluctuations on physical parameters of the flow in a 3D convective mixed
 83 layer and takes the following form:

$$w^* = [Bh]^{1/3}, \quad (1)$$

84 where h is the depth of the mixed layer and B is the surface buoyancy flux. To determine
 85 the ratio between velocity scales in a real-world context and in our simulated fluid, we need
 86 to compute the two velocity scales w_{DNS}^* and w_{real}^* . We will focus on comparison to oceanic
 87 conditions, for which reliable global datasets of the relevant physical parameters are available.
 88 In our DNS, the mixed layer depth h is approximately 0.15 m and the surface buoyancy flux
 89 $B = \beta g \phi$ is equal to $-5 \times 10^{-4} \text{ m}^2 \text{ s}^{-3}$, where $\phi = Q/\rho c_p$ is the surface temperature flux,
 90 Q is the surface heat flux, ρ is density, and c_p is specific heat capacity. Here the negative
 91 sign simply indicates that buoyancy is being lost to the atmosphere; we will use the absolute
 92 value of the fluxes in computing the velocity scales. Plugging these values into equation 1
 93 yields:

$$w_{\text{DNS}}^* = 0.042 \text{ m s}^{-1}. \quad (2)$$

94 To determine velocity scale associated with a cooling oceanic context, we need the mixed-
 95 layer depth and surface buoyancy flux. Oceanic mixed layer depth varies widely with season,
 96 latitude and weather conditions. If we exclude polar and sub-polar regions (where ocean
 97 temperature profiles do not resemble that of our DNS – see again Fig. 1) to which our fluid
 98 simulation is not comparable, then upper and lower limits for the ocean mixed layer depth
 99 lie between 10–1000 m[3].

100 Global maps of mean air-sea buoyancy fluxes, converted to equivalent heat fluxes (W m^{-2})
 101 are published in [7, 2], and show large regions of the world’s oceans with average flux in the
 102 range of -25 to -150 W m^{-2} , corresponding to cooling waters where heat is being lost to

103 the atmosphere. We converted these into a buoyancy flux ($\text{m}^2 \text{s}^{-3}$), assuming ocean surface
 104 temperatures in the range of 10 to 30 °C (again excluding very high latitudes where our fluid
 105 model is not appropriate) and salinity in the range of 20 to 40 g kg^{-1} , and thus seawater
 106 densities and specific heat capacities of 1013.4 to 1028.8 kg m^{-3} and 3968.1 to 4078.3 J K^{-1}
 107 respectively[6, 4]. This yields oceanic buoyancy fluxes in the range of $B_{\text{ocean}} = -6.04 \times 10^{-6}$
 108 to $-3.68 \times 10^{-5} \text{ m}^2 \text{s}^{-3}$. Applying equation 1 again yields:

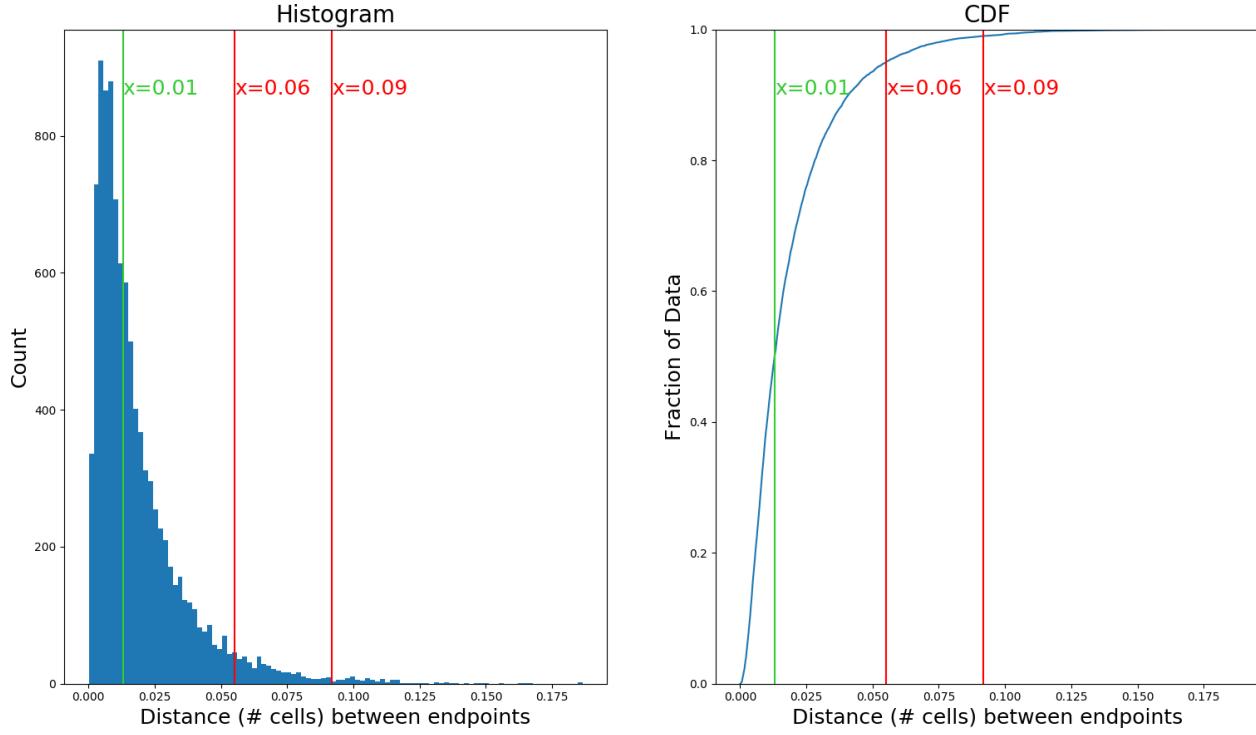
$$0.039 \text{ m s}^{-1} \lesssim w_{\text{ocean}}^* \lesssim 0.33 \text{ m s}^{-1}. \quad (3)$$

109 We can now compute the ratio of velocity scales to compare the magnitude of turbulent
 110 velocity fluctuations in our DNS to that expected in a 1:1 scale simulation, or a real fluid.
 111 This yields upper and lower bounds on the ratio of the convective velocity scales in our DNS
 112 and in comparable ocean waters undergoing convective mixing:

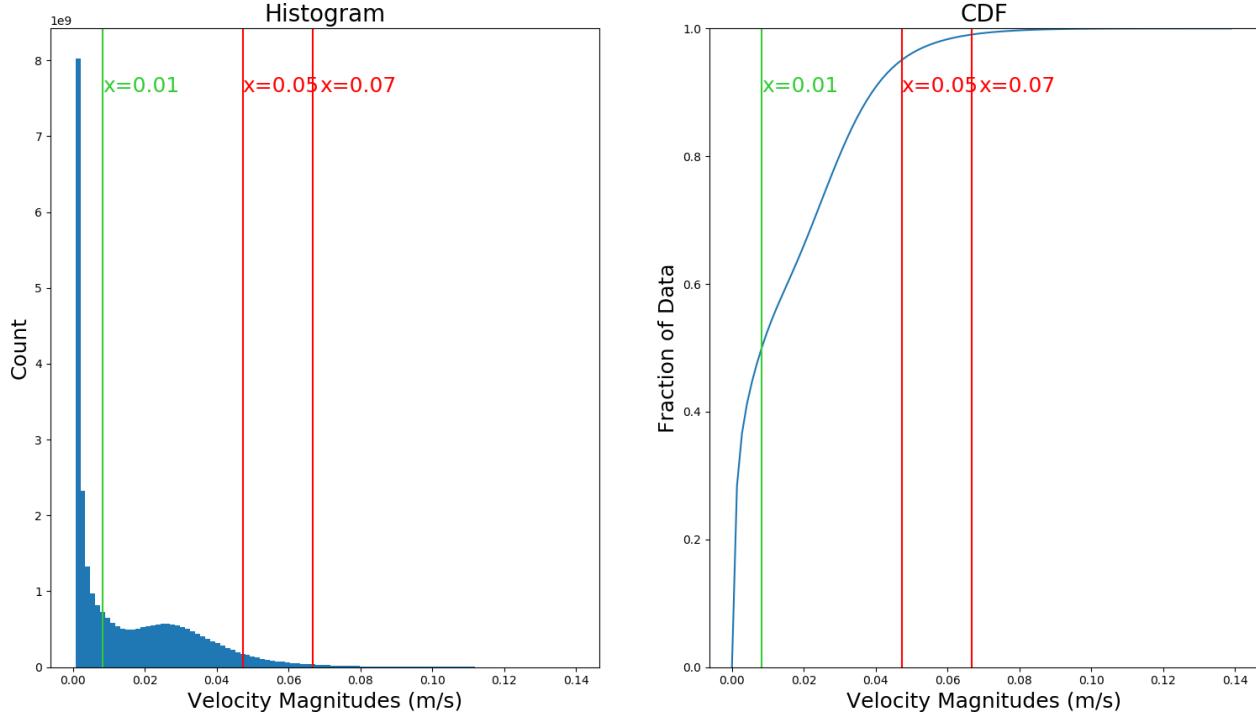
$$0.94 \lesssim \frac{w_{\text{ocean}}^*}{w_{\text{DNS}}^*} \lesssim 7.88. \quad (4)$$

113 We conclude that a real-world ocean mixed-layer with weak surface cooling and a shallow
 114 mixed layer depth has turbulent velocities of a very similar (though slightly smaller) scale
 115 to our DNS, while in a real-world scenario with stronger surface cooling and a deeper mixed
 116 layer, velocities may be up to ~ 8 times stronger. The greater (and more positive) the ratio of
 117 oceanic to DNS velocity scales, the more that the contribution of fluid advection to microbe
 118 transport will dominate over the contribution of gyrotactic motility, further suppressing
 119 patch enhancement relative to our simulations.

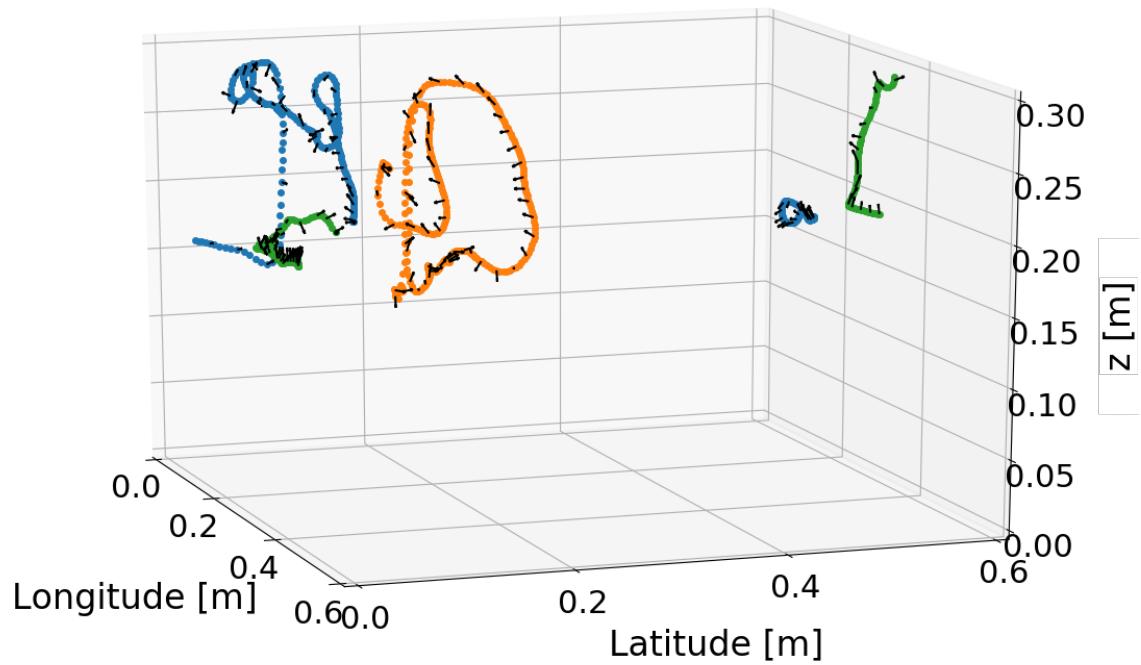
120 3 Supplementary Figures



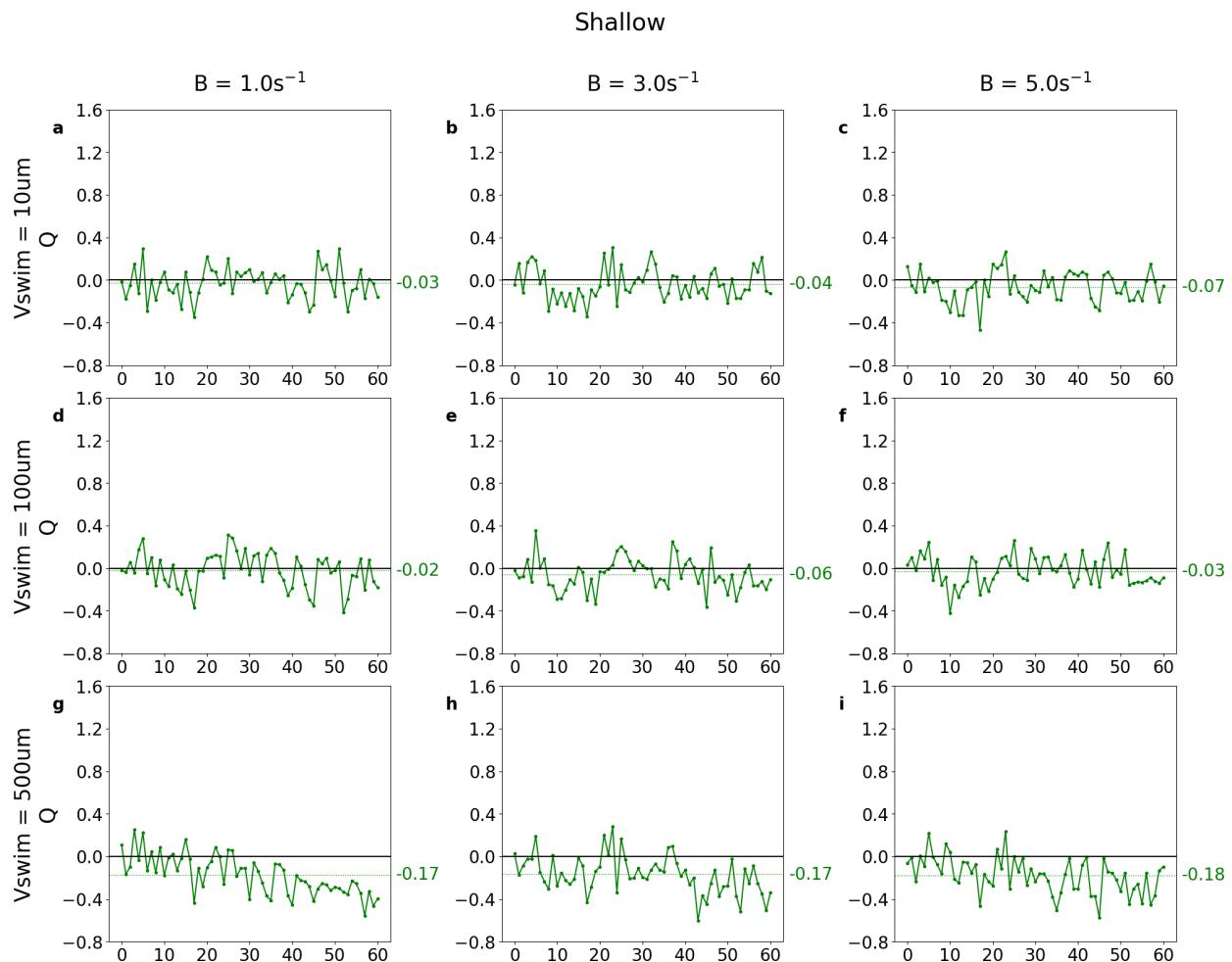
Supplementary Figure 1: Per-Timestep Error between $\Delta t = 0.01$ s and $\Delta t = 0.001$ s. Mean marked as vertical green line, 95% and 99% confidence limits marked as vertical red lines.



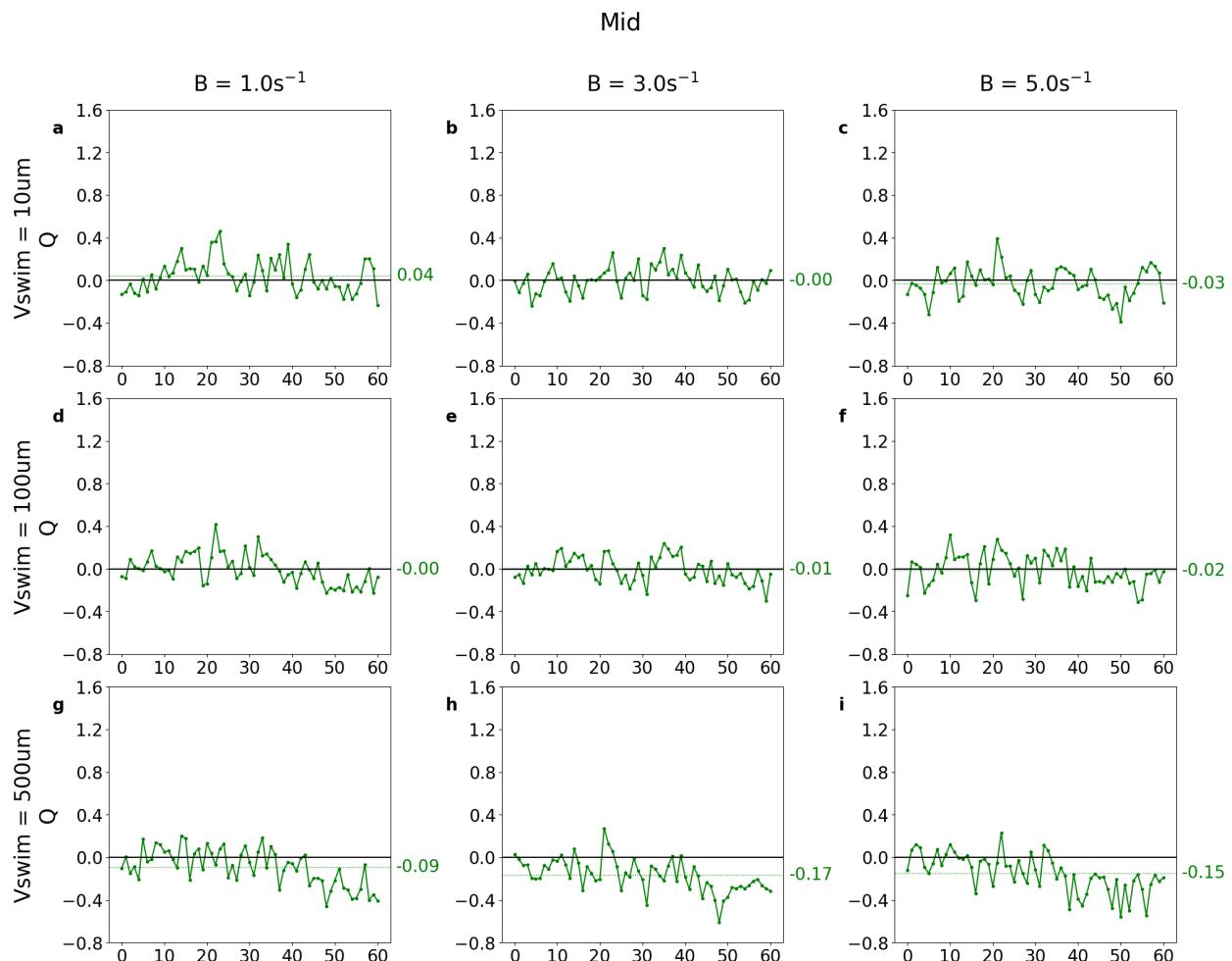
Supplementary Figure 2: Distribution of Cellwise Velocity Magnitudes across all timesteps. 95% and 99% confidence limits marked as vertical red lines. Mean marked as vertical green line, 95% and 99% confidence limits marked as vertical red lines.



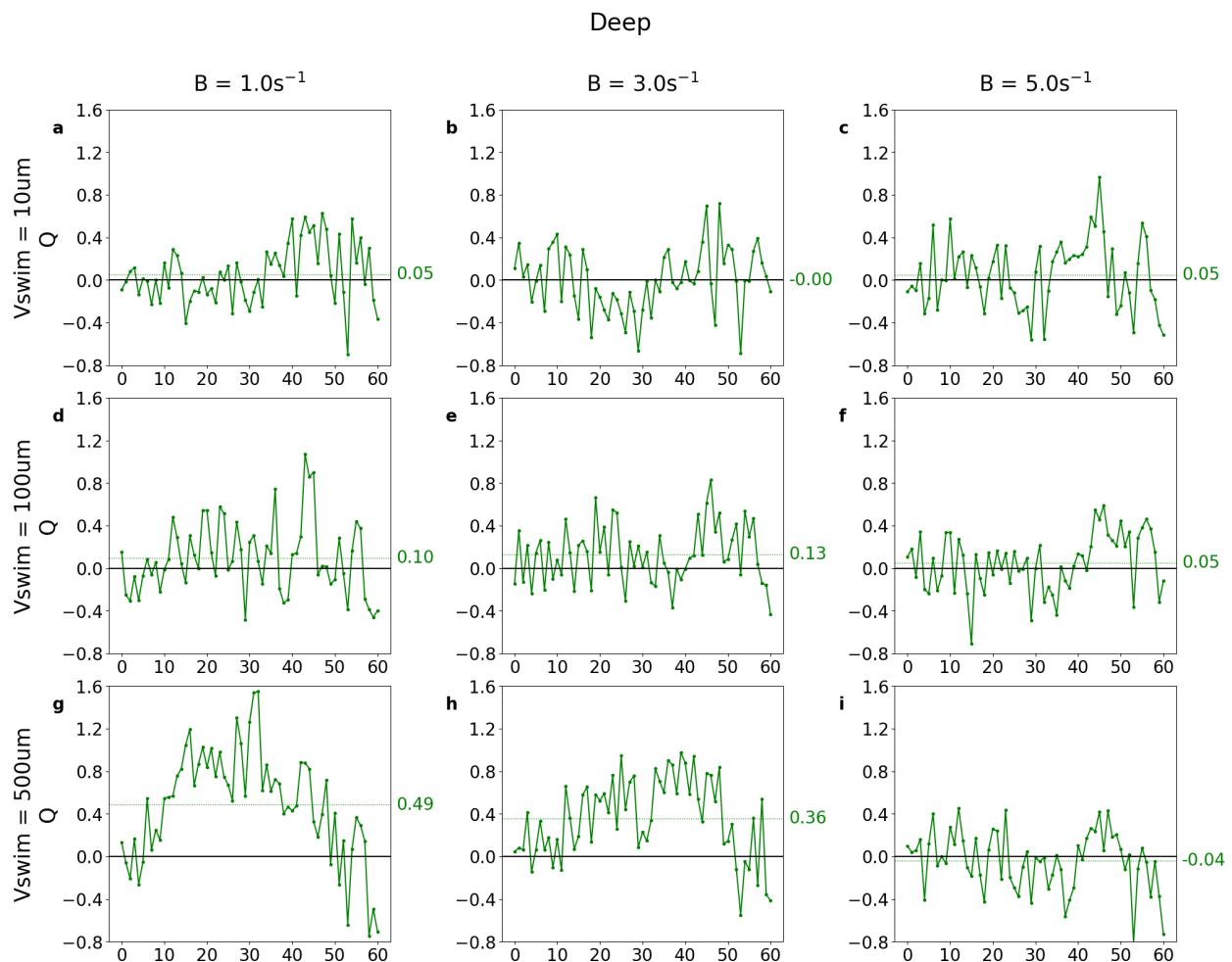
Supplementary Figure 3: Sample of 2 3D microbe trajectories with superimposed microbe orientations from $t = 0$ –30 s in the $(B, v_{\text{swim}}) = (5 \text{ s}, 10 \mu\text{m s}^{-1})$ motile simulation. Axes are labelled in units of DNS cell side-length. Each uniquely-coloured set of dots represents a single microbe's trajectory. Black arrows represent the instantaneous microbe orientation every 0.5 s. Owing to the periodic boundaries in the longitudinal and latitudinal directions, trajectories may appear discontinuous when a microbe moves through such a boundary (e.g. green trajectory).



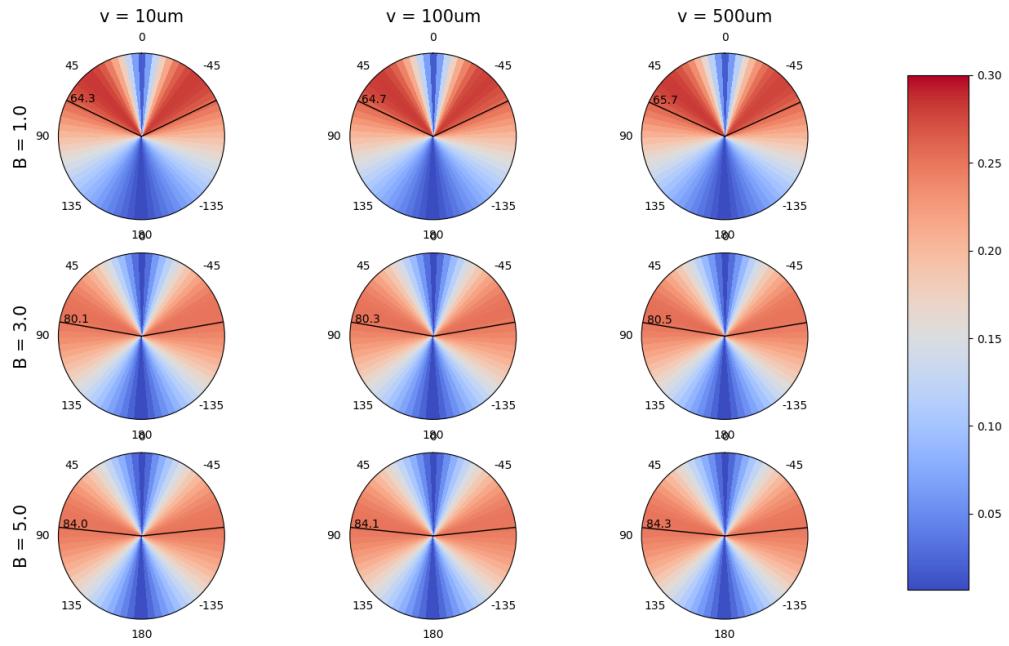
Supplementary Figure 4: Q-statistic over time (solid green line) and mean Q-statistic (dashed green line) for the 1% most aggregated cells in the Shallow region of each simulation.



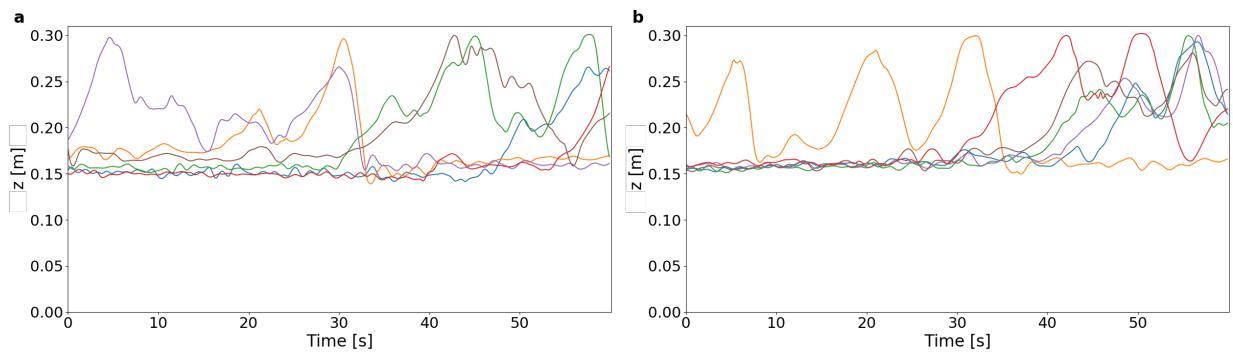
Supplementary Figure 5: Q-statistic over time (solid green line) and mean Q-statistic (dashed green line) for the 1% most aggregated cells in the Mid region of each simulation.



Supplementary Figure 6: Q-statistic over time (solid green line) and mean Q-statistic (dashed green line) for the 1% most aggregated cells in the Deep region of each simulation.



Supplementary Figure 7: Normalised distributions of polar angle of microbe orientation in each simulation.



Supplementary Figure 8: A sample of 6 microbe depth trajectories in the (a) $(B, v_{\text{swim}}) = (5 \text{ s}, 10 \mu\text{m s}^{-1})$ and (b) $(B, v_{\text{swim}}) = (1 \text{ s}, 500 \mu\text{m s}^{-1})$ simulations, which exhibit rapid vertical movement due to transport in upwelling/downwelling fluid packets, along with exploratory sojourns in deeper, less turbulent regions.

121 **References**

122 [1] Deardorff, James W. *Convective Velocity and Temperature Scales for the Unstable Plane-*
123 *tary Boundary Layer and for Rayleigh Convection*. *Journal of the Atmospheric Sciences*,
124 27:1211-1213, 1970.

125 [2] Large, W. G. and Yeager, S. G. *The global climatology of an interannually varying air-sea*
126 *flux data set*. *Climate Dynamics*, 33(2):341-364, 2009.

127 [3] Montegut, Clement de Boyer and Madec, Gurvan and Fischer, Albert S. and Lazar,
128 Alban and Iudicone, Daniele. *Mixed layer depth over the global ocean: An examination*
129 *of profile data and a profile-based climatology*. *Journal of Geophysical Research: Oceans*,
130 109(C12), 2004.

131 [4] Nayar, Kishor G. and Sharqawy, Mostafa H. and Banchik, Leonardo D. and Lienhard
132 V, John H. *Thermophysical properties of seawater: A review and new correlations that*
133 *include pressure dependence*. *Desalination*, 390:1-24, 2016.

134 [5] Rutgersson, A. and Smedman, A. and Sahlee, E. *Oceanic convective mixing and the*
135 *impact on air-sea gas transfer velocity*. *Geophysical Research Letters*, 38(2), 2011.

136 [6] Sharqawy, Mostafa H. and V, John H. Lienhard and Zubair, Syed M. *Thermophysical*
137 *properties of seawater: a review of existing correlations and data*. *Desalination and Water*
138 *Treatment*, 16(1-3):354-380, 2010.

139 [7] Talley, Lynne D. and Pickard, George L. and Emery, William J. and Swift, James H.
140 *Descriptive Physical Oceanography (Sixth Edition)* Chapter 5 - Mass, Salt, and Heat
141 Budgets and Wind Forcing, pp111-145. Academic Press, Cambridge, Massachusetts,
142 2011.

143 [8] Taylor, John R. and Stocker, R. *Trade-Offs of Chemotactic Foraging in Turbulent Water*
144 *Science*, 338(6107):675-679, 2012.

¹⁴⁵ [9] Watteaux, R. and Stocker, R. and Taylor, John R. *Sensitivity of the rate of nutrient*
¹⁴⁶ *uptake by chemotactic bacteria to physical and biological parameters in a turbulent envi-*
¹⁴⁷ *ronment* Journal of Theoretical Biology, 387:120-135, 2015.