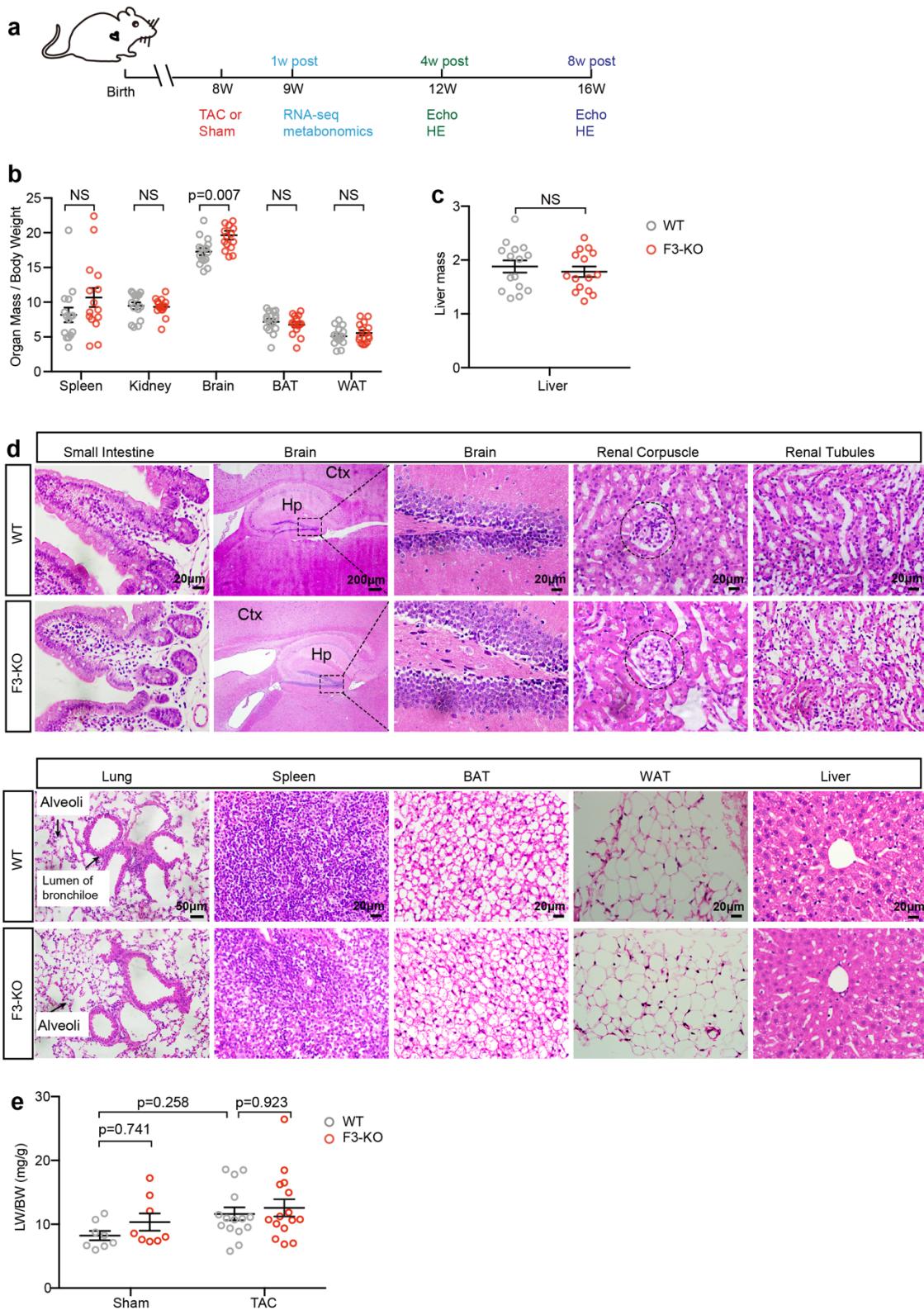


SUPPLEMENTAL MATERIALS

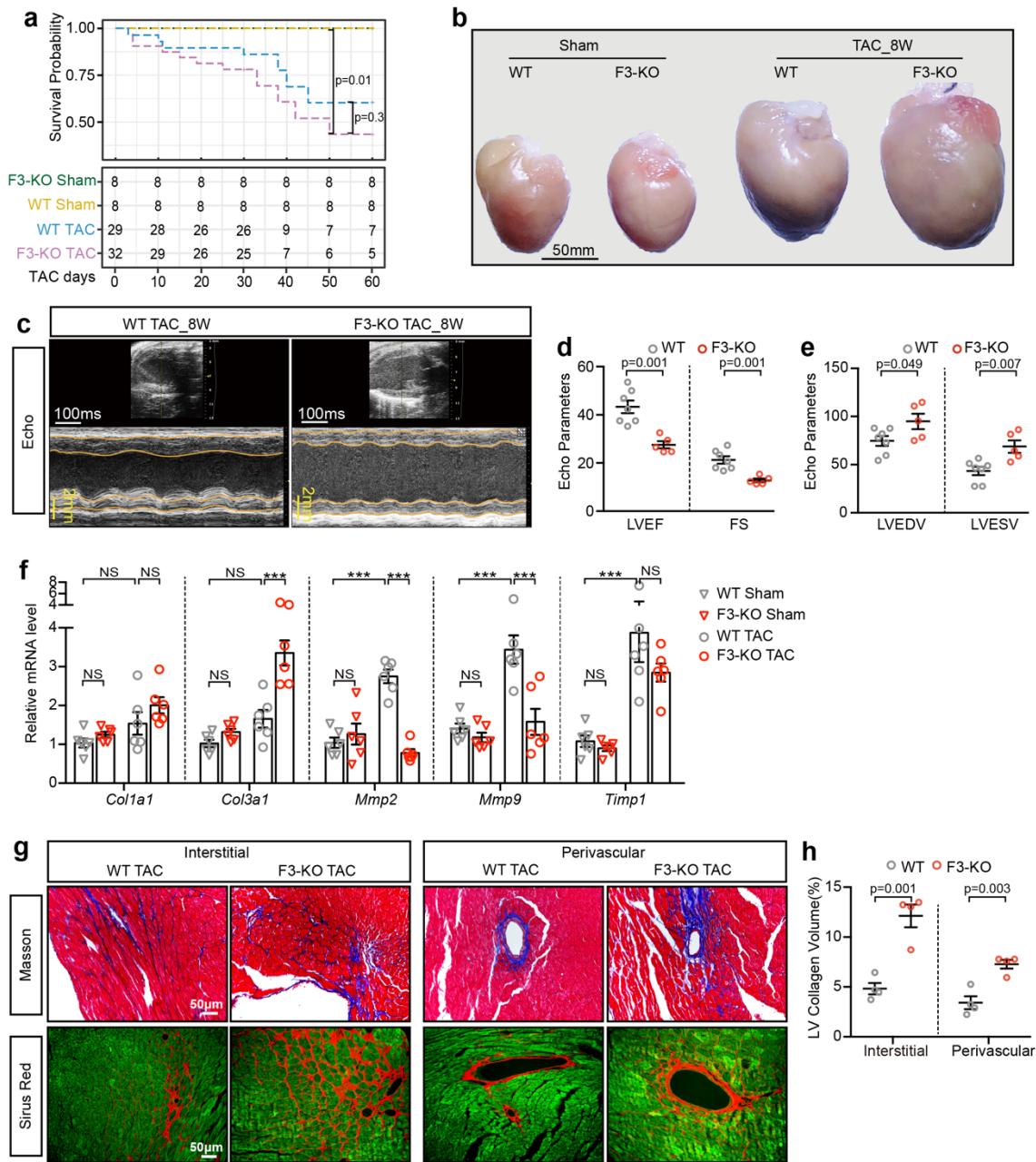
Supplementary Fig. 1-8


Supplementary Table. 1, 2

Supplementary Figures

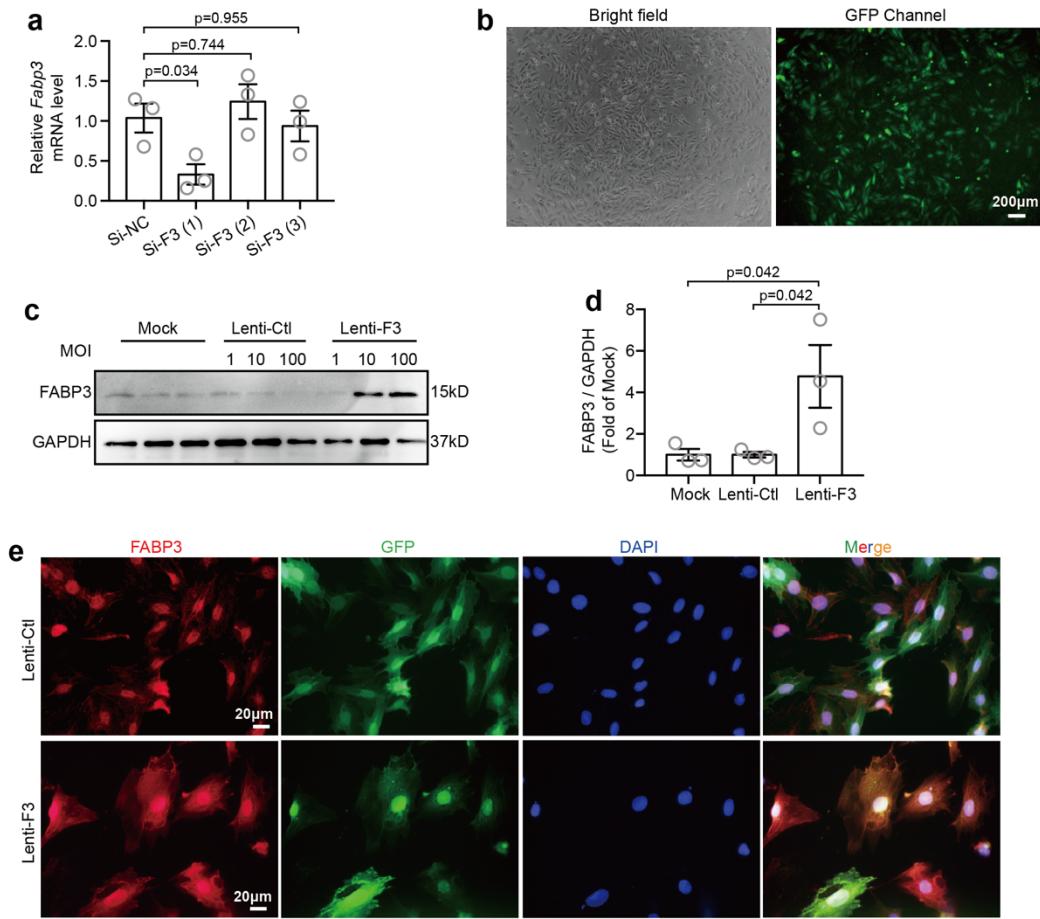
Supplementary Fig. 1 Construction of *Fabp3*-knock-out mice with the CRISPR/Cas9 method.

a Schematic diagram of *Fabp3*-KO strategy. **b** Sequences of primers used for genotyping. Primers 1 and 2 amplify a 432-bp fragment in the wild-type (WT) allele, while primers 1 and 3 amplify a 365-bp fragment in the homozygous mutant allele. **c** Representative PCR genotyping images including WT, homozygous (F3-KO), and heterozygous mice (HE) mice. **d** Representative western blot images showing FABP3 expression in *Fabp3* deletion hearts (F3-KO) and its WT alleles. **e** Quantification of (d). [e, n = 3, Student's *t*-test.]

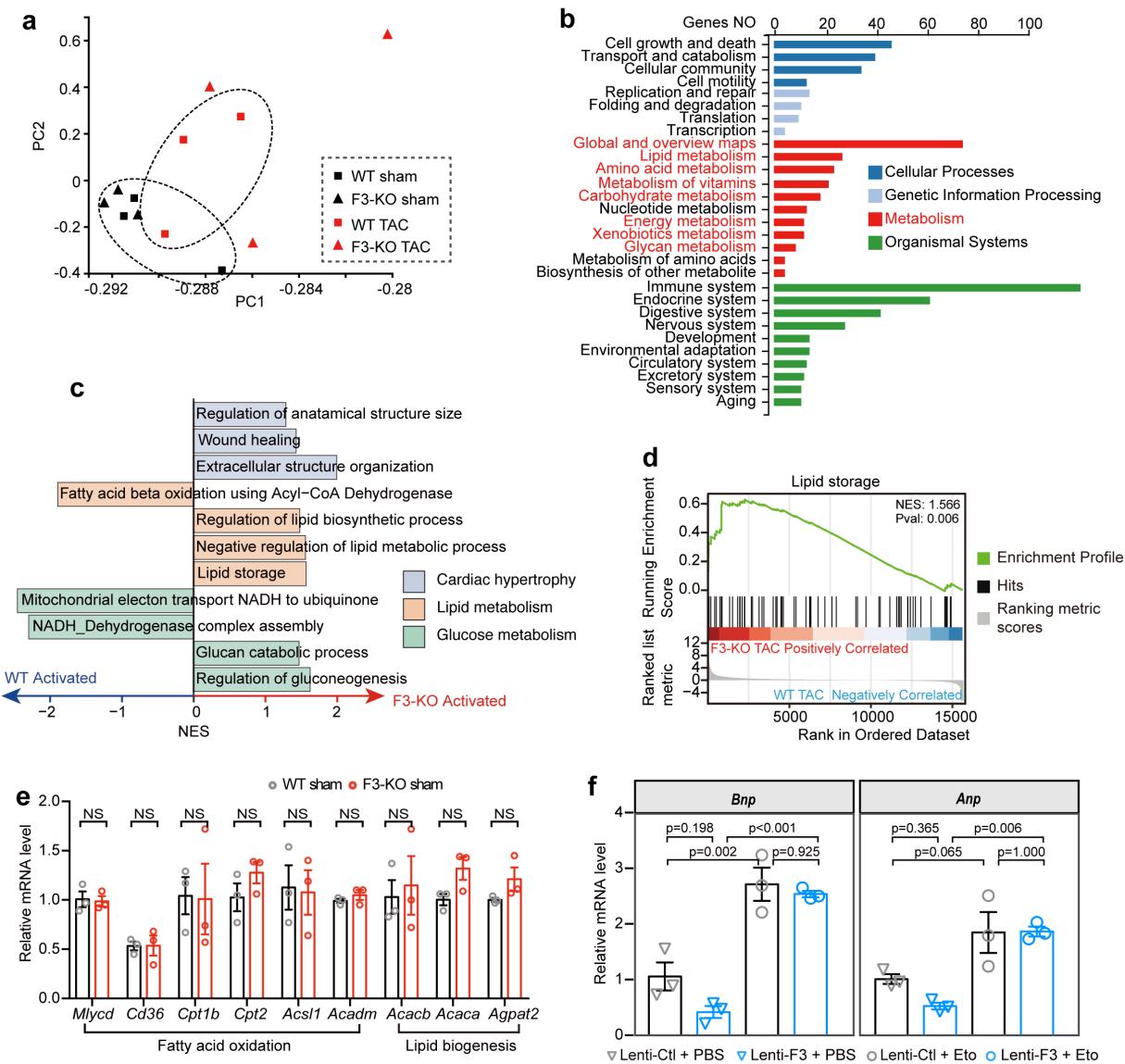


Supplementary Fig. 2 FABP3 defect does not affect tissue mass or their morphology except for hearts. **a** Experimental schematic diagram illustrating the strategy for multi-omics analysis,

echocardiography, and morphology analysis of WT and F3-KO mice after TAC or sham surgery.

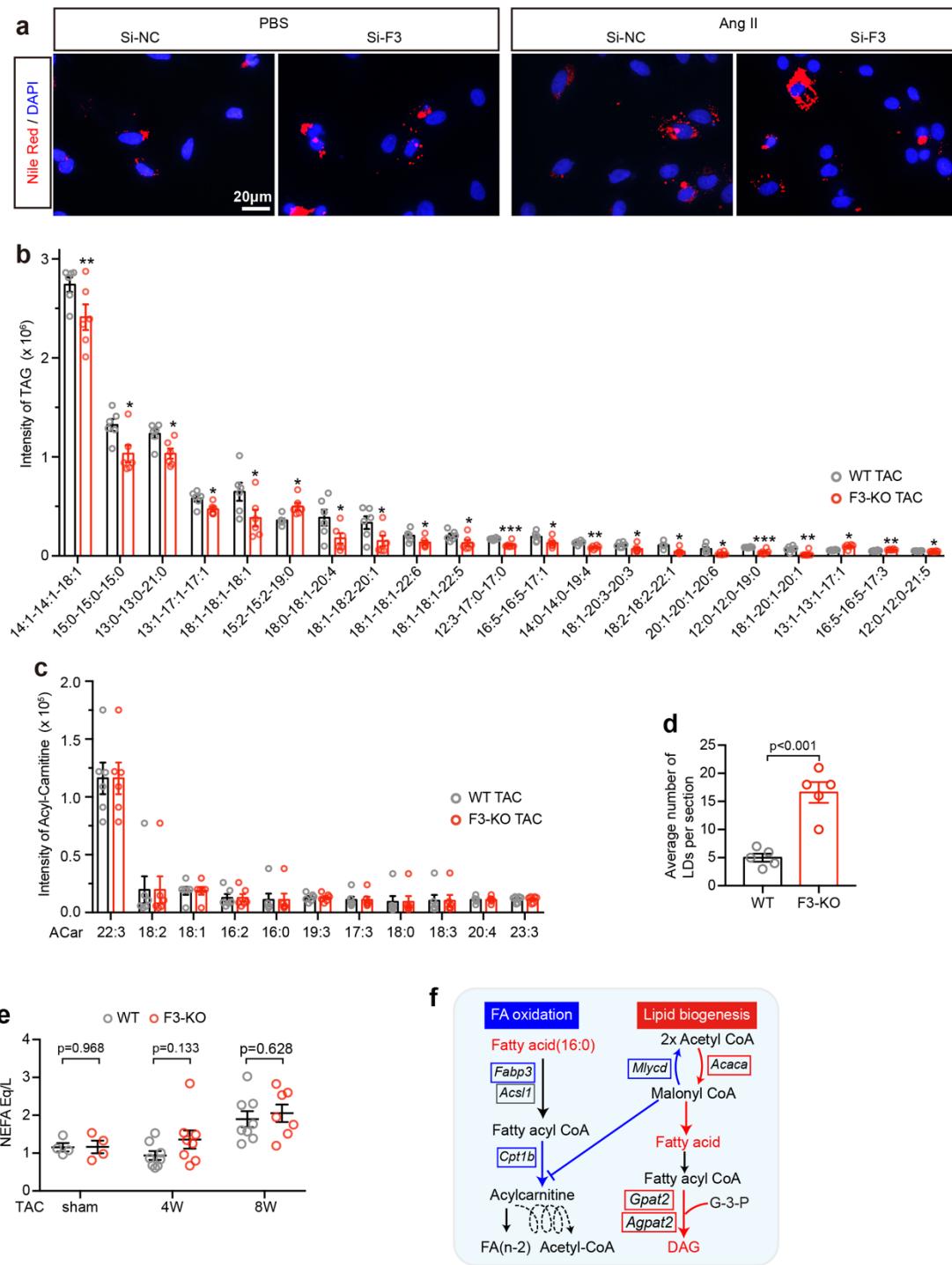

b The ratio of organ mass to body weight in WT and F3-KO mice at 4 weeks after TAC operations.

c Liver mass in F3-KO mice and its WT littermates. **d** Representative H&E images of tissue organs, including the small intestine, brain, kidney, lung, brown adipose tissue (BAT), and white adipose tissue (WAT), from WT and F3-KO mice at 4 weeks after TAC operations. **e** The ratio of lung weight to body weight from sham- or TAC-operated WT and F3-KO mice. [**b**, **c**, n = 15, Student's *t*-test; **e**, n = 8, 8, 15, 15, respectively, Tukey post-hoc test.]

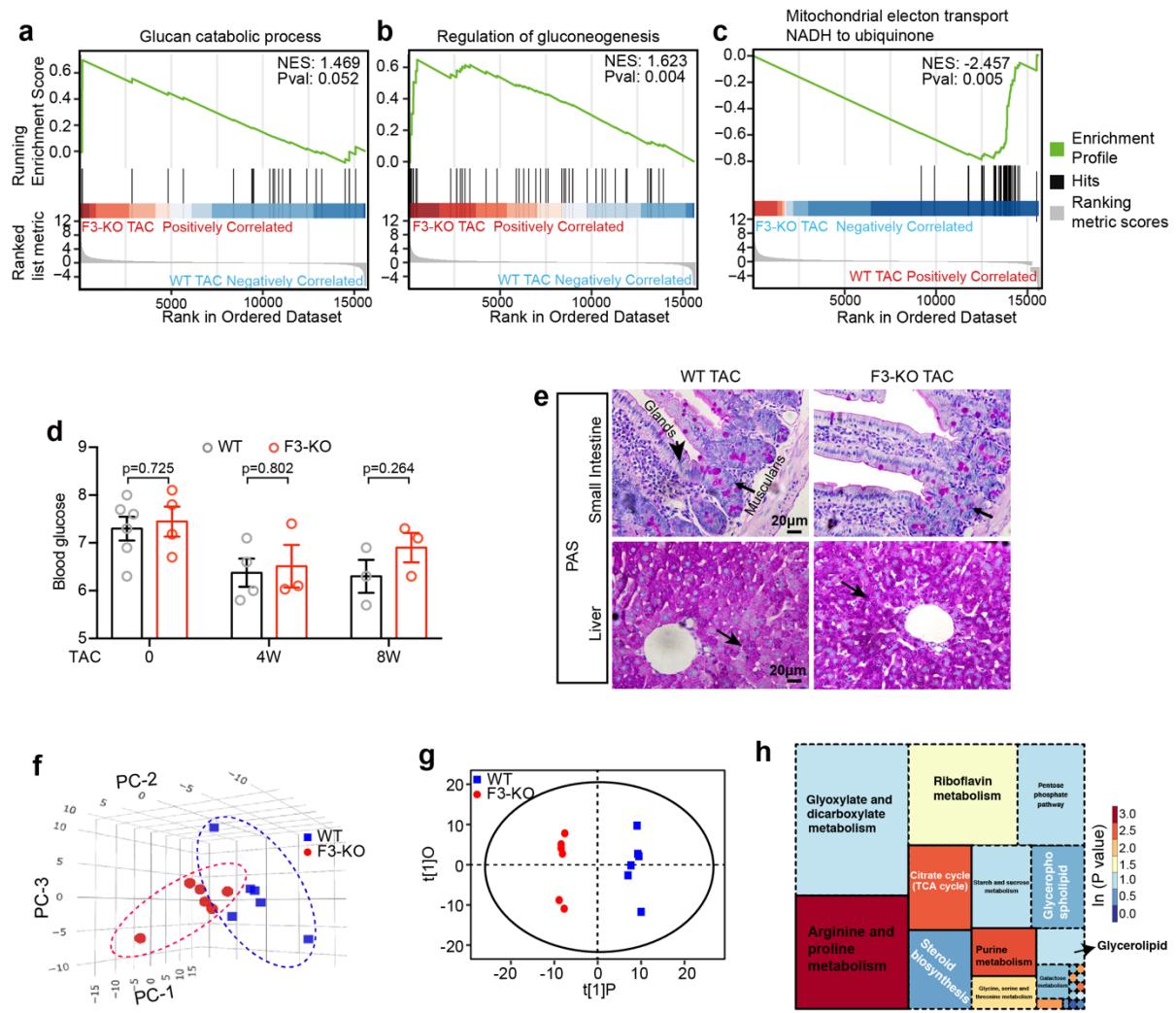


Supplementary Fig. 3 FABP3-null exacerbates TAC-induced cardiac dysfunction and fibrosis. **a** Survival probability of WT and F3-KO mice up to 8 weeks after TAC or sham surgery. **b** Gross heart morphology images in WT and F3-KO mice at 8 weeks after surgery. **c** Representative echo images of WT and F3-KO mice at 8 weeks after TAC operation. **d** Quantification of left ventricular ejection fraction (LVEF) and fractional shortening (FS) in panel

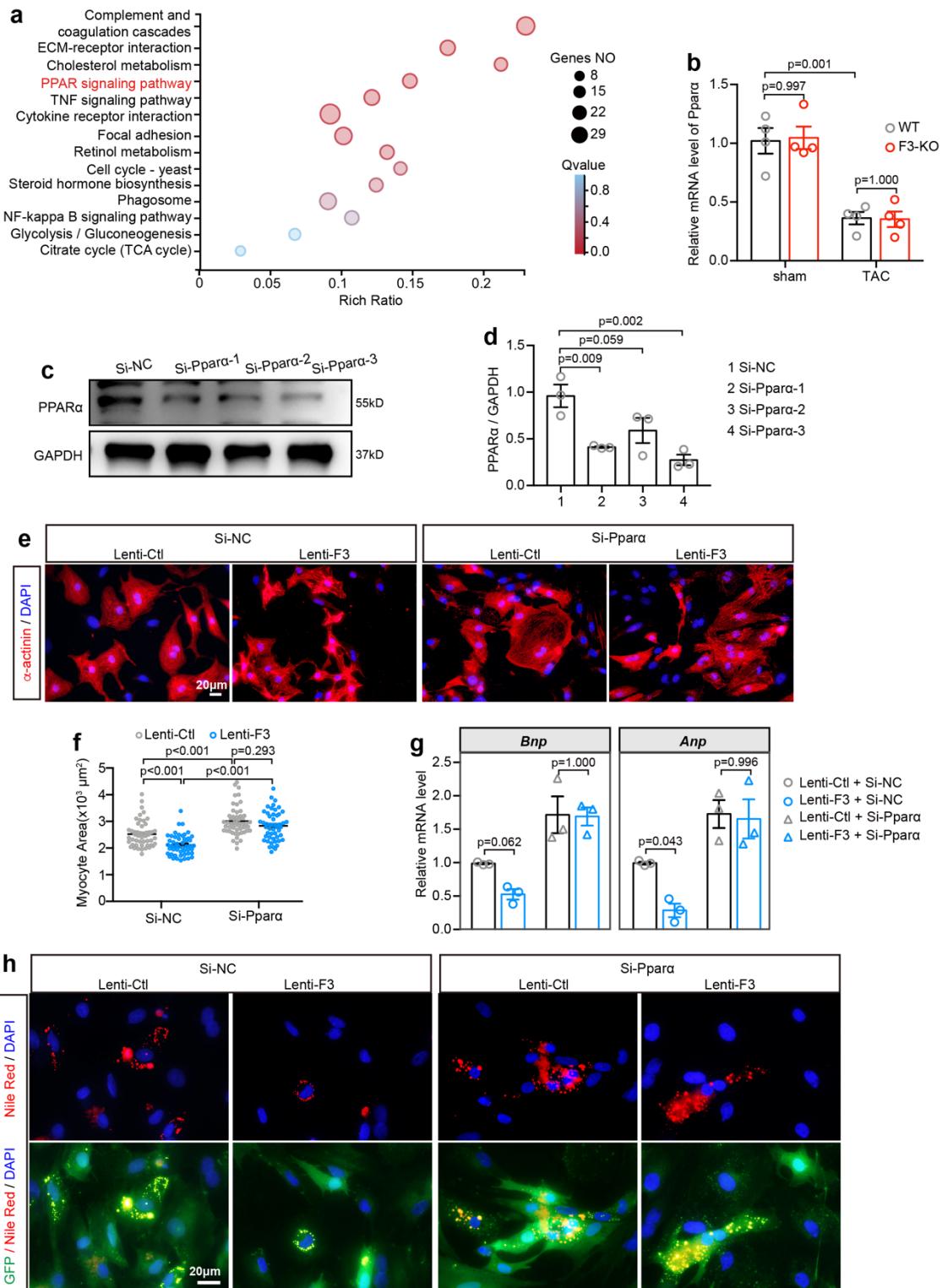
(c). e Quantification of left ventricular volume at diastole and systole (LVEDV, LVESV) in panel **(c). f** mRNA expression of fibrosis-related genes (*Col1a1*, *Col3a1*, *Mmp2*, *Mmp9*, and *Timp1*) from WT and F3-KO hearts at sham or 8 weeks post-surgery. NS, not significant, *** p < 0.001. **g** Representative images of Masson (top) and Sirus Red staining (bottom) in interstitial and perivascular area of WT and F3-KO hearts. **h** Quantification results of collagen volume in panel **(g).** [d, e, n = 7, 5, respectively; f, n = 6, Tukey's post-hoc test; h, n = 4; (d, e, and h): Student's *t*-test.]



Supplementary Fig. 4 Manipulating *Fabp3* expression with siRNA or lentivirus. **a** H9C2 cells were transfected with si-RNA targeting *Fabp3* (Si-F3(1), Si-F3(2), Si-F3(3)) or its negative control (Si-NC), then total RNA was extracted for qPCR analysis to determine *Fabp3* mRNA expression. **b** H9C2 cells were transfected with lentivirus and visualized using a microscope to determine the transfection efficiency; (Left) bright field of cultured cells, (Right) GFP channel of the same field corresponding to the left. **c** H9C2 cells were transfected with *Fabp3*-lentivirus or its control virus (Lenti-Ctl) at different MOIs (1, 10, 100). The whole cell lysates were then analyzed with western blotting. **d** Quantification results of (c). **e** Immunofluorescence co-staining of FABP3 (red), GFP (green), and DAPI (blue) after Lenti-Ctl or Lenti-F3 transfection. [a, d, n = 3; (a, d): Dunnett's post-hoc test.]


Supplementary Fig. 5 FABP3-defect hearts exhibit deranged metabolic pathways. **a** PCA plot comprising all samples in RNA-seq analysis ($n = 3$ biological replicates / per group). **b** KEGG functional enrichment results including four biological terms (cellular process, genetic information processing, metabolism, and organismal systems) between TAC-operated F3-KO and WT hearts. **c** GSEA analysis based on GO terms comparing differentially activated pathways between TAC-operated F3-KO and WT hearts. Results are displayed according to the normalized enrichment score (NES). Pathways with positive NES indicated more upregulated genes in F3-KO hearts. **d** GSEA plot showed that *Fabp3*-null hearts are positively correlated with lipid storage. **e** The mRNA expression of FAO and lipid biogenesis genes in WT and F3-KO hearts after sham operations was

determined by qPCR assay. NS, not significant. **f** NRVMs with knocking-in expression of *Fabp3* were treated with or without etomoxir (Eto), then the mRNA expression of *Bnp* and *Anp* was determine by qPCR assay. [**e**, n = 3, Student's *t*-test; **f**, n = 3, Tukey's post-hoc test.]


Supplementary Fig. 6 FABP3-depletion leads to excessive cardiac lipid accumulation after TAC operation. a NRVMs with knocking-down expression of *Fabp3* or its scrambled control were stained with nile red and DAPI (blue). **b** The level of triglyceride (TAG) in WT and F3-KO hearts was determined by LC-MS analysis, 6 biological replicates / per group. * $p < 0.05$, ** $p <$

0.01. **c** The level of Acyl-Carnitine (ACar) in WT and F3-KO hearts was determined by LC-MS analysis. **d** Quantification the number of lipid droplet in Fig. 4l. **e** Blood non-esterified fatty acid (NEFA) levels were measured in F3-KO and WT littermates at 0, 4, and 8 weeks after TAC operations. **f** Schematic diagram including FAO/lipid biogenesis genes and metabolites shows defective FAO and activated lipid biogenesis in F3-KO hearts. Red font and rectangles denote upregulated metabolites or genes, and blue represents those that are downregulated. [**d**, n = 5; **e**, n = 4, 4, 8, 8, 8, 7, respectively; (**b**, **d** and **e**): Student's *t*-test.]

Supplementary Fig. 7 FABP3-null hearts show increased glycolysis after TAC surgery. a-c GSEA plot showed *Fabp3*-defect heart was positively correlated with “glucan catabolic process” (a), “Regulation of gluconeogenesis” (b), while was negatively correlated with “Mitochondrial electron transport NADH to ubiquinone” (c). **d** Blood glucose level was measured in F3-KO mice and WT littermates at 0-week, 4-weeks, and 8-weeks after TAC operation. **e** Periodic acid Schiff glycogen staining (PAS) of the small intestine and liver sections was performed on TAC-operated WT and F3-KO mice at 4 weeks post-surgery. **f-h** Non-targeted metabolomics analysis was performed on TAC-operated WT and F3-KO hearts. **f** PCA plot showing metabolic differences in the above groups, $n = 6$ biological replicates /group. **g** Orthogonal partial least-squares

discrimination analysis (OPLS-DA) based on differential metabolomics. **h** KEGG pathway analysis of differential metabolites. [**d**, n = 6, 4, 4, 3, 3, 3, respectively, Student's *t*-test.]

Supplementary Fig. 8 Requirement of PPAR α in FABP3-driven metabolic regulation and cardiac hypertrophic response. **a** KEGG analyses of top enriched pathways based on differentially expressed genes between TAC-operated WT and F3-KO hearts in RNA-seq analysis. **b** The mRNA expression of *Ppara* in WT and F3-KO hearts after sham- or TAC-operation. **c** NRVMs were transfected with siRNA targeting *Ppara* or its negative control and its protein expression was determined by western blot assay. **d** The quantification results in panel (c). **e** NRVMs with knocking-in expression of FABP3 were transfected with Si-*Ppara* or its negative control. After Ang II treatment, cell area was determined by α -actinin staining. **f** The quantification results of cell area in (e), 50 cells /group were calculated. **g** The mRNA expression of *Bnp* and *Anp* was determined in the indicated groups by qPCR assay. **h** The level of neutral lipid was measured by nile red staining in the aforementioned groups. [d, n = 3, Dunnett's post-hoc test; f, Tukey's post-hoc test; g, n = 3, Games-Howell post-hoc test.]

Supplementary Tables

Supplementary Table. 1 Expression of PPAR α target genes in RNA-seq

Supplementary Table. 2 Primer pairs used in the current study

Supplementary Table. 1 Expression of PPAR α target genes in RNA-seq

MUS ID	Terms	log2(F3-KO TAC vs WT TAC)	Qvalue(F3-KO TAC vs WT TAC)	log2(F3-KO sham vs WT sham)	Qvalue(F3-KO sham vs WT sham)
<i>Gck</i>	glycolysis	1.694E+00	2.000E-181	1.201E+00	4.060E-54
<i>Pklr</i>	glycolysis	3.834E+00	1.774E-02	NA	NA
<i>Pck1</i>	glycolysis	3.696E+00	2.420E-08	-1.656E+00	4.542E-01
<i>G6pc</i>	glycolysis	3.419E+00	5.425E-02	NA	NA
<i>Fbp1</i>	glycolysis	2.319E+00	3.020E-04	-4.861E-01	7.884E-01
<i>Pcx</i>	glycolysis	-1.220E-01	6.733E-02	-1.657E-02	8.640E-01
<i>G6pc3</i>	glycolysis	-9.954E-02	6.387E-02	-9.750E-02	9.396E-02
<i>Fbp2</i>	glycolysis	-1.531E+00	1.800E-84	-6.448E-01	9.570E-20
<i>Pdk4</i>	glycolysis	-1.856E+00	0.000E+00	-4.201E-01	2.250E-52
<i>Eno1</i>	glycolysis	-1.871E-01	1.010E-14	1.613E-01	3.140E-09
<i>Cpt1b</i>	Mitochondrial β -Oxidation	-2.654E-01	6.160E-100	1.183E-01	9.380E-21
<i>Mlycd</i>	Mitochondrial β -Oxidation	-4.021E-01	1.030E-31	1.103E-02	8.401E-01
<i>Acaa2</i>	Mitochondrial β -Oxidation	-5.587E-01	0.000E+00	2.349E-01	7.740E-85
<i>Acadl</i>	Mitochondrial β -Oxidation	-2.831E-01	4.260E-165	-1.081E-01	4.980E-23
<i>Acadm</i>	Mitochondrial β -Oxidation	-2.022E-01	1.130E-82	6.708E-02	7.260E-11
<i>Acads</i>	Mitochondrial β -Oxidation	-1.543E-01	1.000E-07	9.716E-02	6.040E-04
<i>Acadvl</i>	Mitochondrial β -Oxidation	-3.518E-01	2.400E-211	2.211E-01	1.990E-98
<i>Cpt2</i>	Mitochondrial β -Oxidation	-2.880E-01	3.630E-33	5.199E-02	4.732E-02
<i>Crat</i>	Mitochondrial β -Oxidation	-2.193E-01	1.030E-53	5.248E-02	2.990E-04
<i>Ehhadh</i>	Mitochondrial β -Oxidation	-2.113E-01	1.672E-02	1.330E-01	2.390E-01
<i>Hadha</i>	Mitochondrial β -Oxidation	-3.991E-01	0.000E+00	1.681E-01	3.690E-102
<i>Hadhb</i>	Mitochondrial β -Oxidation	-1.304E-01	3.480E-54	2.792E-01	4.190E-295
<i>Slc25a20</i>	Mitochondrial β -Oxidation	-3.290E-01	7.040E-37	4.489E-01	2.170E-76
<i>Aldh9a1</i>	ω -Hydroxylation/Oxidation	-3.810E-01	6.690E-14	4.407E-02	5.159E-01
<i>Cpt1a</i>	Mitochondrial β -Oxidation	2.983E-01	2.310E-14	4.334E-01	2.800E-24
<i>Acaca</i>	Lipogenesis	3.354E-01	5.150E-05	-6.874E-02	5.780E-01
<i>Agpat2</i>	Lipogenesis	1.148E-01	2.359E-02	2.451E-01	1.540E-06
<i>Elov16</i>	Lipogenesis	3.091E-01	3.578E-01	6.277E-01	1.130E-01
<i>Fads1</i>	Lipogenesis	2.607E-01	1.100E-05	-6.364E-02	5.038E-01
<i>Fads2</i>	Lipogenesis	5.966E-01	7.180E-08	8.289E-02	6.642E-01

<i>Fasn</i>	Lipogenesis	3.305E-01	1.640E-06	-6.352E-02	5.088E-01
<i>Gpam</i>	Lipogenesis	3.065E-01	5.230E-39	1.468E-01	5.160E-09
<i>Scd1</i>	Lipogenesis	3.667E-01	1.920E-06	-3.301E-01	1.905E-03
<i>Scd2</i>	Lipogenesis	3.173E-01	7.250E-06	-8.918E-02	3.801E-01
<i>Acacb</i>	Lipogenesis	-1.605E-01	6.250E-19	8.186E-02	6.280E-06
<i>Apoa1</i>	Lipid Binding & Transport / Lipoproteins	5.076E+00	3.440E-50	NA	NA
<i>Apoa2</i>	Lipid Binding & Transport / Lipoproteins	3.238E+00	4.910E-39	7.292E-01	1.633E-01
<i>Apoa5</i>	Lipid Binding & Transport / Lipoproteins	5.589E+00	7.080E-07	NA	NA
<i>Apoc3</i>	Lipid Binding & Transport / Lipoproteins	5.921E+00	2.080E-08	NA	NA
<i>Lipc</i>	Lipid Binding & Transport / Lipoproteins	5.709E-01	5.528E-01	-7.110E-02	9.869E-01
<i>Lpl</i>	Lipid Binding & Transport / Lipoproteins	-9.695E-02	2.320E-132	-2.253E-01	0.000E+00
<i>Pltp</i>	Lipid Binding & Transport / Lipoproteins	3.134E-01	1.670E-11	-6.226E-02	3.442E-01
<i>Slc27a1</i>	Lipid Binding & Transport / Lipoproteins	-9.675E-01	4.640E-264	-4.333E-01	8.650E-72
<i>Slc27a2</i>	Lipid Binding & Transport / Lipoproteins	2.082E+00	1.330E-07	-6.878E-01	4.459E-01
<i>Slc27a4</i>	Lipid Binding & Transport / Lipoproteins	-1.165E-02	9.063E-01	-1.734E-01	2.560E-02
<i>Vldlr</i>	Lipid Binding & Transport / Lipoproteins	1.692E-01	1.920E-23	6.631E-02	4.440E-04
<i>Hmgcs2</i>	Ketogenesis	-6.357E-01	3.470E-24	-6.318E-01	3.350E-16
<i>Abca1</i>	Cholesterol Metabolism	6.041E-01	3.630E-40	-6.307E-02	3.825E-01
<i>Abca4</i>	Cholesterol Metabolism	-2.034E+00	3.870E-29	2.817E-01	9.389E-02
<i>Cyp7a1</i>	Cholesterol Metabolism	2.834E+00	3.998E-02	-2.067E+00	2.870E-01
<i>Cyp8b1</i>	Cholesterol Metabolism	1.156E+00	1.737E-02	-6.561E-01	5.556E-01
<i>Nr1h2</i>	Cholesterol Metabolism	-9.100E-02	6.145E-02	-8.460E-02	1.108E-01
<i>Nr1h3</i>	Cholesterol Metabolism	-8.302E-02	4.458E-01	-6.667E-01	1.460E-14
<i>Fgf12</i>	growth factor activity	1.303E+00	7.757E-02	3.888E-01	6.388E-01
<i>Acaa1a</i>	Peroxisomal β -Oxidation	-1.459E-01	4.556E-03	-9.915E-03	9.047E-01
<i>Acaa1b</i>	Peroxisomal β -Oxidation	4.564E+00	2.370E-11	NA	NA
<i>Acox1</i>	Peroxisomal β -Oxidation	-7.232E-02	3.100E-05	-8.613E-02	5.550E-07
<i>Ech1</i>	Peroxisomal β -Oxidation	-5.972E-01	0.000E+00	-7.171E-02	5.500E-14

Supplementary Table. 2 Primer pairs used in the current study

Primers for mouse qPCR		
Gene	Forward primers (5'- 3')	Reverse primers (5'- 3')
<i>Fabp3</i>	AGCCTGGACCCAGTTCTTAC	GGTGGCCTTGGTTCTGCTTTAT
<i>Anp</i>	GGGTAGGATTGACAGGATTGG	CTCCTGGCTGTTATCTCGG
<i>Bnp</i>	TGGGAGGTCACTCCTATCCT	GGCCATTCTCCGACTTT
<i>Acta1</i>	CCAAAGCTAACCGGGAGAAG	GACAGCACCGCCTGGATAG
<i>Myh7</i>	CGGACCTTGGAAAGACCAGAT	GACAGCTCCCATTCTCTGT
<i>Colla1</i>	CATAAAGGGTCATCGTGGCT	TTGAGTCCGTCTTGCCAG
<i>Col3a1</i>	ACGTAGATGAATTGGGATGCAG	GGGTTGGGGCAGTCTAGTG
<i>Mmp2</i>	ACCAAGAACTTCCGATTATCCC	CAGTACCAAGTGTCACTATCAGC
<i>Mmp9</i>	TCCCCAAAGACCTGAAAACC	CTGCTTCTCTCCATCATCTG
<i>Timp1</i>	CTCAAAGACCTATAGTGCTGGC	CAAAGTGACGGCTCTGGTAG
<i>Gapdh</i>	GCCTTCCGTGTTCTTAC	CCTCAGTGTAGCCAAAGATG
<i>Mlycd</i>	CGCCTATCCCTGGATTCA	ATCCCTGAGGTGCCAAACAC
<i>Cd36</i>	ATTCCCTTGGCAACCAACCA	TACGTGGCCCAGTTCTACTA
<i>Cpt1b</i>	GCACACCAGGCAGTAGCTTT	CAGGAGTTGATTCCAGACAGGTA
<i>Cpt2</i>	TGATGGCTGAGTGCTCCAAA	GAACACCAATGTTCATGAGGAAGAA
<i>Acsll</i>	CGGCCGCGACTCCTTAAATA	ATAGGGCTGGTTGGCTTCC
<i>Acadm</i>	GC GGCCATTAAGACCAAAGC	GAAGACAGGTTCCCTCCGCCA
<i>Acaca</i>	ATGCACAGGACTGAGAAGGC	GTGATAAGGTGGCAGGG
<i>Acacb</i>	TCCAAGTGGCCCTAGTGAGT	CGGATCCAGAGTGTTCGAGG

<i>Agpat2</i>	CAGCCAGGTTCTACGCCAAG	TGATGCTCATGTTATCCACGGT
<i>Gck</i>	TAGCGGGGGTCATAAATCGC	GCAGCCCTTACTCTTCTGGG
<i>Pck1</i>	TTGAACTGACAGACTCGCCC	GGCACTTGATGAACTCCCCA
<i>Slc2a1</i>	GCTTAGAGTGACGATCTGAGC	AAGCCAAACACCTGGGCAAT
<i>Slc2a4</i>	GCTCTGACGATGGGAACC	CACCGAGACCAACGTGAAGA
<i>Ppara</i>	ACACCGTGCAGGTTCA	TCGCCGAAAGAAGGCCCTAC
<i>18S</i>	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG

Primers for Rat qPCR

Gene	Forward primers (5'- 3')	Reverse primers (5'- 3')
<i>Fabp3</i>	ATGAAGTCACTCGGTGTGGG	TCCCACCTCTGCACATGGAC
<i>Anp</i>	GAAGATGCCGGTAGAAGATGAG	AGAGCCCTCAGTTGCTTTTC
<i>Bnp</i>	GGTGCTGCCCCAGATGATT	CTGGAGACTGGCTAGGACTTC
<i>Myh7</i>	GCCCCAAATGCAGCCAT	CGCTCAGTCATGGCGGAT
<i>Gapdh</i>	TGACAACTCCCTCAAGATTGTCA	GGCATGGACTGTGGTCATGA
