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eMethod 1: Empirical validation of sopNMF.
For the empirical validation of sopNMF, the comparison population (Method 1 in the main manuscript) was used so that the machine's memory could be sufficient to read the entire data for opNMF. For sopNMF, different choices of batch size (i.e., BS=32, 64, 128, and 256) were tested. We hypothesized that sopNMF could approximate the optima of opNMF during optimization, i.e., resulting in similar parts-based representation, training loss, and sparsity. TensorboardX was embedded into the sopNMF framework to monitor the training process dynamically. All experiments were performed on an Ubuntu machine with a maximum RAM of 32 GB and 8 CPUs. The predefined maximum number of epochs for all experiments is 50,000, and the tolerance of early stopping criteria is 100 epochs based on the training loss.
We qualitatively compared the extracted PSCs and quantitatively for the training loss, the sparsity of the component matrix W, and the memory consumption for C=20 (number of PSCs). The 20 PSCs were spatially consistent between opNMF and sopNMF, despite that some regions were decomposed into different PSCs (i.e., the white ellipse in eFig. 1A). For the training loss, opNMF obtained the lowest loss (1.103 x 106), and the loss of sopNMF were 1.107 x106, 1.108 x106, 1.111 x106 and 1.210 x106 for BS =256, 128, 64, and 32, respectively (eFig. 1D). For the sparsity of the component matrix, all models obtained comparable results (sparsity  0.83, eFig. 1E). The estimated memory consumptions during the training process were 28.65, 4.02, 3.81, 2.60, 1.47 GB for opNMF and sopNMF (BS =256, 128, 64, and 32), respectively
(Fig. e1F).


eMethod 2: Reproducibility index.
We proposed a reproducibility index (RI) to test the reproducibility of sopNMF for brain parcellation:
· We used the Hungarian match algorithm1 to match the pairs of PSCs between two splits under the specific condition that maximizes the similarity (i.e., minimize the cost of worker/jobs in its original formulation).
· For each pair of PSCs, we calculated the inner product of the vectors (), referred to as RI. This index takes values between [0, 1], with higher values indicating higher reproducibility.
· For each scale C, we presented the mean/standard deviation of the RIs for all PSCs.




eMethod 3: Inter-site image harmonization 
We used an extensively validated statistical harmonization approach, i.e., ComBat-GAM,2 to harmonize the extracted multi-scale PSCs. This method estimates the variability in volumetric measures due to differences in site/cohort-specific imaging protocols based on variances observed within and across control groups while preserving normal variances due to age, sex, and intracranial volume (ICV) differences. The model was initially trained on the discovery set and then applied to the replication set.


eMethod 4: Quality check of the image processing pipeline. 
Raw T1-weighted MRIs were first quality checked (QC) for motion, image artifacts, or restricted field-of-view. Another QC was performed as follows: First, the images were examined by manually evaluating for pipeline failures (e.g., poor brain extraction, tissue segmentation, and registration errors). Furthermore, a second step automatically flagged images based on outlying values of quantified metrics (i.e., PSC values); those flagged images were re-evaluated.


eMethod 5: Definition of the index, candidate, independent significant, and lead SNP and genomic locus.
Index SNP
They are defined as SNPs with a p-value threshold ≤ 5e-8 (clump-p1) from GWAS summary statistics.
Independent significant SNP 
They are defined as the index SNPs, which are independent of each other (not in linkage disequilibrium) with r2 ≤ 0.6 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away from each other. 
lead SNP and genomic loci
They are defined as the independent significant SNPs, which are independent of each other with a more stringent r2 ≤ 0.1 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away from each other. Each of these clumps is defined as a genomic locus.
Candidate SNP
With each genomic locus, candidate SNPs are defined as the SNPs whose association p-values are smaller than 0.05 (clump-p2). The definitions followed instructions from FUMA3 and Plink4 software. 

eMethod 6: Cross-validation procedure for PAML. 
Nested cross-validation was adopted for all tasks following the good-practice guidelines proposed in our previous works5–7. In particular, an outer loop was used to evaluate the task performance (250 repetitions of random hold-out splits with 80% of data for training). In contrast, an inner loop focused on tuning the hyperparameters (10-fold splits). We computed the balanced accuracy (BA) to evaluate the classification tasks. We calculated the effect size (Cohen's d) and p-value for each SPARE index to quantify its discriminative power.


[image: ]
eFigure 1: Comparison between opNMF and sopNMF. (A) The extracted components are
shown in the original image space, with each PSC displayed in a distinct color.
The white ellipse indicates the region where the models diverge. Training loss (B, D) and sparsity (C, E) demonstrated similar patterns between models, except that batch size (BS) = 32 had a larger loss than the other models. Comparing the estimated memory consumption during training across models shows significant advantages for all sopNMF models compared to opNMF.
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eFigure 2: Reproducibility of the sopNMF brain parcellation. In general, sopNMF demonstrated high reproducibility under various conditions. For each brain PSC, the reproducibility index (RI) was calculated (Supplementary eMethod 2). (A) Split-sample analyses, where the training population (N=4000) was randomly split into two halves while maintaining similar age, sex, and site distribution between groups. (B) Split-sex analyses, where the training population was divided into males and females. Colored PSCs on the brain template illustrates the same PSC independently derived from the two splits. 
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eFigure 3: PSC-WAS results for binary disease diagnoses. PSC-WAS was performed to associate each PSC to disease diagnosis (39 binary traits) using linear regressions. Here we present the diagnosis traits, except those shown in the main manuscript and those that did not show significant associations. PSCs surviving Bonferroni correction are denoted in color by scale (gray otherwise) in each Manhattan plot. Each PSC's statistic value, i.e., –log10[p-value], was projected into the 3D image space to show a brain statistic map for each scale (C). The first row shows all significant PSCs; the second row presents the top 10% of most significant PSCs (significant PSCs above the dashed horizontal lines in the Manhattan plot). The cerebellum is not included in the template brain, but cerebellar PSCs are displayed when significant.
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eFigure 4: PSC-WAS results for continuous cognitive measures. PSC-WAS was performed to associate each PSC to cognition (10 continuous traits) using multiple linear regressions. We present the cognitive traits, except those shown in the main manuscript and those that did not show significant associations. PSCs surviving Bonferroni correction are denoted in color by scale (gray otherwise) in each Manhattan plot. Each PSC's statistic value, i.e., –log10[p-value], was projected into the 3D image space to show a brain statistic map for each scale (C). The first row shows all significant PSCs; the second row presents the top 10% of most significant PSCs (significant PSCs above the dashed horizontal lines in the Manhattan plot). The cerebellum is not included in the template brain, but cerebellar PSCs are displayed when significant.



[image: ]
eFigure 5: Scatter plot for the h2 estimates from the discovery and replication sets. The SNP-based heritability was estimated independently for the discovery set (N=18,052) and replication set (N=15,243). In particular, the two estimates were highly correlated (r = 0.94, p-value < 10-6), demonstrating a highly similar genetic architecture across different sets of UKBB data.   


[image: ]
eFigure 6: Machine learning performance for disease classification. Balanced accuracy (BA) for each classification task using different features from multi-scale MuSIC, AAL, and RAVENS (higher score better). Details are presented in eTable 5.
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eFigure 7: Annotation of MUSE ROIs to MuSIC PSCs based on the overlap index. We automatically annotated the 119 MUSE GM PSCs to the MuSIC atlases at all six scales (C=32, 64, 128, 256, 512, and 1024). To this end, we calculated an overlap index (OI) to quantify the spatial overlaps between MUSE and MuSIC. For instance, for each MUSE PSC (eTable 6) vs. each of the 32 PSCs of MuSIC at C=32 scale, the OI equals the proportion of the number of overlap voxels and the total number of voxels in the MUSE PSC. Here we illustrate by mapping the right thalamus of MUSE to all 6 MuSIC atlases. The highest OIs are 0.82, 0.70, 0.86, 0.30, 0.09, 0.05 for C32_1, C64_42, C128_114, C256_110, C512_249 and C1024_249 PSCs. This functionality is available in BRIDGEPORT: https://www.cbica.upenn.edu/bridgeport/MUSE/Right%20Thalamus%20Proper    
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eFigure 8: Summary statistics of the multi-scale PSCs of MuSIC. Multi-scale PSCs show considerable normal distributions, i.e., symmetrical distribution (A) with a low kurtosis (B). Moreover, we fit the Generalized Additive Model for Location, Scale, and Shape (GAMLSS)8 model (fractional polynomials with 2 degrees) to each PSC to delineate the age trajectory over the lifespan in males (solid lines) and females (dotted lines), respectively (C). For visualization purposes, we selectively display the first 10 PSCs from each scale of the MuSIC atlases. In general, males have larger brain volumes than females. 


eTable 1. Study cohort characteristics.
The current study consists of two main populations/sets: the discovery set (N=32,440, including participants from the first download of the UKBB data) and the replication set (N=18,259, the second download of the UKBB data). To train the sopNMF model for MuSIC, we selected 250 patients (PT) and 250 healthy controls (CN) for each decade of the discovery set, resulting in 4000 participants in total, referred to as the training population. Age ranges from 5 to 97 years and is shown with mean and standard deviation. Sex is displayed with the number and percentage of female participants. Data were collected from 12 studies, 130 sites, and 12 countries. The number of sites (country) per study is detailed as follows: 
· ADNI: 63 sites (USA)
· UKBB: 5 sites (UK)
· AIBL: 2 sites (Australia)
· BIOCARD: 2 sites (USA)
· BLSA: 1 site (USA)
· CARDIA: 3 sites (USA)
· OASIS: 1 site (USA)
· PENN: 1 site (USA)
· WHIMS: 14 sites (USA)
· WRAP 1 site (USA)
· PHENOM: 12 sites (China, Brazil, Australia, Germany, Spain, USA, Netherlands)
· ABIDE: 25 sites (USA, Netherlands, Belgium, Germany, Ireland, Switzerland, France)
Abbreviations: CN: healthy control; AD: Alzheimer's disease; MCI: mild cognitive impairment; SCZ: schizophrenia; ASD: autism spectrum disorder; MDD: major depressive disorder; DM: diabetes; HTN: hypertension.
aUKBB data were separately downloaded two times: the first was the N=21,305 in the discovery set, and the second was the replication set.
bWe define CN (healthy controls) as participants that do not have any of the diseases listed here. In reality, these CN participants might have diagnoses of other illnesses or comorbidities (e.g., participants from UKBB have a wide range of pathology based on ICD-10).

	Study
	N
(50,699)
	Age
(5-97 year) 
	Sex (female/%)
	CNb

	AD
	MCI
	SCZ
	ASD
	MDD
	DM
	HTN

	Discovery
set
	32,440
	60.04
14.87
	16,868/52
	24,980
	954
	1288
	1094
	597
	1476
	1093
	958

	ADNI
	1765
	73.66
7.19
	798/45
	297
	343
	875
	NA
	NA
	NA
	NA
	250

	UKBBa
	21,305
	62.58
7.48
	10,101/53
	18,735
	1
	NA
	NA
	NA
	1476
	1093
	NA

	AIBL
	830
	71.36
6.78
	471/57
	625
	86
	115
	NA
	NA
	NA
	NA
	4

	BIOCARD
	288
	58.15
10.54
	115/60
	283
	1
	4
	NA
	NA
	NA
	NA
	NA

	BLSA
	1114
	65.44
14.11
	589/53
	729
	9
	11
	NA
	NA
	NA
	NA
	365

	CARDIA
	892
	51.21
3.98
	471/53
	620
	NA
	NA
	NA
	NA
	NA
	NA
	272

	OASIS
	983
	69.92
9.75
	557/57
	759
	220
	NA
	NA
	NA
	NA
	NA
	4

	PENN
	807
	72.63
10.65
	333/59
	173
	294
	283
	NA
	NA
	NA
	NA
	57

	WHIMS
	995
	69.61
3.64
	995/100
	986
	NA
	NA
	NA
	NA
	NA
	NA
	6

	WRAP
	116
	63.36
6.06
	79/68
	116
	NA
	NA
	NA
	NA
	NA
	NA
	NA

	PHENOM
	2125
	30.21
10.60
	854/40
	1031
	NA
	NA
	1094
	NA
	NA
	NA
	NA

	ABIDE
	1220
	17.92
9.01
	203/17
	623
	NA
	NA
	NA
	597
	NA
	NA
	NA

	Replication
seta
	18,259
	54.70
7.43
	9742/53
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA



We present the age distribution of the discovery population for all 12 studies.
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eTable 2: Clinical phenotypes used in PSC-WAS in the current study. 
We harmonized the population of the phenotypes of interest per study definitions: 
· we combined AD and MCI patients from ADNI, PENN, and AIBL but excluded OASIS subjects because of the different diagnostic criteria of an AD patient in OASIS. 
· For several binary disease phenotypes, we used the ICD-10 diagnosis (https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41270). Note that ICD-10 diagnoses are generally collected from the participants' medical inpatient records. We first included diseases from the following categories: 
· Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D-XXX, XXX represents the ID of a specific disease);
·  Endocrine, nutritional and metabolic diseases (E-XXX); 
· Mental and behavioral disorders (F-XXX); 
· Diseases of the nervous system (G-XXX); 
· Diseases of the circulatory system (I-XXX). 
We then set a threshold of 75 patients for any ICD-10 diagnosis. We finally randomly selected age and sex-matched healthy controls (excluding all patients in all diagnoses). a: For major depressive disorder, we used the inclusion criteria from our previous work.9
· For cognitive scores, we included: 
· Tower rearranging (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21004)
· Matrix pattern (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6373)
· TMT-A (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348)
· TMT-B (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350)
· DSST (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23324)
· Pairs matching (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399)
· Numerical memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282)
· Prospective memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4288)
· Reaction time (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023)
· Fluid intelligence (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016)
AD: Alzheimer's disease; MCI: mild cognitive impairment; SCZ: schizophrenia; DM: diabetes mellitus; MDD: major depressive disorder; HTN: hypertension; ASD: autism spectrum disorder; CN: healthy control; PT: patient; N: number of participants. We decided not to harmonize cognitive scores from different studies.

	Trait (ICD-10 code or ID)
	Sample size (CN/PT or N)
	Site
	Trait (ICD-10 code or ID)
	Sample size (CN/PT or N)
	Site

	AD
	1095/723
	ADNI, PENN, & AIBL
	Carpal tunnel syndrome (G560)
	901/901
	UKBB

	MCI
	1273/1095
	ADNI, PENN, & AIBL
	Lesion of ulnar nerve (G562)
	104/104
	UKBB

	SCZ
	1031/1094
	PHENOM
	Lesion of plantar nerve (G576)
	163/163
	UKBB

	DM
	1093/1093
	UKBB
	Angina pectoris (I20)
	1535/1535
	UKBB

	MDDa
	1476/1476
	UKBB
	Acute myocardial infarction (I21)
	769/769
	UKBB

	HTN
	934/887
	ADNI, BLSA & CARDIA
	Chronic ischaemic heart disease (I25)
	2217/2217
	UKBB

	ASD
	623/597
	ABIDE
	Pulmonary embolism (I20)
	351/351
	UKBB

	Iron deficiency anemia (D50)
	1012/1012
	UKBB
	Cardiomyopathy (I42)
	116/116
	UKBB

	Vitamin B12 deficiency anemia (D50)
	78/78
	UKBB
	Paroxysmal tachycardia (I47)
	320/320
	UKBB

	Agranulocytosis (D70)
	245/245
	UKBB
	Heart failure (I50)
	436/436
	UKBB

	Thyrotoxicosis (E05)
	205/205
	UKBB
	Cerebral infarction (I63)
	291/291
	UKBB

	Vitamin D deficiency (E55)
	180/180
	UKBB
	Vitamin B deficiency (E53)
	130/130
	UKBB

	Obesity (E66)
	1481/1481
	UKBB
	Hemiplegia (G81)
	111/111
	UKBB

	Lipoprotein metabolism disorder (E78)
	3880/3880
	UKBB
	Facial nerve disorders (G51)
	95/95
	UKBB

	Mineral metabolism disorder (E83)
	291/291
	UKBB
	Tower rearranging (21004)
	8412
	UKBB

	Volume depletion
	240/240
	UKBB
	Matrix pattern (6373)
	8501
	UKBB

	Delirium
	92/92
	UKBB
	TMT-A (6348)
	8599
	UKBB

	Alcohol abuse
	341/341
	UKBB
	TMT-B (6350)
	8599
	UKBB

	Tobacco abuse
	863/863
	UKBB
	DSST (23324)
	8523
	UKBB

	Bipolar affective disorder
	77/77
	UKBB
	Pairs matching (399)
	20945
	UKBB

	Phobic anxiety disorder
	84/84
	UKBB
	Numerical memory (4282)
	9323
	UKBB

	Multiple sclerosis
	109/109
	UKBB
	Prospective memory (4288)
	19681
	UKBB

	Epilepsy
	250/250
	UKBB
	Reaction time (20023)
	21258
	UKBB

	Migraine
	508/508
	UKBB
	Fluid intelligence (20016)
	19184
	UKBB

	Sleep disorders
	590/590
	UKBB





eTable 3: Comparison of variants identified via MuSIC with other studies. Using the AAL atlas, we found (using the same data in the current study) that 269 independent significant SNPs had 356 pairwise associations with 54 AAL brain regions. 230 out of the 269 SNPs matched with the SNPs in MuSIC. Among the 39 unmatched SNPs, 15 SNPs were in linkage disequilibrium (LD, r2 > 0.6) with MuSIC SNPs (Supplementary eFile 6). As a second example, Zhao et al.10 reported that 251 independent significant SNPs had 346 pairwise associations with 43 GM regions using the Mindboggle atlas on the UKBB (N=19,629).11 129 of the 251 SNPs matched with SNPs identified by MuSIC. Among those non-coinciding (127), 31 SNPs were in LD with MuSIC SNPs (Supplementary eFile 7). Similarly, Elliot et al.12 (N=8428) discovered that 20 independent significant SNPs had 58 pairwise associations with 52 GM regions from atlases in Freesurfer and FSL software. Out of the 20 SNPs, 16 coincided with MuSIC SNPs. Among the four unmatched SNPs, 1 SNP was in LD with MuSIC SNPs (Supplementary eFile 8). Note that the definition of independent significant SNPs or genomic loci might slightly differ between studies.
	Study/Atlas
	Identified variants/loci
	Matched variants
	Variants in LD 
	Unique for MuSIC
	Database
	Sample size
	Ancestry

	AAL
	269
	230
	15
	1365
	UKBB
	18,052
	European

	Zhao et al.10
	251
	129
	31
	1450
	UKBB
	19,629 
	European

	Elliot et al.12
	20
	16
	1
	1593
	UKBB
	8428 
	European





eTable 4: Selected studies for previously published GWAS summary statistics for six clinical traits. We selected the candidate studies from the GWAS Catalog for specific traits, including neurodegenerative diseases, psychiatric disorders, etc. The inclusion criteria are i) GWAS summary statistics are publicly available; ii) the study population is European ancestry in the majority; iii) the heritability estimates (h2) via LDSC are not spuriously low (h2>0.05). This resulted in six clinical traits. We present the clinical trait, the dataset used, the URL link, the Pubmed ID, and the sample size.
Abbreviations: PGC: Psychiatric genomics consortium; ADHD: attention deficit hyperactivity disorder; ASD: autism spectrum disorder; MDD: major depressive disorder; OCD: obsessive-compulsive disorder; SCZ: schizophrenia; BPD: bipolar disorder.
	Trait
	Dataset
	URL
	PubMed ID
	Sample size

	ADHD
	PGC
	https://figshare.com/articles/dataset/adhd2019/14671965

	· 30478444

	53,293 European


	ASD
	PGC
	https://figshare.com/articles/dataset/asd2019/14671989

	· 30804558
	46,350 European

	BPD
	PGC
	https://figshare.com/articles/dataset/bip2019/14671998
	· 31043756
	51,710 European

	MDD
	Meta analysis
	https://figshare.com/articles/dataset/mdd2013/14672082

	· 22472876
	18,759 European

	SCZ
	PGC
	https://figshare.com/articles/dataset/scz2013sweden/14672154
	· 23974872
	11,244 European

	OCD
	Meta analysis
	https://figshare.com/articles/dataset/ocd2018/14672103
	· 28761083
	9,725 European 






eTable 5: Classification balanced accuracy for disease classification and effect size of these imaging signatures.
Disease classification performance is presented using balanced accuracy. The mean and standard deviation are presented. Cohen's d was computed to compare the SPARE scores between groups.
Multi-scale classificationa: All 2003 PSCs from multiple scales were fit into the classifier. 
Multi-scale classificationb: PSCs from all scales were fit into the classifier with a nested feature selection procedure (SVM-REF). The motivation is that PSCs from different scales are hierarchical and correlated. The nested feature selection can select the features most relevant to the specific task. We avoided any statistical comparison of the performance of machine learning models because available statistical tests are liberal and often lead to false-positive conclusions due to the complexity of the cross-validation procedure.13  
	PSC
	AD
	d
	MCI
	d
	SCZ
	d
	DM
	d
	HTN
	d
	MDD
	d
	ASD
	d

	C32
	0.780.02
	1.52
	0.620.02
	0.59
	0.550.02
	0.30
	0.560.02
	0.35
	0.550.02
	0.28
	0.520.02
	0.16
	0.500.02
	0.07

	C64
	0.810.02
	1.73
	0.630.02
	0.66
	0.570.02
	0.41
	0.570.02
	0.40
	0.560.02
	0.31
	0.530.02
	0.17
	0.530.02
	0.19

	C128
	0.820.02
	1.82
	0.650.02
	0.76
	0.590.02
	0.47
	0.560.02
	0.33
	0.550.02
	0.30
	0.520.02
	0.15
	0.520.02
	0.15

	C256
	0.850.02
	2.08
	0.660.02
	0.91
	0.590.02
	0.50
	0.560.02
	0.47
	0.540.02
	0.31
	0.510.02
	0.13
	0.520.02
	0.16

	C512
	0.880.02
	2.34
	0.670.02
	1.06
	0.620.02
	0.62
	0.570.02
	0.54
	0.560.02
	0.42
	0.520.02
	0.05
	0.540.02
	0.24

	C1024
	0.900.02
	2.50
	0.720.02
	1.12
	0.650.02
	0.75
	0.600.02
	0.59
	0.590.02
	0.46
	0.560.02
	0.13
	0.550.02
	0.29

	Multi-scalea
	0.910.02
	2.54
	0.720.02
	1.12
	0.660.02
	0.77
	0.610.02
	0.64
	0.590.02
	0.47
	0.550.02
	0.23
	0.560.02
	0.30

	Multi-scaleb
	0.920.02
	2.61
	0.730.02
	1.13
	0.670.02
	0.78
	0.640.02
	0.67
	0.610.02
	0.49
	0.550.02
	0.26
	0.580.02
	0.32

	AAL
	0.820.02
	1.81
	0.66
	0.75
	0.590.02
	0.46
	0.570.02
	0.32
	0.570.02
	0.35
	0.520.02
	0.08
	0.520.02
	0.14

	RAVENS
	0.850.02
	2.04
	0.64
	0.74
	0.600.02
	0.45
	0.580.02
	0.33
	0.550.02
	0.34
	0.500.02
	0.05
	0.540.02
	0.15





eTable 6: 119 MUSE gray matter regions of interest.
L: Left hemisphere; R: Right hemisphere; ROI: region of interest.
	MUSE ROI
	MUSE ROI
	MUSE ROI

	Precentral gyrus (R)
	Occipital fusiform gyrus (R)
	Anterior insula (L)

	Precentral gyrus (L)
	Planum temporale (R)
	Anterior orbital gyrus (R)

	Accumbens area (R)
	Cerebellar vermal lobules I-V
	Anterior orbital gyrus (L)

	Accumbens area (L)
	Cerebellar vermal lobules VI-VII
	Angular gyrus (R)

	Amygdala (R)
	Cerebellar vermal lobules VIII-X
	Angular gyrus (L)

	Amygdala (L)
	Basal forebrain (R)
	Calcarine cortex (R)

	Occipital pole (L)
	Basal forebrain (L)
	Calcarine cortex (L)

	Caudate (R)
	Middle temporal gyrus (L)
	Central operculum (R)

	Caudate (L)
	Occipital pole (R)
	Central operculum (L)

	Cerebellum exterior (R)
	Planum temporale (L)
	Cuneus (R)

	Cerebellum exterior (L)
	Parietal operculum (L)
	Cuneus (L)

	Planum polare (L)
	Postcentral gyrus (R)
	Entorhinal area (R)

	Middle temporal gyrus (R)
	Postcentral gyrus (L)
	Entorhinal area (L)

	Hippocampus (R)
	Posterior orbital gyrus (R)
	Frontal operculum (R)

	Hippocampus (L)
	Temporal pole (R)
	Frontal operculum (L)

	Precentral gyrus medial segment (R)
	Temporal pole (L)
	Frontal pole (R)

	Precentral gyrus medial segment (L)
	Triangular part of the inferior frontal gyrus (R)
	Frontal pole (L)

	Superior frontal gyrus medial segment (R)
	Triangular part of the inferior frontal gyrus (L)
	Fusiform gyrus (R)

	Superior frontal gyrus medial segment (L)
	Transverse temporal gyrus (R)
	Fusiform gyrus (L)

	Pallidum (R)
	Superior frontal gyrus medial segment (L)
	Gyrus rectus (R)

	Pallidum (L)
	Planum polare (R)
	Gyrus rectus (L)

	Putamen (R)
	Transverse temporal gyrus (L)
	Inferior occipital gyrus (R)

	Putamen (L)
	Anterior cingulate gyrus (R)
	Inferior occipital gyrus (L)

	Thalamus proper (R)
	Anterior cingulate gyrus (L)
	Inferior temporal gyrus (R)

	Thalamus proper (L)
	Anterior insula (R)
	Inferior temporal gyrus (L)

	Lingual gyrus (R)
	Occipital fusiform gyrus (L)
	Subcallosal area (R)

	Lingual gyrus (L)
	Opercular part of inferior frontal gyrus (R)
	Subcallosal area (L)

	Lateral orbital gyrus (R)
	Opercular part of inferior frontal gyrus (L)
	Superior frontal gyrus (R)

	Lateral orbital gyrus (L)
	Orbital part of inferior frontal gyrus (R)
	Superior frontal gyrus (L)

	Middle cingulate gyrus (R)
	Orbital part of inferior frontal gyrus (L)
	Supplementary motor cortex (R)

	Middle cingulate gyrus (L)
	Posterior cingulate gyrus (R)
	Supplementary motor cortex (L)

	Medial frontal cortex (R)
	Posterior cingulate gyrus (L)
	Supramarginal gyrus (R)

	Medial frontal cortex (L)
	Precuneus (R)
	Supramarginal gyrus (L)

	Middle frontal gyrus (R)
	Precuneus (L)
	Superior occipital gyrus (R)

	Middle frontal gyrus (L)
	Parahippocampal gyrus (R)
	Superior occipital gyrus (L)

	Middle occipital gyrus (R)
	Parahippocampal gyrus (L)
	Superior parietal lobule (R)

	Middle occipital gyrus (L)
	Posterior insula (R)
	Superior parietal lobule (L)

	Medial orbital gyrus (R)
	Posterior insula (L)
	Superior temporal gyrus (R)

	Medial orbital gyrus (L)
	Parietal operculum (R)
	Superior temporal gyrus (L)

	Superior frontal gyrus medial segment (R)
	
Posterior orbital gyrus (L)




eAlgorithm 1: Algorithm for sopNMF.
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Algorithm 1: sopNMF

e Input:maximum number of epochs e, number of component C or r, batch
size b, early stopping criteria 6 ;
e Output:W € R¥*" H e R™*" ;
e Initialization: W ;
if not 0 or epoch #e then
for p — 0 to e do
for i — 0 to ¢t do
Read mini-batch X p;
Update W ;11 via Eq. 2
end

loss = ZL”J [ Xoi — WWT Xy |%(Eq.3)
if loss in 6 then
| Stop
else
Shuffle X

Continue
end

end

else
Stop
end





