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1 Data Collection and Processing

1.1 Beacon and dongle registration

When a dongle is registered, it receives a dongle id d, the backend’s public key, an initial clock Cd synced
to real time, a secret key skd and a list of one-time passwords (OTPs) from the backend. When a beacon is
registered, it receives a beacon id b, the backend’s public key, a location id locb corresponding to the location
where the beacon is supposed to be installed, an initial clock Cb synced to real time, and a secret key skb
from the backend. The backend stores the registration data of the beacons and dongles in a device database.
Specifically, the database contains entries of the form:

{device type, device id} :- {secret key, initial clock, clock offset, location id}

where the device type is either beacon or dongle, and the location id exists only if the device type is beacon.
The clock offset in the backend’s database denotes any divergence between the local timer of a device and
real time that is known to the backend.

Each dongle and beacon has a coarse-grained timer of 1-minute resolution (td and tb respectively), which
is set to the initial clock value provided by the backend, and subsequently increments once every minute.
A device stores its timer value to local flash storage at intervals of fixed length L, called epochs. A non-
persistent variable tracks the epoch id or the number of epochs elapsed since the device’s start (id and ib for
the dongle and beacon, respectively). In practice, we suggest an epoch length of L = 15 minutes.

The secret key of a device is known only to the device and the backend. This key is used to mutually
authenticate the device and the backend to each other, and to establish a secure channel between the two,
whenever the two communicate with each other. The OTPs provided to a dongle are also given to the dongle’s
owner in human-readable form (e.g., printed on paper). These OTPs are used to mutually authenticate the
owner and the dongle whenever the owner interacts with the dongle (e.g., to initiate data upload to the
backend).

1.2 Encounter data collection

A beacon generates a new ephemeral id every epoch. In the ith epoch ib, the beacon b generates an ephemeral
id ephb,i that is computed as follows.

ephb,i = hash(skb, locb, ib)

Here ib = b(tb − Cb)/Lc and hash is a one-way hash function. The beacon broadcasts its information as
a tuple of the form {ephb,i, b, locb, tb}, which is captured by nearby user dongles. Suppose a dongle d
encounters a beacon b when the dongle’s local timer is td, and the beacon’s timer, epoch and ephemeral id
are tb, ib, and ephb,i, respectively. Then the dongle logs an entry in its persistent storage as a tuple defined
as:

{ephb,i, b, locb, tb, td}

Beacons may broadcast the ephemeral ids several times within an epoch. Dongles persist only one entry for
each unique ephemeral id they receive.

1.3 Data structure size and storage requirements

Dongles store encounter data as tuples of the form

{ephb,i, b, locb, tb, td},

where ephb,i and locb denote the i-th ephemeral id and location of beacon b respectively, and tb and td
denote the local clocks of beacon b and dongle d respectively. Location identifiers locb are 8 bytes in size.
These bytes may be used to represent GPS coordinates or a hierarchical location naming scheme (e.g.,
country.city.zip, or country.city.bus_id). Beacon timer and epoch counters are 4 bytes in size and
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have a 1-minute resolution. Thus they can present time for 16 years, which is well beyond the expected
lifetime of the beacons. Beacon identifiers b are 4 bytes in size, and represent a simple global counter for
all beacons. Thus, we can support roughly 4.3 billion beacons in the world. The hash in the ephemeral
id is generated by computing SHA-256 of the inputs and taking the least significant 15 bytes of the result.
Overall, each beacon broadcast ({ephb,i, b, locb, tb}) is 15 + 4 + 8 + 4 = 31 bytes in length.

Similar to beacons, dongle timers and epoch counters are 4 bytes each and have a 1-minute resolution,
and dongle identifiers are 4 bytes in size. Thus, for each unique ephemeral id received from a beacon, a
dongle stores 35 bytes of data. We store an encounter with a beacon if the dongle observes the beacon’s
ephemeral id broadcast for at least Emin minutes, which we assume to be 5 minutes.

We assume that users encounter on average no more than one unique beacon ephemeral id every 5 minutes
throughout the day (24 hours). Accordingly, dongles need to store data for 288 encounters in one day or
4032 encounters in a 14-day window (the infectious period for the current COVID-19 disease as determined
by health experts), which requires roughly 138KB of persistent storage in a dongle. In reality, a dongle is
very unlikely to encounter a distinct beacon ephemeral id every 5 minutes continuously for 14 days, so this
estimate is conservative.

1.4 Encounter data upload

Diagnosed individuals may share their encounter data with health authorities to enable dissemination of risk
information to people who might have been in their vicinity. We first discuss the requirements for enabling
data upload from users’ dongles. Then, we describe different upload mechanisms that can enable users with
different levels of technological access to upload their data.

1.4.1 Requirements

(i) User dongles only have Bluetooth connectivity; therefore, they need to use a networked BLE node to
upload their data to the backend.

(ii) Since dongles have a minimal user interface, users fundamentally need access to a separate device
through which they can authorize their dongle to upload data in case of a positive test. This device,
subsequently called a terminal, can be any device that has a graphical user interface, supports BLE,
and has an Internet connection. A user needs to trust the terminal to send correct commands to their
dongle. In case they wish to perform an upload of selected data (described below), they must also trust
the terminal with the data stored on their dongle. The terminal can be part of a kiosk installed in a
test center, clinic, or doctor’s office, or a personal device (e.g., a smartphone or a computer) owned by
the user or a care provider.

(iii) Users may be allowed to share their data selectively. For this, a terminal can be used to allow users
to review the history stored in their dongles and select what subset of the information they wish to
release to the backend.

1.4.2 Upload mechanisms

Users typically visit a test center or a clinic for testing and receive their results offline via email or phone. If
the test is positive, they may wish to upload their data. Users may also voluntarily contribute their data for
epidemic analytics in the absence of a test. We present different mechanisms for data upload, which vary in
the time when data is uploaded and when it is actually released to the backend.

In all cases, patients identify themselves at the time a test is taken using the normal procedures in place
for this purpose. Normally, their contact details are recorded along with the id of the test kit used for the
patient. Once the test results are available, the user is informed using their contact details. If the result is
positive, the notification includes a certificate that the patient has tested positive on the given date, which
the user can forward to the PanCast backend.
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Delayed release Here, a user initiates the data upload after they receive a positive test result. If the
patient owns a smartphone or home computer, they can use it as a terminal for the upload. Users who
do not own or have access to such a device and cannot leave their home to visit a terminal may use the
smartphone of a person who visits them to provide essential services (e.g., delivering groceries).

When a user wishes to contribute their data, either because they tested positive and wish to warn other
people they have encountered or because they wish to contribute their data for epidemic analytics, they
establish a secure connection to their dongle via the terminal. For this, the user enters one of the OTPs it
shares with the dongle into the terminal. The dongle and the terminal, acting on behalf of the user, use this
OTP as a common shared secret to authenticate each other and establish a secure connection. Once the
connection is established, the user may enable the upload and attach their test certificate if applicable. The
dongle then encrypts the data it stores with a symmetric secret key it shares with the backend, and uploads
to the backend via the terminal, along with any certificate.

Early release Alternatively, users may choose to upload their data into escrow at the time of their testing,
pending a positive test result. Here, the user establishes a secure connnection to their dongle using a terminal
at the testing site, and consents to contributing their data if the test result turns out positive. The data
is immediately uploaded to the backend in encrypted form, using an encryption key derived from one of
the OTPs the dongle shares with the user. The user is asked to reveal this OTP to the testing site, which
uploads it to the backend along with the certificate if and when the result is positive.

With the early release approach, users trust the testing center to release their escrowed data only in
case of a positive test result. Alternatively, users themselves can upload the OTP to release their escrowed
information upon receiving a positive test result, for instance, through an automated phone system.

1.4.3 Verification of encounter ephermeral ids

When a user uploads their data to the backend, the backend checks the validity of the provided information
by running a consistency check. The consistency check verifies that the value of each ephemeral beacon
id ephb,i is consistent with the time at which the dongle received it. It accommodates known clock offsets
between encountered beacons and the dongle. We explain this in more detail below. We describe the
handling of other forms of inconsistencies, for instance, due to misconfigured beacons or relay attacks in
SI Section 3.2. Suppose the encounter happened at real time T and recall that an encounter entry is of the
form {ephb,i, b, locb, tb, td}. Taking timer offsets into account, we have the following equation:

td + δd = T = tb + δb.

Here, δd and δb are the clock offsets of the dongle and the beacon known to the backend. The backend
checks that td + δd = tb + δb. Next, the backend calculates the beacon’s epoch id ib = b(tb + δb − Cb)/Lc
at the time of encounter. The backend retrieves the beacon’s secret key skb using the beacon identifier b
from the encounter entry, and computes the expected ephemeral id hash(skb, locb, ib) for the epoch ib. If
this expected ephemeral id matches the ephemeral id ephb,i in the encounter entry, then the encounter entry
is consistent and the backend adds it to its risk database, else the entry is ignored.
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2 Risk dissemination

In this section, we describe a protocol for risk dissemination. Such a protocol must balance privacy and
efficiency concerns. On the one hand, the protocol must protect the location history and identity of diagnosed
patients. On the other hand, the protocol must ensure that relevant risk information reaches potentially
affected users’ dongles in a timely manner. We opt for a protocol where network beacons broadcast global
risk information periodically, and user dongles passively listen for relevant risk information whenever they
are in proximity of such a beacon. With this approach, dongles receive risk information while revealing no
information about their identity or their history to the backend, the network beacons, or to other users.

The risk information consists of a list of ephemeral ids. The ephemeral id of a beacon b for epoch e is
included in the list if and only if a diagnosed individual encountered b in epoch e. To reduce the bandwidth
overheads and broadcast delays, the list of risk entries is limited to the period of contagion of the disease
(e.g., 14 days in the case of COVID-19). The list can also be compressed using cuckoo filters (1), at the
cost of a small percentage of false positives. For example, to ensure an average false positive rate of 0.01%
for each user in a 14-day period, we require a cuckoo filter with entries of size just 27 bits (as opposed to
the 15-byte ephemeral ids), which reduces the size of a risk broadcast by ∼4.4x. The risk information may
additionally contain values of parameters relevant for risk score calculation performed on user devices, e.g.,
the weights of various features of an encounter in the risk estimation. All risk information is signed by the
backend to allow detection of any tampering by intermediate nodes, including network beacons.

In the following, we discuss the need to add noise in the risk dissemination protocol and the efficiency of
the entire protocol.

2.1 Noising the risk dissemination broadcast

We present two scenarios where the number of entries in the risk broadcast could potentially reveal an
individual’s identity, location history, or health status to an adversary in the locality of the individual.
These leaks arise without the adversary having even encountered the individual at all. We then describe our
solution to mitigate such leaks.

(i) Whereabouts of diagnosed individuals. Suppose Alice learns from the local news that there was
only one case of infection in the past few days within some geographic region. Furthermore, Alice
happens to know that Bob was diagnosed, that he carries a dongle, and that he agreed to upload his
encounter history when he got diagnosed. Now, if Alice learns that the risk information for her region
includes a non-zero number of ephemeral ids, she can infer that Bob left his home at some point while
he was contagious. Dually, if Alice sees that no risk information is provided for her region, she can
infer that Bob has not been near a beacon within the region and during the period in question. In
short, the length of a risk notification broadcast (zero vs. non-zero) reveals to an adversary information
about the whereabouts of a diagnosed individual. Note that this problem exists even if a cuckoo filter
is used to encode risk information, because the size of a filter optimized for space reveals information
about the number of elements it includes.

This information leak arises only if the location history of diagnosed users is always uploaded to
the backend. In practice, users have a choice to not upload their history to the backend. If users
exercise this choice frequently, then an adversary cannot learn much from the absence of risk entries.
Nevertheless, we recognize that, with what we have described so far, such a leak is possible.

(ii) Health status of an individual. Suppose Alice lives in an area with very few people, say n people,
and Alice is able to track the movements of n − 1 of these people through outside channels. Suppose
the risk information Alice receives contains more ephemeral ids than can be accounted for by the
movements of the n − 1 people Alice is tracking. At this point, Alice knows that the n-th person
(whom Alice is not tracking) must be sick as well. Even though such an attack requires a significant
amount of offline information and may be difficult to use in practice, it does raise privacy concerns.
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ε δ Offset(t) 99%-ile noise
0.5 0.001 46638 78196
0.2 0.001 94981 173938
0.1 0.001 160148 318262
0.05 0.001 263153 580176

ε δ Offset(t) 99%-ile noise
0.5 0.01 28181 59850
0.2 0.01 49361 129117
0.1 0.01 70588 231983
0.05 0.01 90283 420116

Table 1: 99th percentile noise required for various values of ε and δ. Sensitivity (A) is 4032.

Note that both these leaks rely solely on the number of ephermeral ids in a risk notification. We propose
to mitigate these leaks by adding noise to the risk notification broadcast in order to hide the actual number
of ephermeral ids. For this, we add junk ids that do not correspond to any real beacon and, therefore, do
not match the history of any user dongle. Since our threat model assumes that no adversary can monitor
the ephermeral ids from a significant fraction of beacons, no adversary can distinguish these junk ids from
legitimate ids. The number of junk ids can be chosen to satisfy differential privacy for all individual users,
which we describe next.

Differential privacy. Our goal is to add a random number of additional junk ids to a risk broadcast to
make the total number of entries differentially private for all individual users. The number of junk ids we
add must obviously be non-negative. For this, we adapt a mechanism proposed in prior work (2). Given a
risk broadcast, we add N junk ids to it, where

N = t+ bX̃c.

Here, t is a natural number, and X̃ is a random value sampled from a Laplacian distribution with mean 0
and parameter λ truncated to the interval [−t,∞). Note that N is always non-negative. The values of t and
λ we use depend on how much privacy we want. Specifically, to get (ε, δ)-differential privacy, we pick the
following λ and t.

λ = A/ε t = dλ · ln
(
(e(A/λ) − 1 + δ)/2δ

)
e

Here, A is the sensitivity of the risk broadcast function; it equals the maximum number of risk entries that
could be contributed by a single diagnosed individual. Refer to the PanCast white paper (3) for a proof that
this mechanism is (ε, δ)-differentially private.

SI Section 1 shows the 99th percentiles of the number of noise entries required for different values of ε
and δ. Here, we conservatively assume that A is 4032 (see SI Section 1.3). In practice, the number of junk
ids must be tuned for the smallest granularity of a region for which statistical information is available from
other public sources. For instance, in Germany, noise should be added to the statistics of cities and towns
since statistics in Germany are reported at this granularity.1

2.2 Bandwidth requirements and broadcast time

We now discuss the anticipated bandwidth and time requirements for a network beacon to broadcast risk
information of a certain size. We estimate the time to broadcast this risk information using the latest BLE
(Bluetooth Low Energy) protocol v5.2 (4).

Bandwidth. As discussed in SI Section 1.3, we conservatively assume that a diagnosed individual records
about 288 unique beacon ephemeral ids in a day (Nday). Furthermore, we assume that individuals are
diagnosed at the very end of the infection window W ; in other words, they upload their encounter entries for
the last W days. Thus, the number of risk entries from each diagnosed individual is N = Nday ∗W . Given I
diagnosed individuals, each having generated N risk entries of size S bytes each, the total number of bytes
required for broadcasting all risk entries is B = (I ∗N ∗ S) bytes.

1https://tinyurl.com/yxv74nep
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Country # new cases/day # risk entries/day Bytes/day (MiB) Delay (s)
Australia 18 390,838 1.258 13.191
Germany 3346 13,809,334 44.447 466.065
Italy 3821 15,724,534 50.612 530.703
France 16036 64,975,414 209.133 2192.92
Brazil 26429 106,879,990 344.009 3607.2
USA 48639 196,430,710 632.242 6629.54
India 72019 290,698,870 935.658 9811.09

Table 2: Bandwidth and time requirements for broadcasting risk information (organized as cuckoo filters) in
different countries. We include the cost of 318,262 noise entries, which is the 99%-ile for differential privacy
with ε = 0.1 and δ = 0.001. Column 2 contains the 7-day moving average of daily new cases as of 11 October
2020.

Bluetooth Low Energy (BLE) v5.2 supports a new form of communication: isochronous channels (4).
Isochronous channels support both connection- and broadcast-oriented schemes. Here, we use only broadcast-
oriented channels. A broadcast isochronous group (BIG) can contain up to 31 individual broadcast isochronous
streams (BISs); each stream transmits data as bursts of packets in events that are synchronized to a fixed
time interval. Streams can be sequential or interleaved. Devices can join a BIG and choose to listen to one
or more BISs. As per the specification, BISs transmitted on a physical channel of 2 Mbps (LE 2M PHY)
can nominally achieve a goodput of 1.66 Mbps. In practice, interference from WiFi and channel errors may
reduce this goodput. Assuming that we can practically achieve a goodput of at least 0.8 Mbps, the time to
broadcast B bytes in a single BIS is at most Delay = ((B ∗ 8)/(0.8 ∗ 106)) seconds.

Broadcast estimates. SI Section 2 shows the bandwidth and latency requirements based on daily new
COVID-19 cases reported in different countries (5). S is 15 bytes and W is 14 days. Here, we assume that
the risk entries of each region are coded as a cuckoo filter of size equal to the number of risk entries (column
3), and with entries of size 27 bits, which corresponds to a false positive rate of 0.01% for users in a 14-day
period. Moreover, we include 318,262 noise entries, the 99%-ile of noise needed to provide differential privacy
with ε = 0.1 and δ = 0.001.

In the above, note that the estimates in SI Section 2 are conservative in two ways: the maximum number
of risk entries uploaded by a single diagnosed individual and the amount of differentially private noise added.
The latter is also affected by the maximum number of risk entries possible from a single individual. In
practice, most users are unlikely to encounter 288 unique ephermeral ids every day (as this corresponds to
seeing a new ephemeral id every 5 minutes).

Optimizing broadcasts. Users may be interested in the risk information of only a few specific regions,
such as their neighbourhood and place of work, or their daily commute routes. We propose several optimiza-
tions to allow faster dissemination of relevant information to users. First, we organize the risk entries by
regions of reasonable size (e.g., countries or cities) and transmit the entries of each region on a separate BIS
stream. Second, we reorder the streams in different network beacons based on anticipated priorities of users
in the region. For example, beacons at airports may broadcast the risk information of source and destination
cities before the information of other regions, whereas beacons within a city may broadcast risk information
of the city first, followed by that of neighboring cities, the state, the country, and so on. Finally, multiple
network beacons can be placed in a location to parallelize risk broadcasts of different regions. Beacons
can be connected to a common power source and configured to use non-overlapping frequency bands for
broadcast streams. Each beacon then broadcasts the information of a few regions using broadcast streams
in its frequency bands. User dongles can tune to specific beacons to receive risk information of only specific
regions.
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Disregarded alternative: Actively querying risk information. We considered another alternative
for risk dissemination, whereby users actively query the backend directly for risk information of specific
regions. However, in this alternative, users’ queries are inevitably revealed to the backend, which can then
potentially infer their location history. Hence, we disregard this design in favor of the completely privacy-
preserving passive broadcast model. Note that, in our current design, a user can receive risk notifications
without ever transmitting anything from their dongle.
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3 Security and privacy

In this section we discuss PanCast’s privacy and security properties. SI Section 3.1 is concerned with potential
security threads, complemented by a security analysis in SI Section 3.2. SI Section 3.3 discusses potential
privacy-violating information leaks.

3.1 Threat model

In the following we assess potential security threads and the corresponding protective measures of each
component of PanCast. We also state the respective trust assumptions.

Beacons. Beacons are operated by untrusted parties, may fail, be accidentally misconfigured, or be corrupted
by malicious parties. However, we assume that only a small fraction of beacons is affected at any time.

BLE and network beacons are managed by untrusted third parties, but they are registered and approved
by the backend, run trusted firmware, and only accept firmware updates signed by the backend. Network
beacons relay risk information from the backend to user dongles. This information is signed by the backend so
dongles can detect unauthorized changes by corrupt beacons. For timely dissemination of risk dissemination
(liveness), PanCast requires that most beacons transmit risk information without change.

BLE beacons are prone to four types of issues, which may lead to inconsistencies in data collection and
subsequently incorrect risk notification and epidemiological analysis. First, beacons may fail; for example,
they may run out of battery or may be rebooted at any time. Clocks in beacons may go out of sync due to
failures and reboots, or due to clock drift. Second, a beacon may be installed in a location different from the
one it was registered for; such misconfigurations may result from human error or deliberate acts. Misconfig-
ured beacons can cause the backend to mis-identify the physical location of potential transmissions, hotspots,
or superspreading events. Third, attackers could relay and re-broadcast a legitimate beacon’s transmissions
at a different location, even in near-real time. Relay attacks can cause the system to temporarily infer
transmission risks that do not actually exist (false positives). Fourth, an attacker could obtain illegitimate
access to a beacon and hack it or break into it physically. A compromised beacon allows the attacker to steal
its secret key and replicate the beacon’s broadcast, thus creating false positives as with relay transmissions
above. We assume that such failures, misconfigurations, and attacks are sporadic and uncoordinated. The
backend can detect misbehaving and failed beacons, and initiate a manual repair. PanCast’s backend can
also detect and correct inconsistencies in the collected data to a large extent. While a beacon is unavailable
for any reason, transmissions in its vicinity may be missed by PanCast (false negatives).

We do not address side-channel leaks of beacon secrets, for instance, through power or electromagnetic
radiations.

Dongles. Dongles may fail or be corrupted by malicious parties. However, we assume that only a small
fraction of dongles is affected at any time.

Dongles are registered and approved by the backend, run trusted firmware, and only accept firmware
updates signed by the backend. What information users must provide to register and obtain a dongle is
subject to local policy and legislation. Minimally, evidence should be required to prevent any individual
from registering many dongles. Requiring additional information such as names and contact details enables
health authorities to actively trace individuals at risk, but raises privacy concerns that may limit adoption.

Dongles may fail and be physically compromised. Dongle failures (e.g., reboots, permanent failures) may
cause false negatives due to missed beacon broadcasts while the dongle is unavailable or the user obtains
a new one. A physical compromise may allow the attacker to steal the owner’s data from the dongle and
make up plausible encounter histories, thereby potentially causing some false positives, some false negatives
or adding misleading information about user behavior.

Side-channel leaks of secrets from dongles are out of scope. Also, PanCast does not address leaks through
the sizes and timing of location history uploads from dongles to the backend. In principle, these can be
mitigated by adding chaff traffic to dongle uploads, and having users upload chaff data at random times.
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Backend. PanCast’s backend service and its controlling authority are trusted to not leak or misuse user
registration information, secret keys shared with devices, the encounter histories that users upload, and the
backend’s private key. The backend is also trusted to transmit risk information correctly to beacons.2

User terminals. Terminals are trusted to a limited extent.
There are two cases. First, users may use their personal computing devices (computers or smartphones) as

terminals. These computing devices are implicitly trusted by users. Second, users who do not own personal
computing devices may use public terminals, or use the smartphone of a care provider. These terminals
are trusted to a limited extent: (i) when such a terminal is used to select information on a dongle prior to
upload, the terminal must be trusted to not leak that information; (ii) when such a terminal is used to send
commands to a user dongle, the terminal is trusted to send the correct commands. Terminals are not trusted
in any other way.

Eavesdroppers. Any BLE device may receive and store beacon broadcasts. However, we assume that no
party has the ability to continuously receive and collect the BLE transmissions of a significant fraction of
beacons within a large, contiguous geographic region.

BLE eavesdroppers can receive the transmissions of beacons they are close to and conspiring users may
aggregate their observations. However, we assume that no party has the ability to continuously receive and
collect the transmissions of a significant fraction of beacons within a large, contiguous geographic region.
Malicious users and eavesdroppers may attempt to combine information obtained through PanCast with any
amount of auxiliary information about a subset of users obtained through offline channels to try and violate
the privacy of the remaining users.

3.2 Security analysis

We analyze security risks posed by misconfigured devices and adversarial principals in PanCast, which may
lead to inconsistent encounters. Inconsistent encounters may arise in three ways: (i) the clocks of beacons
or dongles are out of sync with real time; (ii) a beacon is misconfigured and placed at a location different
from where it is registered; or, (iii) an illegitimate beacon re-transmits a legitimate beacon’s transmissions
at a different location.

In the above, note that inconsistencies in beacons and dongles are irrelevant as long as there are no
infections being reported. Next, we discuss mechanisms to identify and mitigate inconsistencies in encounters
reported to the backend.

Clock inconsistencies. Encounters become inconsistent when an ephemeral id is found to have been used
for more than one epoch length in real time. This may happen when devices crash and reboot after a long
time, leading to encounter timestamps that are out of sync with real clock time. The backend can detect
and fix such an inconsistency if it receives at least two encounters of an inconsistent device with consistent
devices, where one encounter occurred before and the other after the device’s crash. That is, the backend can
fix an inconsistent beacon if it receives at least two encounters from consistent dongles with the beacon, and
similarly, it can fix an inconsistent dongle if it receives at least two encounters of the dongle with consistent
beacons. We now show an example of how the backend fixes beacon and dongle inconsistencies.

Suppose, at real time T , a dongle and a beacon encountered each other with local timers at td and tb
respectively and clock offsets at δd and δd, respectively. Suppose the beacon crashes and reboots at real time
T + τ where τ > L. Without loss of generality, assume that the same dongle encounters the beacon after the
beacon has rebooted. The beacon’s timer after reboot is tb + 1, while the dongle’s timer is td + τ . Assume
that tb and tb + 1 lie in a single epoch interval, i.e., the beacon’s epoch id corresponding to the two times is

2As explained in SI Section 1.4, secret keys shared with user dongles are only used to establish secure sessions in which
dongles upload user histories. Consequently, leaking keys shared with dongles is no worse than leaking uploaded user histories
directly.
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the same. The dongle’s encounter history includes two entries of encounters with the beacon as follows:

{ephb,i, b, locb, tb, td}
{ephb,i, b, locb, tb + 1, td + τ}

When the backend observes the two entries from the dongle with the same ephemeral id but with the dongle’s
local timers more than one epoch length apart, the backend knows that the inconsistency was introduced
due to a beacon restart. In this case, the backend updates the beacon’s clock offset δb and the real time
from when the offset comes into effect, and appends the tuple into the beacon’s entry in the database.
Specifically, the backend appends {C ′

b, δ
′
b} to a list of {clock, offset} values stored with the beacon, where C ′

b

is the beacon’s global clock in the backend at the time of encounter, and

δ′b = ((td + τ) + δd − (tb + 1)).

A similar mechanism can be used to detect inconsistencies due to the crash of a user dongle. If there are
multiple entries where the difference in the dongle timestamps does not match with the difference in beacon
timestamps, the backend would update the dongle’s clock offset appropriately. A beacon or dongle is restored
to a consistent state when its clock offset equals the difference between its clock and local timer values.

Beacon misconfiguration. Inconsistencies also arise if a beacon transmits information inconsistent with
its location. Such inconsistencies can arise if (i) a beacon was (accidentally or maliciously) installed in
a location different from where it is registered, (ii) a spoofed beacon configured with the secret key of a
legitimate beacon re-transmits the same ephemeral ids in a different location, or (iii) an adversary replays
the ephemeral ids of a legitimate beacon in other locations (6). All cases lead to the same inconsistencies due
to the fact that the spoofed beacon is in a location different from where it is expected. First, dongles that
travel between a spoofed beacon and nearby, legitimate beacons will appear to have traveled implausibly
long distances in a short period of time. The backend can detect this when such a dongle uploads its history.
Second, users with GPS-enabled smartphones can directly observe the problem when they see a beacon
transmission with a signed location that is different from the phone’s current location by more than the BLE
range. Such phones may report the inconsistency to the backend.

3.3 Privacy analysis

SI Section 3 summarizes the information disclosed to different entities at various stages of PanCast’s oper-
ation. Note that BLE beacons only transmit information unidirectionally and learn nothing about nearby
users. In the following we elaborate on the possible attacks by the remaining principals based on the infor-
mation disclosed to them.

3.3.1 Leaks to the backend

The backend learns the encounter histories of users who volunteer to upload this information by design.
How much personally identifiable information (PII) the backend learns about users depends on the dongle
registration policies of a given jurisdiction. From a technical standpoint, it suffices if the backend knows a
pseudonym for each registered user and the associated dongle. In practice, some additional information may
be required for Sybil mitigation, such as an email address, phone number, or other id.

The backend learns that the owner of a dongle is sick when the dongle uploads its encounter history and
the associated test certificate. In addition, the backend learns a subset of the owner’s recent whereabouts
approved by the owner, at the granularity of beacon visits and epochs. Additionally, the backend learns the
whereabouts of volunteer users who have opted to share their encounter history even when not sick. The
backend can also infer an over-approximation of the possible social contacts among sick users and volunteers
at the granularity of beacon visits and epochs.
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Operation stage Backend Other users Network beacon Terminal
Registration PII (e.g., phone #),

user-dongle mapping,
beacon-location map,
devices’ secret keys,

none none none

Encounter logging none none none none
Encounter upload location history none none upload size,

location his-
tory*

Risk notification none common subset of
location history,
but anonymized**

noised broadcast
size*** and time

none

Table 3: Information about a user disclosed to other entities during PanCast’s operation. Notes: *Only if
user wishes to use the terminal to select data to upload. **Other users only learn a list of (location, time)
pairs where they intersected with at least one sick user. There is no information about how many users were
sick, or their identities. ***Beacons only observe differentially-private (noised) broadcast size.

3.3.2 Leaks to other users

In PanCast, user dongles learn nothing about other users except through the risk notifications. Therefore,
it is impossible for users to learn information about other healthy users through the system. Moreover,
users can maximally learn information about diagnosed users that those users have volunteered to upload.
As described in SI Section 2.1, PanCast provides differential privacy in the number of risk entries from
diagnosed users and the number of diagnosed users itself.

However, we note that this measure is effective only against adversaries whose history does not match
any of the risk information entries, i.e., against users who were not in the vicinity of a diagnosed patient who
uploaded their history. If a diagnosed user Alice uploaded their data to the backend, a user Bob who was
recently near a beacon at the same time as Alice may be able to identify Alice or learn about her whereabouts
from the risk dissemination information. Here, we describe two scenarios in which a user can learn some
information about a diagnosed individual based on the risk information broadcast.

Location history of a diagnosed individual. Suppose Alice learns from the local news that there was
one case of infection in the past few days, and she receives the associated risk information. If some ephemeral
ids in the risk notification match Alice’s recorded ephemeral ids, Alice learns a partial location history of
the infected individual. Furthermore, by intersecting the common locations visited by the patient with her
out-of-band observations of who was present, Alice may be able to identify the individual or narrow the list
of candidates.

Such a leak is inherent in any risk notification system, including decentralized SPECTs, in which user
devices compute their own risk score based on encounters with a patient. However, only users who have
visited some of the same beacons around the same time as a sick person can benefit from the leak. To
exploit the leak to learn the identity and whereabouts of arbitrary sick people, an attacker would require the
ability to collect the ephemeral ids transmitted by all beacons within a geographic region of interest, which
we believe is largely impractical.

Identity of a diagnosed individual. Suppose Alice visited a location at a time when there was only one
other individual Bob around. Thus, the ephemeral id of the nearby beacon is recorded only in the dongles
of Alice and Bob. If the ephemeral id in question appears in a risk notification, and Alice did not report
sick, then she knows that Bob reported sick. This leak arises when only two (or a small number) of people
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were present at a given time at a given place. Note that, such a leak is also inherent to all digital contact
tracing systems, centralized or decentralized.

3.3.3 Leaks to network beacons

As long as dongles listen to broadcasts of network beacons passively (which is sufficient for PanCast’s
operation), network beacons cannot learn anything about the presence or identity of the dongle.

3.3.4 Leaks to user terminals

When a dongle uploads data to the backend via a terminal, the terminal can observe the size of the upload.
The terminal cannot observe the content of the (encrypted) communication nor does it learn the identity of
the dongle or user. Since the size of an upload could reveal how many beacons a dongle has recently visited,
uploads can be padded to obfuscate this information.

If the user uses the terminal to select records prior to upload, then the terminal learns the part of the
user’s history that is stored on the dongle at the time of the selection. To mitigate this concern, a user can
use a trusted terminal for this purpose, e.g., their own personal computer or smartphone if they have one.

3.3.5 Leaks from dongles

User dongles transmit data only when uploading information to the backend via a terminal, or to a terminal
in case the user wants to select records. In both cases, the data is transmitted from the dongle only over
a secure connection, and only after the dongle authenticates the other endpoint. Otherwise, retrieving the
information stored in a dongle requires physical access.
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