SettlingMPs

Script to detect particles in images acquired with LabSFLOC camera, compute their size and settling velocity.
Developed by Roberto Fernandez (October-November 2020)

Reviewed on March 2022.

Contact: @IceMeanders (Twitter) - R.Fernandez@hull.ac.uk

This code has enough comments that any user can pick it up and understand each step.
Potential Improvements:

1. Adjust particle size based on how blurry they are (for out of focus particles)

2. Tracking that includes potential particle rotation as it settles (for example a fibre that starts vertically and ends horizontally).

Contents

= Cleanup

= Inputvalues

= Input

= Detection

= Matching

= Displacements and Areas

= Tracking

= Independent Particle Results
= Output

Detection Function

= Post-Detection Filtering

Clean up

Clear all variables in the workspace

clearvars
% Close all open figure windows
close all

Input values

Indicate if you want the code to display intermediate results by using a value of one (1). Use any other number or character to avoid this (code will run faster if intermediate results are not
displayed).

intRes = 1;
% Specify threshold (area in pixels?) to discard particles in detection routines
% This value might need to be revisited depending on particle size

% expected.

aT = 7000;

Specify image size (rows - number of pixels in the vertical direction,

and cols - number of pixels in the horizontal direction).

NOTE: When working

origin of the image is always the top left corner.

de o0 ae

images, the coordinate (x,y) = (0,0), i.e. the

U520

x' grows to the right
% (columns), and 'y' grows to the bottom (rows).

rows = 1448;

cols = 1928;

% Specify minimum cross-correlation value to accept a particle pair as a

% match. A value of 1 would require a perfect match. Recommended valu vary with image quality

lue using intermediate

% If images have good quality the value can be as high as 0.9. Reduce

a0

results visualization to determine an appropriate one for your specfic requirements.
minR = 0.80;

Input

The code assumes that the user chooses * tif or *.jpg files. If a different file format is chosen it will crash. Get image series file - returns the names of all files selected by the user. If only one itis

returned as a string. If multiple as a cell. For tracking, the user MUST select more than one image. Tracking requires an image pair (atleast). path - returns the folder in which those files are
stored (only single path is possible)

[file, path] = uigetfile('*.tif', '*.jpg', 'Select an image or an image series', 'MultiSelect', ‘'on');
% Get number of images (nImages) in the series selected by the user
% Check if the format of file is a cell (this means that the user selected
% multiple images)
if iscell(file)
$ If true, number of images is the number of columns of the cell
nImages = size(file,2);
elseif file ~= 0
$ If false, and the value isn't zero, convert the variable file to a cell (When only
% one image chosen, file is a string. However, it is easier to turn into a cell here than to
% deal with multiple formats later in the code).
file = {file};
% Number of images
nImages = 1;
else
% Otherwise (if user did not choose a single file) display a message on
% screen and finish running the code.
disp ('No images selected')
return

Detection

The steps for detection are the following

1. Load image
. Invertimage

. Make image binary (speeds things up)

WD

. Determine properties of areas within image (particles)

o GO A0 o0 a° of

this kind of variable.
allStats = struct('image', NaN, 'mpProps', NaN);

Loop through all images in the series. If user selects one image the code

Create array (called structure in Matlab) to store results from all images in a given image
The first field in the structure is the image number (within the series
and the second field is another structure that holds the properties of

all particles detected in the image. (mpProps - microplastic properties
Type 'doc struct' or 'help struct' in the Command Window for more information about

% runs only once. Otherwise it runs as many times as the number of chosen images.

for j = l:nImages

G0 oo o0 Ui

the end of this file (scroll down) .
mpStats = rf DetectMPs (path, file{j});

o0 oo

(scroll down). Any particles with area smaller than
threhsold) are removed from the mpStats structure.
mpStats = rf_FilterDetMPs(mpStats, aT) ;

% Add image number to allStats structure (one row 'j'
allStats(j) .image = j;

% Save the properties of all particles in that image

% the second column (or second field).

o0 oo

allStats (j) .mpProps = mpStats;
Following lines of code for plotting purposes only

g0

the code and might be ignored by setting intRes to
when user knows what they are doing and trusts the

o0 00 oo

If user wants to display intermediate results (intR
if intRes ==

Call function to filter out particles that do not meet the area
threshold criteria. The function is included at the end of this file

aT (area

per

as a

image)

structure in

(they slow down

Call function to detect particles in image and save thier properties in a structure
called mpStats (microplastic statistics). The function is included at

a value different than one

code) .

es =

1) at the beginning of the code.

% Grab centroids of all particles detected in the current image (image

% j in the series)
centroids = cat(l, mpStats.Centroid);

is the top left 'x' (column) coordinate of the

o0 00 o o° oo oe

column inidcates the vertical height of the box
boxes = cat(l, mpStats.BoundingBox) ;
% Get the 'x' (column) coordinates of all box cor

(image j in the series). The boxes have four values.

box;

Grab bounding boxes of all particles detected in the current image

The first value

the second value is the

top left 'y' (row) coordinate of the box; the third value indicates
the horizontal width of the box (number of columns);

the fourth

(number of rows) .

ners

bx = [boxes(:,1) boxes(:,1)+boxes(:,3) boxes(:,1)+boxes(:,3) boxes(:,1)

% Get the 'y' (row) coordinates of all box corner

by = [boxes(:,2) boxes(:,2) boxes(:,2)+boxes(:,4) boxes(:,2)+boxes(:,4
% Clear figure (not needed when j = 1 but needed for j > 1)

clf

% Make sure images are plotted in Figure 1

figure (1)

% Display image j in the series and hold on (hold on makes sure that

% new items added to the plot are displayed over the contents already

% there. Otherwise, the new line deletes the previous contents and only
% shows the plot/image corresponding to the last line of code).

imshow (imread (fullfile (path, file{3j}))), hold on
% Plot particle centroids over the image.
% Centroids will be cyan crosses given by '+c')
lot (centroids (:,1), centroids(:,2), '+c')

T

Plot the bounding boxes using solid lines '-—

o0 o0 O

plot (bx', by', '-')

S

Matlab will automatically asign different colors to different boxes.

% Pause execution for 0.1 seconds to give the user enough time to see

% what the code is doing.
pause (0.1)

% Last line related to intermediate results plots that may be left out

end

clear centroids boxes bx by
end

% Clear (delete) variables storing information used for plotting

boxes (:,1)1;

boxes (:,2)1;

series.

Matching

Assumes particles settle without rotating

The steps for tracking are the following:

Read image pair

Grab first particle in image 1

Use bounding box of particle in image 1 and extract a subimage (the size of the bounding box) from image 1.
Compare to each particle in second image via cross-correlation

Identify matches and save relevant data

Repeat with next particle in image 1

Repeat with next image pair

B A N

Create structure to save all information related to image pairs
(allPairs). It contains the following fields:

imagel - saves the number of the image within the series

image 2 - saves the number of the image within the series
nPartsl - saves the number of particles in the first image
nParts2 - saves the number of particles in the second image

90 P o0 o0 O o of

ccR - saves the cross correlation value (result of comparing the subimage
extracted from image 1 with the subimages extracted from image 2). A
positive value close to 1 means very good correlation (possible match). Smaller values
and negative values indicate poor correlation (no match).
filel - stores the string containing the folder and file name of image 1 to help ID
later on when postprocessing
file2 - stores the string containing the folder and file name of image 2 to help ID
later on when postprocessing
allPairs = struct('imagel', NaN, 'image2', NaN, 'nPartsl', NaN, 'nParts2', NaN, 'ccR', NaN, 'filel', NaN, 'file2', NaN);

o0 oP e o o

o0 oe

Loop through all image pairs (loop goes up to number of images minus one)
NOTE: This loop could run slightly faster if all things corresponding to
img2 are assigned to imgl before next iteration (instead of re-reading
the image and grabbing all values again) .

Would need to do imgl of j=1 before the loop and modify some code near
the end of it.

if nImages >1

for j=l:nImages-1

% Read the first image (imgl) - j image

imgl = imread(fullfile (path, file{j}));

% Read the second image (img2) - j+1 image, next image in the series
img2 = imread(fullfile(path, file{j+1}));

% Grab centroids of particles detected in imagel (and not filtered via aT)

%
%
%
%
%
%

centroidsl = cat(l, allStats(j).mpProps.Centroid);
% Grab centroids of particles detected in image2 (and not filtered via aT)
centroids2 = cat(l, allStats(j+1) .mpProps.Centroid) ;

% Grab bounding boxes of particles detected in imagel (and not filtered via aT)
boxesl = cat(l, allStats(j).mpProps.BoundingBox) ;

% Grab bounding boxes of particles detected in image2 (and not filtered via aT)
boxes2 = cat(l, allStats(j+1) .mpProps.BoundingBox) ;

Following lines of code for plotting purposes only (they slow down

the code and might be ignored by setting intRes to a value different than one
when user knows what they are doing and trusts the code) .

If user wants to display intermediate results (intRes = 1

o0 e oo oe

if intRes ==
% Get the 'x' (column) coordinates for the corners of all boxes (particles) in image 1
bxl = [boxesl(:,1) boxesl(:,1)+boxesl(:,3) boxesl(:,1)+boxesl(:,3) boxesl(:,1) boxesl(:
% Get the 'y' (row) coordinates for the corners of all boxes (particles) in image 1
byl = [boxesl(:,2) boxesl(:,2) boxesl(:,2)+boxesl(:,4) boxesl(:,2)+boxesl(:,4) boxesl(:
% Get the 'x' (column) coordinates for the corners of all boxes (particles) in image 2
bx2 = [boxes2(:,1) boxes2(:,1)+boxes2(:,3) boxes2(:,1)+boxes2(:,3) boxes2(:,1) boxes2(:
% Get the 'y' (row) coordinates for the corners of all boxes (particles) in image 2
by2 = [boxes2(:,2) boxes2(:,2) boxes2(:,2)+boxes2(:,4) boxes2(:,2)+boxes2(:,4) boxes2(:
% Open new figure window (Figure 2)

figure (2)

% Clear figure (useless in first iteration but good to have for

% following iterations)

clf

% Create a figure with two rows, one column, and work with the first row

subplot(2,1,1)

% Show the first image and hold on

imshow (imgl), hold on

% Plot centroids over imagel as cyan crosses '+c'

plot (centroidsl(:,1), centroidsl(:,2), '+c')

3 Plot bounding boxes over image 1 using cyan solid lines '-c'
plot (bxl', byl', '-c')
% Move to second row (plot with 2 rows, 1 column, second row active)
subplot(2,1,2)
% Show image 2 and hold on
imshow (img2), hold on
% Plot centroids over image 2 as green stars '*g'
plot (centroids2(:,1), centroids2(:,2), '*g')
% Plot bounding boxes over image 2 using green dashed lines '--g'
plot (bx2', by2', '--g')
% Last line related to intermediate results plots that may be left out
end
% Determine number of identified particles in image 1 (nP1)
nPl = size (centroidsl,l);
$ Determine number of identified particles in image 2 (nP2)
nP2 = size(centroids2,1);
Initialize matrix to store cross correlation results between
particles in image one and potential matches (candidate particles) in
image 2. Initial values are all zeros.
= zeros (nP1l, nP2);

g o0 oe

oe

Save imagel (j) number to allPairs structure

allPairs(j).imagel = j;

% Save image2 (j+1) number to allPairs structure

allPairs(j) .image2 = j+1;

NOTE: The following two lines of code only work if running the code

o0

from Box. The '29' will need to be different if the code is moved to
a different folder.

Save folder and file name of imagel (j) to allPairs structure
allPairs(j).filel = fullfile(path(29:end), file{j});

% Save folder and file name of image2 (j+1) to allPairs structure
allPairs(j).file2 = fullfile(path(29:end), file{j+1});

% Save number of particles in imagel (j) to allPairs structure
allPairs(j) .nPartsl = nPl;

% Save number of particles in image2 (j+1) to allPairs structure
allPairs(j) .nParts2 = nP2;

o oe oo

% Loop through all particles in image 1 (nP1)
for k = 1:nP1
% Determine size of bounding box of particle k in imagel
boxsz = [boxesl (k,4) boxesl(k,3)];
% Grab centroid coordinates of particle k in imagel
cntrdl = centroidsl (k,:);
% Determine the 'x,y' (column, row) coordinates for the sides of the box
% bounding particle k in imagel (image J)
% Top row (y) - centroid position minus half the box height rounded
% towards minus infinity (floor)
topl = floor(cntrdl (2)-ceil (boxsz (1)/2)); % y increases from top to bottom
% Bottom row (y) - centroid position plus half the box height
% rounded towards plus infinity (ceil)
bottoml = ceil (cntrdl (2)+ceil (boxsz(1l)/2)); % y increases from top to bottom
% Left column (x) - centroid position minus half the box width rounded
% towards minus infinity (floor)
leftl = floor (cntrdl(1)-ceil (boxsz(2)/2));
Right column (x) - centroid position plus half the box width rounded
towards plus infinity (ceil)
ightl = ceil (cntrdl (1)+ceil (boxsz (2)/2));
Verify that box is not touching imagel edges on any side
If top side smaller than first row (y = 1) OR

0 o

K

If bottom side is larger than image number of rows (y = rows) OR
If left side is smaller than first column (x = 1) OR
If right side is larger than image number of columns (y
if topl < 1 || bottoml > rows || leftl < 1 || rightl > cols
% If true make subimgl equal to nans (Not a number NaN)
subimgl = uint8 (nan(bottoml-topl+l, rightl-leftl+l));
else

9 a0 90 o0 oe

cols)

If no side of bounding box near image edges
Extract sub image from imagel using the top-bottom,

o oo

o

left-right coordinates.
subimgl = imgl (topl:bottoml, leftl:rightl);

1)1

$2)1;

1)1

12)1;

end

Following lines of code for plotting purposes only (they slow down
the code and might be ignored by setting intRes to a value different than one
when user knows what they are doing and trusts the code).
If user wants to display intermediate results (intRes = 1)
if intRes d
% Open new figure window - Figure 3
figure (3)
Clear figure (uselss in first iteration but good to have for

9 e 90 oe

o0 oe

following iterations)

1f

Two rows, one column, go to first row

subplot (2,1,1)

Show subimgl (small image containing particle extracted from

*® a

oo oo

imagel or black box = NaN if it was touching the edge of the original image)
imshow (subimgl) , hold on
% Last line related to intermediate results plots that may be left out
end
% Loop through all particles in image2 (all candidates)
for m = 1:nP2
% Grab centroid paticles of particle m in image 2
cntrd2 = centroids2 (m,:);
% Determine the 'x,y' (column, row) coordinates for the sides of the box
% bounding particle m in image2 (image j+1)
% Top row (y) — centroid position minus half the box height rounded
% towards minus infinity (floor)
top2 = floor (cntrd2 (2)-ceil (boxsz(1l)/2)); ¢ y increases from top to bottom
% Bottom row (y) - centroid position plus half the box height
% rounded towards plus infinity (ceil)
bottom2 = ceil (cntrd2 (2)+ceil (boxsz (1l)/2)); % y increases from top to bottom
Left column (x) - centroid position minus half the box width rounded

o oo

towards minus infinity (floor)
left2 = floor (cntrd2(1)-ceil (boxsz (2)/2));
Right column (x) - centroid position plus half the box width rounded

o o

towards plus infinity (ceil)

ight2 = ceil(cntrd2 (1) +ceil (boxsz (2)/2));

Verify that box is not touching image2 edges on any side

If top side smaller than first row (y = 1) OR

If bottom side is larger than image number of rows (y = rows) OR

R

o0 o0 oo de oo

If left side is smaller than first column (x = 1) OR
If right side is larger than image number of columns (y = cols)
if top2 < 1 || bottom2 > rows || left2 < 1 || right2 > cols

% If true make subimg2 equal to nans (Not a number NaN)
subimg2 = uint8 (nan(bottom2-top2+1, right2-left2+1));
else
If no side of bounding box near image edges
Extract sub image from image2 using the top-bottom,
left-right coordinates.
subimg2 = img2 (top2:bottom2, left2:right2);

o0 oo oo

end

Following lines of code for plotting purposes only (they slow down
the code and might be ignored by setting intRes to a value different than one
when user knows what they are doing and trusts the code) .
If user wants to display intermediate results (intRes = 1)
if intRes 1
% Activate Figure 3 window

o0 o° oo oo

figure (3)
% Two rows, one column, go to second row
subplot (2,1,2)
% Show subimg2 (small image containing particle extracted from
% image2 or black box = NaN if it was touching the edge of the original image)
imshow (subimg2), hold on
% Pause code execution for 0.1 seconds to allow user to see
% what the code is doing.
pause (0.1)
% Last line related to intermediate results plots that may be left out
end
% Verify that subimgl and subimg2 have the same dimensions
if (size (subimgl) == size (subimg2))
% If true (subimgl and subimg2 have same size
% Compute cross correlation between both subimages
R(k,m) = corr2(subimgl, subimg2);
Filter right away those particle pairs for which the
cross correlation coefficient is les sthan minR
(threshold to accept a pair of particles as a successful
match)
If R < minR
if (R(k,m)<minR)
% Assign a NaN if R value suggests that particles are different.
R(k,m) = NaN;
end

e o o oo oo

else
% If false (i.e. subimgl and subimg2 have different sizes
% Assign NaN to the cross correlation value
R(k,m) = NaN;
end
% Clear variables before next iteration
clear cntrd2 top2 bottom2 left2 right2 subimg2
end
$ Clear variables before next iteration
clear boxsz cntrdl topl bottoml leftl rightl subimgl
end

% Save all cross correlation results (matrix with nPl rows and nP2
% columns) to the allPairs structure.

allPairs(j).ccR = R;
% Clear variables before next iteration

clear R imgl img2 centroidsl centroids2 boxesl boxes2 bxl bx2 byl by2
end
end
clear j k m

save ('results.m', 'allStats', 'allPairs')

Displacements and Areas

Compute displacements of succesfully matched particles and save their
relevant details as results (mpTracks)

Create matrix to save all information related to particle tracking

(mpTracks). It contains the following columns:

cxl - stores the 'x' coordinate (column) of a particle in image 1

cyl - stores the 'y' coordinate (row) of a particle in image 1

cx2 - stores the 'x' coordinate (column) of the same particle in image 2

cy2 - stores the 'y' coordinate (row) of the same particle in image 2
dy - displacement in 'y' (associated to fall velocity)
al - area of particle in image 1

0 P AP 90 GO P o0 of a°

a2 - area of same particle in image 2

mpTracks = nan(1,7);

% Initialize results variable

results = [NaN NaN];

% Loop through all image pairs

for j = l:nImages-1

Go through all pairs and compute displacements between frames.

o0

Find indices for matched micro plastic particles (those locations
where ccR is not NaN)

mMP = ~isnan(allPairs(j).ccR);

% Get corresponding indices (positions within the matrix)

idx = find (mMP>0) ;

if ~isempty (idx)

% Particle(s) on image 1 and particle(s) on image 2

o0 oo

[piml, pim2] = ind2sub(size(allPairs(j).ccR), idx);
% Grab centroids of particles detected in imagel

centroidsl = cat(l, allStats(j).mpProps.Centroid);

% Grab centroids of particles detected in image2
centroids2 = cat(l, allStats(j+1) .mpProps.Centroid);

% Grab 'x' coordinate of centroids (for particle tracking)
cxl = centroidsl (piml,1);

cx2 = centroids2 (pim2,1);

% Grab 'y' coordinate of centroids to compute displacements

cyl = centroidsl (piml,2);

cy2 = centroids2 (pim2,2);

% Compute vertical displacements between matched particles (only in
% 'y' not total displacements) .

dy = cy2 - cyl;

% Grab area of particles detected in imagel
areasl = cat(l, allStats(j).mpProps.Area);

% Grab area of particles detected in image2
areas2 = cat(l, allStats(j+1).mpProps.Area);

al = areasl (piml);
a2 = areas2 (pim2);
% Concatenate intermediate results
intResult = [cxl cyl cx2 cy2 dy al a2];
% Get rid of particles with fall velocities smaller or equal to
% zero (not moving or moving upwards) .
intResult (intResult(:,5) <= 0, :) = [];
% Concatenate results matrix
if ~isempty (intResult)
mpTracks = [mpTracks; intResult];
end
end
% clear variables before next iteration
clear mMP idx piml pim2 centroidsl centroids2 cyl cy2 dy areasl areas2 mpAreas intRes
end
% Remove first row containing NaNs
mpTracks (1, :) = [];

Tracking

Go through all matched particles and identify if same particle is matched
in more than one image pair (i.e. track it).

% Obtain total number of particle matches
mpTotal = size (mpTracks, 1);

% Add column to mpTracks to include particle id
mpTracks = [zeros (mpTotal,l) mpTracks];

% Initialize particle counter

mpCounter = 1;

% Give row 1 a particle ID of 1
mpTracks (1,1) = 1;

The routine below has too many if-else statements and I am sure there is
a more elegant solution. It started as a simple if statement but through
debugging and having issues with certain image series it became messy.

% Loop through all particles to track centroids

for j=2:mpTotal

% Find the column that has a cxl == cx2 (same 'centroid 'x' coordinate in current and previous image) .
posx = find(mpTracks(j,2) == mpTracks(:,4));
% Find the row that has a cyl == cy2 (same 'centroid 'y' coordinate in current and previous image) .

if isempty (posx)
% Increase the counter by one
mpCounter = mpCounter + 1;
% Assign new particle ID
mpTracks (j,1) = mpCounter;
else
posy = find(mpTracks(j,3) == mpTracks(:,5));
¢ If no matches found or if the rows for x,y do not match
if isempty (posy)
% Increase the counter by one
mpCounter = mpCounter + 1;
% Assign new particle ID
mpTracks (j,1) = mpCounter;
% Else, if matches found
elseif posx ~= posy
% Increase the counter by one
mpCounter = mpCounter + 1;
% Assign new particle ID
mpTracks (j,1) = mpCounter;
elseif size(posx,1)>1
% Increase the counter by one
mpCounter = mpCounter + 1;
% Assign new particle ID
mpTracks (j,1) = mpCounter;
else
% Assign the same particle ID
mpTracks (j,1) = mpTracks (posy,1);
end
end

Independent Particle Results

Get median displacement and median area for particles identified in
multiple image pairs

% Max number of individual particles detected and matched

maxID = max (mpTracks(:,1));

Create a figure to plot trajectories
figure (4)
set (gca, 'ydir', 'reverse')

x1im ([0 cols]);
ylim ([0 rows]);
hold on

% Loop through all particle IDs
for j = l:maxID
% Find all rows in mpTracks corresponding to the same particle ID
id = find (mpTracks(:,1) J):
% Plot trajectory
plot (mpTracks (id, 2), mpTracks(id,3), 'o'")
% Add plot labels

xlabel ('Image column
ylabel ('Image row [pixels]')
% Create summary matrix including particle ID, median displacement and

[pixels] ")

% median particle area.

mpSummary (j,1) = j;
mpSummary (j,2) = median (mpTracks(id, 6));
mpSummary (j,3) = median (mpTracks(id, 7));
end
or
8]
200
o
400 o
E o
ﬁ .
a 600 - o
2 ool
% 800 o
g
= O
1000
1200 o
14DD L i i i i i i i i

.
0 200 400 600 800 1000 1200 1400 1600 1800
Image column [pixels]

Output

Write results to spreadhseet Newer versions of matlab prefer to use ‘writematrix' instead of 'xIswrite’ but my current version predates the change.

[outfile,outpath] = uiputfile('*.xlsx', 'Save Results', 'results.xlsx');
if outpath ~= 0
outfilename = fullfile (outpath,outfile);
xlswrite (outfilename, mpTracks);
xlswrite (outfilename, mpSummary, 2)
save (fullfile (outpath, outfile(l:end-5)), 'mpSummary', 'mpTracks', 'allStats', 'allPairs')

Detection Function

The function receives two strings:

path - folder in which the image is stored

file - name of the image and an integer

After reading the image and making it binary, the code determines the
properties of the particles in the image by using Matlab's regionprops
function.

function [stats] = rf_ DetectMPs (path, file)

$rf DetectMPs finds particles in a grayscale image

% Read greyscale image

img = imread(fullfile (path, file));

% Invert image (darker shades become lighter and viceversa)

invimg = 255-img;

% Convert image to black and white only

BW = imbinarize (invimg, 'adaptive', 'Sensitivity', 0.3);

$BW = imbinarize (
subplot(1,3,1),
subplot(1,3,2),

rimg, 'global');

show (img)

T

show (invimg)

subplot (1,3,3), imshow (BW)
% pause (0.1)
% Determine properties of particles in the image
stats = regionprops (BW, 'Area', 'BoundingBox', 'Centroid', 'EquivDiameter', 'MajorAxisLength', 'MinorAxisLength', 'Orientation');

Post-Detection Filtering

Filter results of detected particles in images Need to filter particles whose bounding box is near the edge of the image Filter based on particle size first then bounding box

areaThreshold - integer value used to filter out 'particles'
misidentified by the code. Any particle with an area (in pixel?)

o0 ae oe

smaller than areaThreshold will be removed.

Before returning the statistics (stats) of the particles, the code
filters the results to remove misidentified particles.

function [stats] = rf FilterDetMPs (stats, areaThreshold)

% Create an array function to apply to all entries in the stats structure

a0 g

fun = @(x) stats(x).Area < areaThreshold;

% Identify all stats entries that have an area smaller than
% areaThreshold

discard = arrayfun(fun, 1l:numel (stats));

% Discard stats entries with smaller areas (not particles)
stats (discard) = [];

end

Published with MATLAB® R2018a

