

5 Contents

6	1 The public good game	2
7	1.1 Standard version	2
8	1.2 Modified game with embezzlement by an intermediary agent	2
9	2 Tobit regressions	4
10	3 Public good contributions	4
11	4 Analysis of beliefs	6
12	4.1 Beliefs about embezzlement	6
13	4.2 Beliefs about others' contributions	7
14	5 Institutional quality and social trust across European regions	8
15	5.1 Measure of social trust from the European Social Survey	9
16	6 Summary indices of perceived and experienced corruption	11
17	7 Experimental instructions	15

¹⁸ **1 The public good game**

¹⁹ **1.1 Standard version**

²⁰ Denote a group of size $n = 3$ as G , its members as $i \in \{1, 2, 3\}$. The members of G
²¹ each have an endowment E any amount c of which they can contribute to a public good.
²² The public good give all group members a same return proportional to the total amount
²³ contributed. The individual payoffs π_i are therefore given by

$$\pi_i = E - c_i + \alpha \sum_{i \in G} c_i,$$

²⁴ where $\frac{1}{n} < \alpha < 1$ is the marginal per capita return on the public good. Provided *alpha*
²⁵ is bounded as illustrated, the public good ensures a conflict of interest between individual
²⁶ payoff maximisation and social welfare: Total group payoffs are maximised if for all i ,
²⁷ $c_i = E$ (notice that if all group members contribute 1 unit to the public good each of them
²⁸ gets back $3\alpha > 1$). Each individual is however better off by keeping their endowment,
²⁹ contributing nothing and reaping the benefits of other group members' contributions. The
³⁰ standard Nash equilibrium of the game is therefore that no group member contributes
³¹ anything to the public good, such that $c_i = 0$ and $\pi_i = E$ for all i .

³² **1.2 Modified game with embezzlement by an intermediary agent**

³³ Denote the sum of all players' contributions to the public good as

$$Y = \sum_{i \in G} c_i$$

The public administrator, denoted as k , is one of the three members of G , and is
mandated to collect the group's contributions to the public good and to redistribute them
according to the standard public good game rule. Crucially, we allow for the possibility for
 k to embezzle any fraction of the collected amount. We denote the amount redistributed as
 R , with $0 \leq R \leq Y$. If $R = Y$, the entire amount of contributions collected by the group is
redistributed, exactly as it would be if the procedure were automated. On the other hand,
if $R=0$, the whole amount is embezzled and nothing is redistributed. The payoffs of player

$i \neq k$ are then given by

$$\pi_i = E - c_i + \alpha R.$$

Similarly k 's payoffs are given by

$$\pi_k = E - c_k + \alpha R + Y - R.$$

³⁴ Clearly, k maximises her own payoff by setting $R = 0$, that is by embezzling the whole
³⁵ amount contributed by the group. This way the Nash equilibrium of zero contributions of
³⁶ the standard public good game is preserved.

37 2 Tobit regressions

38 Table 1 reports the results from Tobit regressions corresponding to and supporting the
39 OLS regressions presented in Table 1.

	Model 1	Model 2	Model 3	Model 4
Trust game: amount sent				
Condition One	-1.498* (0.903)	-1.609* (0.899)	-1.581* (0.898)	-1.627* (0.889)
Condition Fifty	-2.285** (0.966)	-2.292** (0.956)	-2.225** (0.961)	-1.914** (0.958)
Own contribution	0.266*** (0.070)	0.206** (0.079)	0.221*** (0.084)	0.213** (0.083)
Group contributions		0.072 (0.049)	0.050 (0.063)	0.053 (0.062)
Belief(c)			0.059 (0.104)	0.063 (0.104)
Belief(e)				2.946** (1.456)
Sender first	-0.356 (0.765)	-0.410 (0.758)	-0.373 (0.760)	-0.294 (0.752)
Constant	3.164** (1.469)	2.044 (1.642)	1.944 (1.648)	-0.113 (1.928)
Individual controls	✓	✓	✓	✓
Observations	174	174	174	174

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 1: Tobit regressions of amount sent in the trust phase of the experiment. The regressions control for the order in which the subject participated in the trust game as sender and receiver, age, gender, and profession. Belief(e) denotes normalised beliefs about the amount entered for redistribution by the administrator divided by the group's total contributions, Belief(c) denotes beliefs about the other group members' contributions.

40 3 Public good contributions

41 Table 2 displays OLS regressions of the amounts contributed to the public good by the
42 group members (administrators excluded) in the public good game phase of our experiment.

⁴³ As evident, contributions do not depend on our experimental conditions.

	Model 1	Model 2	Model 3
	Public good contributions		
<u>Condition Zero</u>			
Condition <i>One</i>	0.240 (1.072)	0.221 (1.073)	0.213 (1.072)
Condition <i>Fifty</i>	-0.833 (1.069)	-0.728 (1.054)	-0.679 (1.083)
Belief(e)		0.986 (1.594)	1.021 (1.581)
Belief(c)			0.046 (0.108)
Constant	3.300** (1.669)	2.654 (1.923)	2.291 (2.065)
Individual controls	✓	✓	✓
Observations	174	174	174
R-squared	0.083	0.084	0.086
Robust standard errors in parentheses			

*** p<0.01, ** p<0.05, * p<0.1

Table 2: OLS regressions of the amounts contributed by the group members in the public good game. The regressions control for age, gender, and profession. Belief(e) = normalised beliefs about the amount entered for redistribution by the administrator divided by the group's total contributions, Belief(c) = beliefs about the other group members' contributions. The regressions restrict the estimation sample to group members (non-administrators) only.

44 **4 Analysis of beliefs**

45 **4.1 Beliefs about embezzlement**

46 In this analysis, we show that our experimental conditions indeed generated the feeling that
47 the institutional environments have different capabilities of preventing corrupt behaviour
48 on behalf of the official. We measure these perceptions with the subjects' beliefs about the
49 amount of contributions collected by the group the administrators would redistribute to
50 the group.

51 Table 3 presents regressions of the group members' beliefs about the proportion of total
52 group contributions which would be redistributed.

	Model 1	Model 2	Model 3
	Beliefs about embezzlement		
	Amount entered for redistribution		
<u>Condition Zero</u>			
Condition <i>One</i>	0.019 (0.046)	0.021 (0.046)	0.022 (0.046)
Condition <i>Fifty</i>	-0.106** (0.052)	-0.107** (0.052)	-0.103* (0.053)
Group contributions		-0.001 (0.002)	-0.003 (0.003)
Own contribution			0.004 (0.004)
Constant	0.655*** (0.069)	0.676*** (0.084)	0.687*** (0.084)
Individual controls	✓	✓	✓
Observations	174	174	174
R-squared	0.094	0.095	0.101
Robust standard errors in parentheses			
*** p<0.01, ** p<0.05, * p<0.1			

Table 3: OLS regression of normalised beliefs about the amount redistributed by the administrators.

53 Beliefs drop significantly in condition *Fifty* compared to when embezzlement on behalf
54 of the administrator is prevented with certainty. However, beliefs in Condition *One* are
55 not statistically different from the baseline. These results confirm and even strengthen

56 our conclusion that indeed the quality of the institutional environment per se significantly
57 impacts trust (recall that a significant effect of Condition 1 on trust can be observed in
58 Table 1).

59 **4.2 Beliefs about others' contributions**

60 Table 4 reports the analysis of beliefs about the other group members' contributions to the
61 public good game. We detect no impact of the experimental conditions on these beliefs.

	Model 1	Model 2
	Beliefs about others' contributions	
<u>Condition Zero</u>		
Condition One	0.165 (0.861)	-0.285 (0.694)
Condition Fifty	-0.982 (0.860)	-0.944 (0.778)
Group contributions		0.279*** (0.031)
Constant	7.357*** (1.501)	2.276 (1.455)
Individual controls	✓	✓
Observations	174	174
R-squared	0.028	0.317

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 4: OLS regressions of beliefs about others' contributions.

62 **5 Institutional quality and social trust across European re-**
63 **gions**

64 We now investigate the relationship between institutional quality and social trust across
65 European NUTS2 regions using a broader index of institutional quality rather than our
66 narrow definition as embezzlement. The focus on Europe allows us to investigate the
67 variation in trust and institutional quality in a relatively homogenous group of countries,
68 and serves as a robustness check for the relationship found using global data.

69 We measure social trust using a question “On a 1-10 scale, with ‘1’ being ‘don’t trust at
70 all’, and ‘10’ being ‘complete trust’, how much do you personally trust other people in your
71 region?” from the 2017 European Quality of Government Index survey (Charron et al.,
72 2019). In order to measure institutional quality, we use a comprehensive European Quality
73 of Government Index (EQI) calculated for the European NUTS2 regions by (Charron et al.,
74 2019). We control for age, gender, net household income, education level, perceived state
75 of the economy, and indices of perceived and experienced corruption at the individual
76 level.¹ We also control for the level of crime (number of reported burglaries, homicides,
77 and robberies), total population size, per capita GDP, share of the population at risk of
78 poverty, adult unemployment rate, and net migration rate on the level of NUTS2 regions
79 (Eurostat Regional Database (European Commission, 2020), available through the EU
80 Regional Dataset (Charron et al., 2020)). We use the region-level variables for the latest
81 year available before 2017.

82 We perform multilevel mixed-effects linear regressions with random intercepts across
83 regions and countries.² Standard errors are clustered at country level. The results are
84 reported in Table 5. The correlation between social trust and the EQI score is positive,
85 large, and significant in all specifications.

¹Details about our indices of perceived and experienced corruption are in Appendix 6.

²Analogous random coefficient models yield the same results.

	Model 1	Model 2	Model 3	Model 4
	Social trust level			
EQI Score	0.493*** (0.096)	0.341*** (0.088)	0.273*** (0.055)	0.313*** (0.052)
Perceived state of econ.		-0.009*** (0.002)	-0.008*** (0.002)	-0.011** (0.004)
Perceived corruption		-0.454*** (0.040)	-0.438*** (0.041)	-0.441*** (0.046)
Experienced corruption		-0.143*** (0.020)	-0.132*** (0.029)	-0.086*** (0.028)
Nr. burglaries (x1000)			-0.011* (0.006)	-0.006 (0.010)
GDP p.c. (x10000)			0.091** (0.037)	0.102** (0.045)
Share pop. at poverty risk				-0.008 (0.007)
Constant	6.181*** (0.150)	6.328*** (0.138)	5.982*** (0.185)	6.207*** (0.215)
Individual controls	✓	✓	✓	✓
Additional regional controls			✓	✓
Observations	59,042	56,045	39,355	26,075
Number of groups				
Region	150	150	100	64
Country	16	16	13	10

Robust standard errors, clustered at country level, in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Linear regression with random intercepts at region and country level of social trust on the European Quality of Government Index. Individual controls include perceived state of the economy, and (omitted from the table) gender, age, education level, and net household income. Regional controls include indices of perceived and experienced corruption, number of reported burglaries, per capita GDP, the share of the population at risk of poverty and (omitted from the table) adult unemployment rate, the number of reported homicides and robberies, net migration rate, and population size.

86 5.1 Measure of social trust from the European Social Survey

87 We check for the robustness of our results in Table 5 by using a measure of social trust from
 88 the latest round (Round 9) of the European Social Survey (ESS) (European Social Survey

89 Round 9 Data, 2018). This way, despite a decrease in our sample size, we ensure that our
90 variable of interest and our main determinant come from two different data sources. We
91 correlate the social trust measure from the ESS with the EQI score from the European
92 Quality of Government Index Survey (Charron et al., 2019) and control for the same re-
93 gional indicators used in Table 5. Moreover, we control for similar individual-level controls
94 as in Table 5, only taken from the ESS dataset. We again estimate multilevel mixed-effects
95 linear regression models to allow the intercept of our models vary between countries and
96 regions, and cluster standard errors at the country level. The results reported in Table 6
97 confirm the findings from Table 5. The correlation between reported levels of social trust
98 and the European Quality of Government Index is positive, strong, and significant. As
99 earlier, we control for a number of individual (age, gender, net income, education, per-
100 ceived state of the economy, and overall feeling of safety) and regional (number of reported
101 burglaries, homicides, and robberies, per capita GDP, adult unemployment rate, net im-
102 migration rate, and population size) characteristics.³ We do not control for the share of
103 the population at risk of poverty because of lack of data.

³Individual feeling of safety replaces stated perception and experience of corruption, which are not elicited in the European Social Survey.

	Model 1	Model 2	Model 3
	Social trust		
EQI Score	0.724*** (0.120)	0.605*** (0.119)	0.977*** (0.286)
Perceived state of econ.		0.234*** (0.018)	0.238*** (0.022)
Safety feeling		0.434*** (0.089)	0.423*** (0.103)
Nr. burglaries (x1000)			-0.082** (0.034)
GDP p.c. (x10000)			0.144 (0.169)
Constant	3.685*** (0.343)	3.146*** (0.354)	1.815*** (0.452)
Additional individual controls	✓	✓	✓
Additional regional controls			✓
Observations	6,638	6,474	3,668
Number of groups			
Region	79	79	50
Country	6	6	5

Robust standard errors, clustered at country level, in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Multilevel mixed-effects linear regression of social trust levels (from European Social Survey) on the European Quality of Government Index (EQI) score. Individual controls omitted from the table include gender, age, education level, and net household income. Regional controls omitted from the table include adult unemployment rate, the number of reported homicides and robberies, net migration rate, and population size.

104 6 Summary indices of perceived and experienced corruption

105 We construct our index of individual corruption perception by performing a factor analysis
 106 on all available questions measuring perceptions of corrupt behaviour on behalf of public
 107 officials available in the European Quality of Government Index survey (Charron et al.,
 108 2019). We then retain individual predicted scores on the first component from the rotated
 109 varimax as a summary index of perceived corruption. As a result, the index consists
 110 of the following variables, all measured on a scale of agreement ranging from 1 (strong

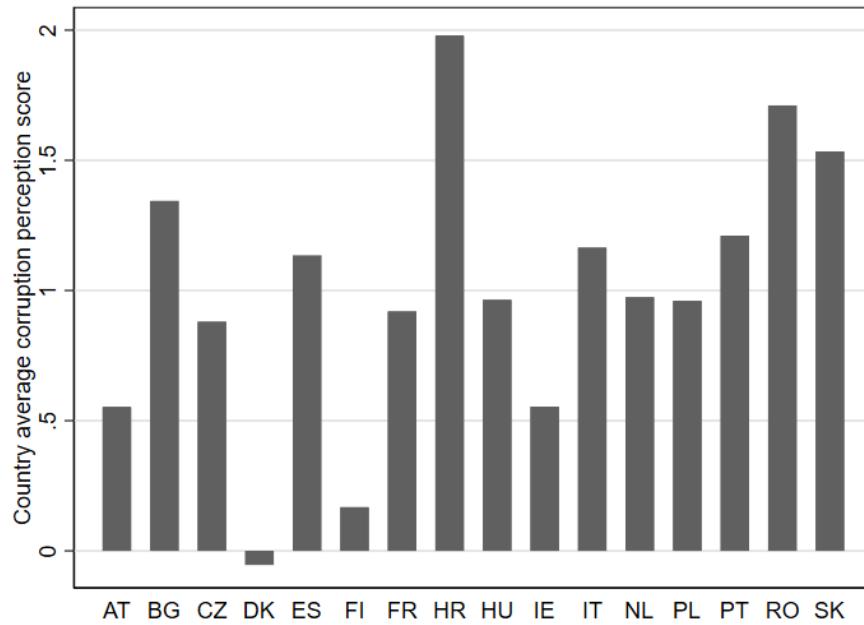
111 disagreement) to 10 (strong agreement):

112 1. Corruption is prevalent in my area's local public school system.

113 2. Corruption is prevalent in the public healthcare system in my area.

114 3. Corruption is prevalent in the police force in my area.

115 4. People in my area must use some form of corruption to just to get some basic public
116 services.


117 5. Corruption in my area is used to get access to special unfair privileges and wealth.

118 6. Corruption is NOT present in elections in my area.

119 Table 7 presents the details from the factor analysis. Figure 1 illustrates the country-
120 averaged scores of perceived corruption, re-centred around 1 (rather than zero) to ease
121 visualization.

Factor	Factor analysis		First component	
	Eigenvalue	Expl. variance (%)	Variable	Factor loading
Factor 1 (retained)	3.22093	0.5368	1	0.7969
Factor 2	0.95144	0.1586	2	0.8340
Factor 3	0.79538	0.1326	3	0.8194
Factor 4	0.38086	0.0635	4	0.7656
Factor 5	0.33888	0.0565	5	0.7498
Factor 6	0.31251	0.0521	6	-0.2654

Table 7: Varimax rotated factor analysis of the variables measuring perceptions of corrupt behaviour available in the European Quality of Government Index survey. Individual scores on the first component, explaining the largest proportion of variance in the underlying variables, are used as a summary index of perceived corruption. These scores are by construction normally distributed around zero. The table also reports the factor loadings of the single variables on the first retained component extracted from the factor analysis. The coding of variable number 6 is *inverted* relative to the other five, resulting in a negative loading.

Figure 1: Distribution of perceived corruption scores across our estimation sample (re-centred around 1 instead of 0 to ease visualization).

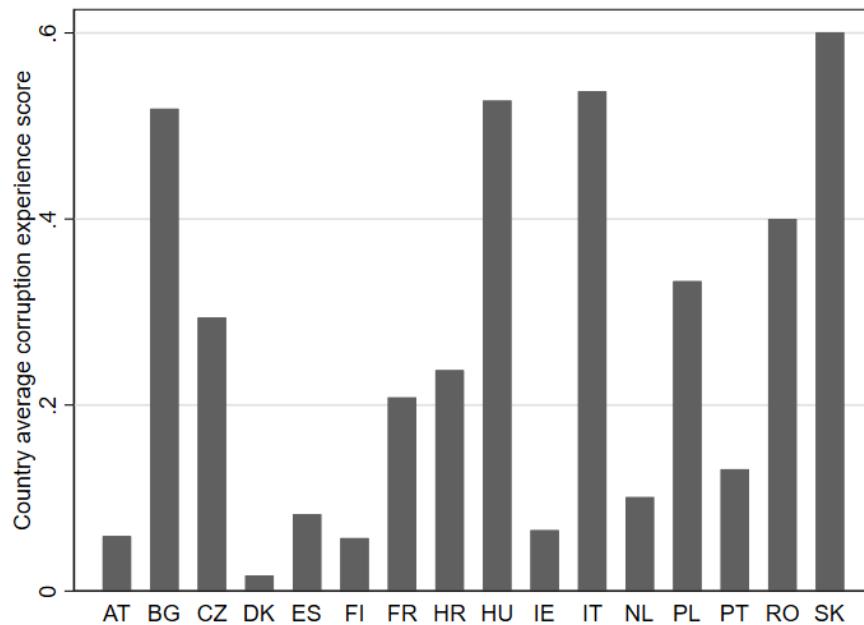
122 We construct the index of experienced corruption as the number of positive answers
 123 given by the respondent to all the questions asking whether (s)he has ever witnessed corrupt
 124 behaviour on behalf of public officials available in the European Quality of Government
 125 Index survey.

126 The questions are as follows:

127 *In the last 12 months, have you or anyone in your family been asked by a public official
 128 to give an informal gift or bribe in:*

129 1. Education services?
 130 2. Health or medical services?
 131 3. Police?
 132 4. Any other government-run agency?

133 *In the last 12 months, have you or anyone in your family given an informal gift or
 134 bribe in:*


135 1. Education services?

136 2. Health or medical services?

137 3. Police?

138 4. Any other government-run agency?

139 Figure 2 presents the distribution of our index of experienced corruption across our
140 estimation sample.

Figure 2: Distribution of perceived corruption scores across our estimation sample.

141 7 Experimental instructions

142 This Section reports the textual transcription of the instructions used for our experiment.

143 Before reading the instructions, the subjects received information about the procedures
144 followed by the laboratory, about the protection of their data and of their identity, and
145 the procedural flow of the session: admittance, experiment, private payout taking place
146 at the very end of the session. The participants were moreover asked, under eventual
147 penalty of being excluded from the experiment and from all its payoffs, not to communicate
148 during the session, and to refrain from usage of personal electronic equipment, including
149 mobile phones. Final payoffs were not computed until the very end, nor were the subjects
150 informed of any of their earnings during the sessions. We acknowledge that there was
151 a slight miscoding of the final payoff computations, which took place at the very end of
152 the session, and which was corrected as soon as we became aware of it. This caused the
153 final payoff of some participants to be slightly off. However, as the final payoffs were
154 not communicated until the experiment was over, it had no consequence for the subjects'
155 behaviours of interest.

156 The English translation of the German experimental instructions is reported in the
157 following pages.

This experiment consists of two parts, Part I and Part II.

At the end of the experiment, only one of the two parts will be randomly selected by the software and will be valid for payment.

Your earnings and your actions in Part I will not affect your earnings or actions in Part II.

Similarly, your earnings or actions in Part II will have no consequence on your earnings or actions in Part I.

In the following pages you will find instructions for Part I. The instructions for Part II will be distributed at the end of Part I.

Part I

You will be randomly assigned to a group of three people.

You and the other people in your group will receive an endowment of 20 Euros each.

Moreover, your group has a project. Your task is to decide how many Euros of your endowment you want to contribute to the project and how many you want to keep for yourself to place in your Purse. At the end, the amount of Euros in your Purse depend on how many Euros you keep for yourself, how many you contribute to the project, and on how many Euros are contributed by the others in your group.

The amount of Euros you will have in your Purse at the end of the session will be paid out to you in cash.

The software will randomly choose one person from your group to be the **Collector**. We will refer to the **other people** in the group as to the **Group Members**. The Collector's task is that of collecting the contributions of all Group Members to the group project, including him or herself, and transferring them to the distribution software.

Once everyone in the group has made their contribution to the group project, the total amount of Euros contributed by the whole group is transferred into the Purse of the Collector. The Collector will then manually enter the amount of Euros collected by the group to the distribution software. The amount they entered will then be re-transferred from their Purse to the distribution software and every person in the group will receive their earnings from the project.

Your earnings are computed as follows.

Your Purse, and that of the other members of your group, will consist of two parts:

- (1) The Euros which you have not contributed and kept for yourself are placed in your Purse,

The amount of Euros you can allocate between your private Purse and the project is equal to your endowment. You choose how much to contribute to the project by entering a number between 0 and the amount of Euros in your endowment. As soon as you have defined your contribution you will also have defined the amount of Euros you will keep for yourself. The points you keep for yourself will be automatically placed in your Purse:

Euros kept in your Purse = your Endowment – the Euros you contribute to the project

The second part of your Purse are:

- (2) The “**earnings from the project**”, for which:

Earnings from the project = 0.5 x amount re-transferred to the distribution software by the Collector.

The earnings from the project will be summed to the Euros you kept in your Purse. Therefore, at the end, the amount of Euros in your Purse will be given by:

Your Purse = Euros kept + 0.5 x (amount re-transferred to the distribution software by the Collector)

The earnings from the project of each person in the group are calculated in the same way. This means that everyone receives the same earnings from the project.

For example, suppose that the sum of all contributions to the project is 10 Euros. In this case everyone in the group earns $0.5 \times 10 = 5$ Euros **from the project**. If the sum of all contributions to the project is instead 30 Euros, then each in the group will earn $0.5 \times 30 = 15$ Euros **from the project**.

Each Euro you keep for yourself is directly put in your Purse. If instead you contributed that 1 Euro to the project, the total contribution to the project would then rise by one Euro, and your earnings from the project would rise by $0.5 \times 1 = 0.5$ Euros.

Similarly, the earnings from the project of each other person in the group would also rise by 0.5 Euros each, so that the total earnings of the group would rise by $0.5 \times 3 = 1.5$ Euros. Your contribution to the project therefore also raises the income of the others. Similarly, your earnings increase for each Euro contributed by the others to the group project.

For each Euro contributed by any other person in your group you earn $0.5 \times 1 = 0.5$ Euros.

Now imagine that everyone contributes 10 Euros, so that the total amount collected by the group is 30 Euros and everyone has 10 Euros in their Purses.

The 30 Euros collected by the group are transferred to the Collector's Purse and added to the Euros he or she had kept for herself. Hence, at this point, there are 40 Euros in the Collector's Purse (what he or she had kept plus what collected by the group). The Collector will then transfer the amount collected by the group from his or her Purse to the distribution software, which will then give everyone their earnings from the project: by entering 30, the software will distribute $0.5 \times 30 = 15$ Euros to each person in the group. Hence, since everyone had contributed 10 Euros and kept 10 for themselves, everyone earns $10 + 0.5 \times 30 = 25$ Euros.

At the end of the session, **the Euros you have in your Purse will be paid out to you at the end of the session.**

During the session, you will **not** receive information about what others in your group have done, nor about your earnings until **the very end of the session.**

-----ONLY DISPLAYED TO PARTICIPANTS IN THE 50% EMBEZ-ZLEMENT CONDITION-----

Notice that the software will perform **random checks** with a **50%** probability on the amount entered by the Collector in the distribution software. That is, in **50 cases out of 100**, the amount entered will not be checked. *[That is, in 50 cases out of 100, the amount entered will be checked.]* If the amount entered by the Collector turns out to be different from what it should be, he or she will be asked to correct the entry before proceeding further.

-----ONLY DISPLAYED TO PARTICIPANTS IN THE 1% EMBEZ-ZLEMENT CONDITION-----

Notice that the software will perform **random checks** with a **1%** probability on the amount entered by the Collector in the distribution software. That is, in **1 case out of 100**, the amount entered will not be checked. *[That is, in 99 cases out of 100, the amount entered will be checked.]* If the amount entered by the Collector turns out to be different from what it should be, he or she will be asked to correct the entry before proceeding further.

-----ONLY DISPLAYED TO PARTICIPANTS IN THE 0% EMBEZ-ZLEMENT CONDITION-----

Notice that the software will perform **random checks** with a **100%** probability on the amount entered by the Collector in the distribution software. That is, in **0 cases out of 100**, the amount entered will not be checked. *[That is, in 100 cases out of 100, the amount entered will be checked.]* If the amount entered by the Collector turns out to be different from what it should be, he or she will be asked to correct the entry before proceeding further.

Do you have any questions? (If so, please, raise your hand)

Before starting the session, please take a few minutes to answer some control questions. These are only meant for you to get familiar with the task and gauge your understanding, and will not affect your earnings.

Control questions

Please answer the following control questions. They will help you to gain an understanding of the calculation of your final Purse, which depends on your decision about how you distribute your 20 Euros and with the decision of the others in your group. Please answer all the questions and write down your calculations. The questions will be solved publicly in 10 minutes.

1. Everyone in your group has an endowment of 20 Euros. Assume that no one, including you, contributes anything to the project.

What will your final Purse be? ____20_____

What will the final Purse of the others be? ____20_____

2. Everyone in your group has an endowment of 20 Euros. Assume that everyone, including you, contributes all of their endowment to the project.

What will your final Purse be? ____30_____

What will the final Purse of the others be? ____30_____

3. Everyone in your group has an endowment of 20 Euros. The other 2 members contribute a total of 30 Euros to the project.

a) What will your final Purse be, if you – in addition to the 30 Euros – contribute 0 Euros to the project? ____35_____

b) What will your final Purse be, if you – in addition to the 30 Euros – contribute 8 Euros to the project? ____31_____

c) What will your final Purse be, if you – in addition to the 30 Euros – contribute 14 Euros to the project? ____28_____

4. Everyone in your group has an endowment of 20 Euros. You contribute 8 Euros to the project.

a. What will your final Purse be if the other group members – in addition to your 8 Euros -contribute another 6 Euros in total to the project? ____19_____

b. What will your final Purse be if the other group members – in addition to your 8 Euros – contribute another 12 Euros in total to the project? ____22_____

c. What will your final Purse be if the other group members – in addition to your 8 Euros – contribute another 22 Euros to the project? _____ 27 _____

Part II

You will now be paired with another participant from this session. Each of you will receive 6 Euros.

Your earnings in Part II will depend on your choice and on the choice of the other. One of you will be randomly selected to be the “sender” and the other to be the “receiver”.

A pair of choices.

The **sender** will decide how much, if anything, of the 6 Euros to send to the receiver.

We will multiply the amount sent by a factor of 2. This way, if the sender sends 1 Euro, the receiver will receive 2 Euros. If the sender sends 6 Euros, the receiver will receive 12 Euros.

The **receiver** can then decide how much, if anything, of the amount he or she has (the 6 Euros plus the amount received) to send back to the sender.

After these two choices have been made, you will be re-matched with another participant, you will be assigned the role you were not assigned the first time, and will repeat the choices. Hence if you were assigned the role of “Sender” the first time you will be assigned that of “Receiver”, and vice versa.

Hence, you will participate in the pair of choices twice, once as a sender and once as a receiver in random order.

Attention: only one of the two pairs of choices will be randomly selected by the software and be valid for payment in Part II. This can be either your choice as a sender or that as a receiver, depending on which one is selected.

Do you have any questions? (If so, please, raise your hand)

163 References

164 Charron, N., Dahlberg, S., Holmberg, S., Rothstein, B., Sundström, A., Alvarado Pachon,
165 N., and Mert Dalli, C. (2020). The quality of government EU regional dataset, version
166 nov20.

167 Charron, N., Lapuente, V., and Annoni, P. (2019). Measuring quality of government in eu
168 regions across space and time. *Papers in Regional Science*, 98(5):1925–1953.

169 European Commission (2020). Eurostat regional data.

170 European Social Survey Round 9 Data (2018). Data file edition 2.0. NSD - Norwegian
171 Centre for Research Data, Norway – Data Archive and distributor of ESS data for ESS
172 ERIC.