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Supplem entary  Fig ure 1. Th erm al s tab ility  analy sis. (a) 6i]e exclusion chromatograph\ profiles of the wildt\pe (:T) 
and c\s teine- l ess (C L ) H n 6pns in /M1* micelles and nanodiscs (1D), and (b) their circular dichroism spectra in 
micelles along with a spin-labeled DEER mutant (6��R�-6���R�). (c) Thermal s tabilit\ of the protonation-mimetic 
mutants in /M1* micelles and (d) in lipid nanodiscs, compared with the &/ protein. (e) Thermal s tabilit\ of the 
spin-labeled DEER mutants on the intracellular and (f) extracellular side in /M1* micelles compared with &/ protein. 
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Supplementary Figure 2. Cell growth-based drug resis tance assays. (a) The relative expression of WT, 
CL, and the protonation mimetic mutants of HnSpns in the cell growth assays was visualized by SDS-PAGE 
and s taining with InVision His tag s tain, confirming similar levels of expression for each cons truct. Purified 
HnSpns used as a s tandard is shown for comparison. (b) Cell growth for the WT and its variants relative to the 
vector at 37 °C, in the presence of different concentrations of rifampicin, capreomycin and ethidium bromide. 
Each data point was performed in triplicate, and the experiments were repeated. Absorbances at 600 nm in 
the presence of drugs were divided by the 0 µg/mL drug well. The s tandard deviation is shown for each data 
point. The p values were determined by an unpaired t tes t.
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Supplementary Figure 3. DEER dis tance 
measurements on the intracellular side. (a) Spin 
label pairs are depicted on the intracellular side of the 
IF crys tal s tructure. (b) Raw DEER decays and fits 
(left) are presented for the experimentally determined 
dis tributions P(r) in lipid nanodiscs (middle), 
compared to dis tance dis tributions in LMNG micelles 
(right), with predicted dis tributions based on the IF 
crys tal s tructure (shaded gray).
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Supplementary Figure 4. DEER dis tance 
measurements on the periplasmic side. (a) Spin 
label pairs are depicted on the periplasmic side of the 
IF crys tal s tructure. (b) Raw DEER decays and fits 
(left) are presented for the experimentally determined 
dis tributions P(r) in lipid nanodiscs (middle), 
compared to dis tance dis tributions in LMNG micelles 
(right), with predicted dis tributions based on the IF 
crys tal s tructure (shaded gray).
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Supplementary Figure 5. S1P binding to HnSpns in lipid nanodiscs does not induce 
major conformational changes but rather a slight shift to shorter dis tances. The 
distance dis tributions P(r) in lipid nanodiscs (pH 7.5) are shown in the apo s tate (black) 
and with S1P (green). 
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Supplem entary  Fig ure 6. Molecular dy nam ics sim ulations of  IF HnSpns in lipid m em b ranes. (a-d) Diႇerent 
permutations of protonation s tates of $sp4� and *lu��� and their interactions with two nearb\ basic residues (four diႇerent 
s\s tems in three independent copies). (e) Double protonation of these acidic residues s tabili]es a dis tinct conformation in 
which the side chain of $rg��� continuousl\ interacts with the backbone ox\gen of $rg4� but onl\ transientl\ with $sp4�. 
Molecular snapshots (bottom) are captured from the las t frame of each traMector\ of the firs t replica. $cidic and basic residues 
are shown in red and blue, respectiYel\, and the proton is represented with a \ellow sphere.
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Supplementary Figure 7. Effect of protonation-mimetic mutation of acidic residues 
on conformational equilibrium on the intracellular side in lipid nanodiscs and 
detergent micelles. The single (E129Q, D41N, D142N) or double (D41N/E129Q) 
mutations were combined with the double-cys teine mutations. DEER experiments in the 
presence of these mutations support the results of the MD simulations and reveal that 
Asp41 protonation has the opposite effect from that of Glu129 on the conformational 
changes on the intracellular side.
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Supplementary Figure 8. Effect of protonation-mimetic mutation of acidic 
residues on conformational equilibrium on the periplasmic side. The single 
(E129Q, D41N, D142N) or double (D41N/E129Q) mutations were combined with the 
double-cys teine mutations. DEER experiments in the presence of these mutations 
reveal that the periplasmic side remains mos tly invariant in response to these mutations.
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Supplementary Figure 9. Effect of protonation-mimetic mutation of the 
intracellular protonation mas ter switch glutamate 129 (E129Q) on conformational 
equilibrium on the intracellular side. The E129Q mutation was combined with the 
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Supplementary Figure 11. Intracellular and periplasmic sides of HnSpns sense its protonation s tate 
differently. (a) Dis tance dis tributions of intracellular (S25-S386) and (b) periplasmic (S57-K427) pairs were 
obtained at different pH values in lipid nanodiscs with and without protonation-mimetic mutations of acidic 
residues. The variation in population of rising or decreasing dis tance peaks as a function of pH was used to 
es timate the pK value for conformational changes in HnSpns. The D41N-E129Q double mutation abrogates 
conformational changes on the intracellular side with periplasmic side mainly unaffected, demons trating the 
decoupling of transmembrane protonation-dependent conformational changes.
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Supplementary Figure 12. Effect of environment (lipid nanodiscs vs. micelles) on sensing the 
protonation s tate of HnSpns. (a) Dis tance dis tributions of intracellular (S25-S386) and (b) 
periplasmic (S57-L111) pairs were obtained at different pH values in lipid nanodiscs and LMNG 
micelles. Similar pK values were obtained in LMNG micelles and lipid nanodiscs.
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S25-S386 (TM1-TM10/11) intracellular pair. (b) The D41N and E129Q mutations on the 
same cys teine pair shift the equilibrium in opposite directions towards basic and acidic pH 
s tates, respectively.
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Supplementary Figure 15. DEER-guided refinement of IF HnSpns s tructure in 
lipid membranes. Comparison of the dis tance dis tributions from the refined s tructure 
(shaded red) to the experimental pH 9 DEER dis tance his tograms in nanodiscs 
(dashed black lines), the relaxed unrefined template (orange lines), and the predicted 
dis tributions on the crys tal s tructure (purple lines). The refined model matches the 
experimental dis tance populations. 
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Supplementary Figure 16. Refinement of the O s tate of HnSpns in lipid membrane. Comparison of the 
dis tance dis tributions from the refined model (shaded red) to the experimental pH 4 DEER dis tance 
histograms in nanodiscs (dashed black lines), and the unrefined MD-generated O conformation without 
imposing the harmonic res  traints on the probes (orange lines). The refined model matches the experimental 
dis tance populations.



 

 

Supplementary Table 1. Melting temperatures (Tm) of spin-labeled 
DEER and protonation-mimetic mutants in LMNG micelles and lipid 
nanodiscs. 
 Tm (°C) ± Fitting error 

Mutant LMNG ND 
CL 58.1±0.1 58.3±0.1 

CL-E129Q 57.7±0.1 57.3±0.1 
CL-D142N 60.0±0.2 72.8±0.4 
CL-D41N 62.2±0.2 58.8±0.2 

CL-D41N-E129Q 64.2±0.1 71.3±0.2 
M84C-S386C 54.8±0.4 56.6±0.5 
M84C-Y143C 58.8±0.1 57.5±0.2 
S25C-S386C 55.6±0.1 54.3±0.1 
S25C-S264C 58.0±0.2 64.1±0.9 
S148C-F324C 58.4±0.3 58.7±0.5 
Y143C-S264C 58.4±0.1 71.3±0.3 
Y143C-S386C 54.7±0.3 61.8±0.2 
S57C-K427C 55.7±0.1 54.8±0.2 
S57C-L111C 58.0±0.2 58.1±0.1 

L111C-M288C 54.7±0.2 56.1±0.1 
S114C-S355C 61.2±0.3 54.9±0.1 
F93C-S148C 59.2±0.1 72.1±0.5 
S25C-Y143C 58.4±0.1 58.6±0.2 
M84C-S236C 58.0±0.1 61.8±0.2 
S25C-F324C 58.5±0.1  
M84C-A247C 57.1±0.1 59.8±0.2 
F93C-I331C 57.5±0.1 67.7±0.3 
F93C-S386C 56.3±0.1 77.3±0.7 
S25C-M84C 56.5±0.1  

F324C-S386C  63.8±0.1 
S57C-A175C 61.5±0.3 59.9±0.2 
S114C-A443C 60.7±0.5 70.6±0.7 
L111C-S355C 56.2±0.1 64.6±0.2 
A175C-S294C 58.9±0.1 58.8±0.7 
M288C-T353C 53.9±0.3 62.9±0.3 
A173C-M288C 55.5±0.1  
L111C-K427C  79.0±1.0 
L111C-S188C  60.2±0.2 

 

 

 

 

 

 



 

 

 

 

 

 

Supplementary Table 2. p values determined from a two-tailed independent t-test comparing the drug 
resistance of HnSpns WT and variants with pET19b vector (nvector = 4 for capreomycin, 5 and 10 µg/mL 
rifampicin, nvector = 3 for 17.5 µg/mL rifampicin, ethidium bromide). 

Capreomycin 
 2 hours 4 hours 

Concentration 
(µg/mL) 

WT 
n = 6 
df = 8 

CL 
n = 3 
df = 5 

CL-
D41N 
n = 3 
df = 5 

CL-
E129Q 
n = 3 
df = 5 

CL-
D142

N 
n = 3 
df = 5 

CL-
D41N-
E129Q 
n = 3 
df = 5 

WT 
n = 6 
df = 8 

CL 
n = 3 
df = 5 

CL-
D41N 
n = 3 
df = 5 

CL-
E129Q 
n = 3 
df = 5 

CL-
D142N 
n = 3 
df = 5 

CL-
D41N-
E129Q 
n = 3 
df = 5 

35 <0.001 
*** 

0.016 
* 

0.004 
** 

0.007 
** 

0.005 
** 

0.006 
** 

<0.001 
*** 

0.017 
* 

0.003 
** 

0.003 
** 

0.002 
** 

0.001 
*** 

52.5 <0.001 
*** 

0.037 
* 

0.009 
** 

0.016 
* 

0.006 
** 

0.021 
* 

0.037 
* 

0.024 
* 

0.010 
** 

0.006 
** 

0.084 
ns 

0.014 
* 

Rifampicin 
 2 hours 4 hours 

Concentration 
(µg/mL) 

WT 
n = 6 
df = 8 

CL 
n = 3 
df = 5 

CL-
D41N 
n = 3 
df = 5 

CL-
E129Q 
n = 3 
df = 5 

CL-
D142

N 
n = 3 
df = 5 

CL-
D41N-
E129Q 
n = 3 
df = 5 

WT 
n = 6 
df = 8 

CL 
n = 3 
df = 5 

CL-
D41N 
n = 3 
df = 5 

CL-
E129Q 
n = 3 
df = 5 

CL-
D142N 
n = 3 

df = 5 

CL-
D41N-
E129Q 
n = 3 
df = 5 

5 0.349 
ns 

0.497 
ns 

0.411 
ns 

0.311 
ns 

0.286 
ns 

0.355 
ns 

0.011 
* 

0.035 
* 

0.009 
** 

0.310 
ns 

0.004 
** 

0.036 
* 

10 0.003 
** 

0.006 
** 

0.006 
** 

0.004 
** 

0.041 
* 

0.005 
** 

<0.001 
*** 

0.006 
** 

0.002 
** 

0.001 
*** 

0.004 
* 

<0.001 
* 

17.5‡ 0.011 
* 

0.002 
** - - - - 0.369 

ns 
0.043 

* - - - - 

Ethidium bromide 
 2 hours 4 hours 

Concentration 
(µg/mL) 

WT 
n = 6 
df = 7 

CL 
n = 4 
df = 5 

CL-
D41N 
n = 3 
df = 4 

CL-
E129Q 
n = 3 
df = 4 

CL-
D142

N 
n = 3 
df = 4 

CL-
D41N-
E129Q 
n = 3 
df = 4 

WT 
n = 6 
df = 7 

CL 
n = 4 
df = 5 

CL-
D41N 
n = 3 
df = 4 

CL-
E129Q 
n = 3 
df = 4 

CL-
D142N 
n = 3 
df = 4 

CL-
D41N-
E129Q 
n = 3 
df = 4 

35 0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

0.001 
*** 

<0.001 
*** 

52.5 <0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

70 <0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

<0.001 
*** 

* p value ≤ 0.05  
** p value ≤ 0.01 
*** p value ≤ 0.001 
ns: not significant 
n: number of technical replicates 
df: degrees of freedom 
‡ n = 3 and df = 3 
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Data Appendix 1. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 2. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 3. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 4. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 5. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 6. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 7. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 8. DEER data analysis for the periplasmic side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 9. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 10. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 11. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 12. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 13. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 14. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 15. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 

S25-Y143
(TM1-4)

(Nanodiscs)

20 30 40 50 60 70

P
(r

)

S25-Y143-E129Q
(TM1-4)
(LMNG)

D
EE

R
 in

te
ns

ity

S25-Y143-E129Q
(TM1-4)

(Nanodiscs)

S148-F324
(TM5-8)
(LMNG)

D
EE

R
 in

te
ns

ity
D

EE
R

 in
te

ns
ity

S148-F324
(TM5-8)

(Nanodiscs)

S148-F324-E129Q
(TM5-8)
(LMNG)

t [ µs]r (Å)

D
EE

R
 in

te
ns

ity
D

EE
R

 in
te

ns
ity

pH 4.0 
pH 7.5 
pH 9.0 

20 30 40 50 60 70
P

(r
)

20 30 40 50 60 70

P
(r

)

20 30 40 50 60 70

P
(r

)

20 30 40 50 60 70

P
(r

)

20 30 40 50 60 70

P
(r

)

0.0 0.5 1.0 1.5
0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5

0.90

0.95

1.00

0.0 0.5 1.0 1.5

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0

0.85

0.90

0.95

1.00



D
EE

R
 in

te
ns

ity

Intracellular

Data Appendix 16. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 17. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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Data Appendix 18. DEER data analysis for the intracellular side. For each mutant, from left to right, 
CW EPR, distance distributions, and the primary DEER traces along with the fits are shown. 
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