Supplemental Materials

The value of short term versus permanent carbon sequestration 

In this supplemental material, Section I describes the derivation of the equations used to calculate the climate value of short-term storage of carbon in the biosphere, as well as the economic derivation of ton-years.  A ton-year in this paper is defined as one ton of carbon (as CO2) residing in the atmosphere for one year.  

Section II illustrates how the derivation of economic ton-years is consistent with the social cost of carbon and thus is consistent with the traditional integrated assessment framework used widely in the literature. 

Section III provides a spreadsheet that illustrates these calculations in discrete time.


I.) The climate value of short-term storage of C in the biosphere.

In this section we show mathematically the derivation of ton-years and we illustrate why the existing ton-years concept is based entirely on an arbitrary choice of the ending point for analysis. We argue that the only rationale for a ton-years concept is an economic rationale that focuses on valuing the delay in emissions release.  When this delay is properly valued, we derive a straightforward closed form solution for economic ton-years.  We can then calculate the number of tons of carbon N that must be held from the atmosphere for τ years, which sets the value of the delayed emission equal to the value of a 1 ton withheld from the atmosphere permanently (or a 1 ton emission) beginning at time 0. 


Ia.) A pulse injection of C into the atmosphere in The Bern Simple Climate Model

The decay in the extra atmospheric burden of CO2 following a pulse emission of CO2 is represented in the Bern Model by an impulse response function, as shown in Equation E.S1 below (Joos et al, 2013).

      (E.S1)

Ib.) Ton-year definition

A ton-year is defined in this paper as one ton of carbon (as CO2) residing in the atmosphere for one year.  Based on the Bern model, we determine the number of ton-years resident in the atmosphere as the result of one ton of carbon released into the atmosphere by integrating the mass of a released pulse over a set period of time, T, measured from the time of release t=0.  This is the area under curve (A) in Figure 1 in the paper (reproduced here).  The calculation of ton-years can be defined over a finite interval T after the initial release as shown in Equation 1. For the 100-year interval, T=100, the value TYA is 53.07 ton-years:

ton-years =  				(E.S2) 

[image: ]
Figure S1: Decay profile over time (using equation 1) of a 1-ton impulse of CO2 into the atmosphere released at time=0 followed for 100 years. 

The ton-years concept adopted in the literature considers a short-term storage of 1 ton of carbon in trees for 1 year, followed by the release of that ton to the atmosphere (Moura-Costa and Wilson, 2000; Fearnside et al., 2000; and Korhonen et al., 2002). The authors ask how much less carbon is in the atmosphere if emissions are accounted for some finite, defined period of time.  Graphically, we show the effect of a delay over a 100-year period in Figure 2.  Area B in the figure is shown in equation (3)

ton-years =  				(E.S3) 

The benefit of the delay in carbon release is the difference between TYA and TYB: 

Ton-years changed = TYA – TYB = 

  		(E. S4)

Ton-years changed = 53.07 -  48.93 = 4.14
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Figure S2: Decay profile over time (using equation 1) of a 1-ton impulse of CO2 into the atmosphere released at time=0 (A) followed for 100 years and a 1-ton impulse of CO2 into the atmosphere released at time=10 (B) followed for 90 years up to year 100. 

Given the numbers presented, over the 100-year period starting at time 0, the "climate benefit" of the 10-year delay in emissions shown in Figure S2 is represented as 4.14 ton-years.

Ic.) The problem with using ton-years to evaluate the same flows of carbon starting at two different years. 

One critical problem with this approach is that the choice of the 100-year end date is purely arbitrary.  The use of 100 years is referenced to the discussion in the Global Warming Potentials literature, where the radiative forcing of various gases is compared over a standard 100-year period (or 50 year or 500 year periods). In those cases, the effects of two gasses on the atmosphere are compared for the exact same number of years. In this case, however, one emission is assessed for 100 years, and the other is assessed for 90 years.  This difference is purely arbitrary, based on the choice of 100 years for the analysis, meaning that the result, 4.14 ton-years, is also purely arbitrary.  For example, if one extends the analysis to 500 years, the difference in ton-years between 500 years for (A) and 490 years for (B) is 2.81.

A more appropriate approach is to compare the ton-years of streams A and B, both for T=100 years.  Then

Ton-years changed = 	 	(E. S5) 

Ton-years changed = 	 		(E. S6) 

Ton-years changed = 	 				(E. S7) 

In this case, when the two integrals are evaluated over the exact same number of years, 100, the difference is 0.  That is, if two different carbon flows that follow the Bern equation (S1) are evaluated for the same T=100 year period, their difference will be 0.  This outcome is the same whether the two carbon flows both start at t=0 and are evaluated until T=100, or whether one flow (TYA) starts at time t=0 and is evaluated for T=100 years and the other flow (TYB) starts at time t=10 and is evaluated for T=100 years, as shown in Figure S3. 
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Figure S3: Decay profile over time (using equation 1) of a 1-ton impulse of CO2 into the atmosphere released at time=0 (A) followed for 100 years and a 1-ton impulse of CO2 into the atmosphere released at time=10 (B) followed for 100 years to year 110. 

In fact, the only difference between the two carbon flows A and B in Figure S3 is the time that they start. The arbitrary ending point of T=100 could just as well be T=∞. Recall that as long as both are evaluated over the same T, the integrals under each line produce the same value.  However, because line B starts 10 years later than line A, there is economic value associated with keeping A out of the atmosphere for these 10 years. The question is what is the value of this delay?

Id.) The value of a delay in emissions

Our problem is to value a delay in emissions, which is the difference between areas A and B in Figure S3, albeit extending the terminal period to infinity. To construct an estimate of the value of the delay, or difference, it is necessary to define the rental rate for carbon, which is the value of holding 1 ton of carbon out of the atmosphere for 1 year (Sohngen and Mendelsohn, 2003). If the price of carbon in a market is PC(t), and the discount rate is r, the rental rate for carbon, X(t), is

X(t)  = PC(t) (1-e-r)								(E. S8)

In economics, a ton of carbon emitted to the atmosphere is valued like an asset. This means that the price of a ton of carbon emitted to the atmosphere is the present value of the rent on that ton:

PC(t)  = 								(E. S9)

With the carbon rental value, we can define the value of the stream A of carbon in the atmosphere in figure S3 as 

				(E.S11)

Our interest lies in valuing the delay in carbon release, for example, the difference in the value of area A and area B in Figure S3. The value of a delayed release of the carbon by a time  can be modeled by a switch function (the classic Heaviside function which is zero until time  and one thereafter) and a shift of the CO2 levels to begin decreasing at that time.

				(E.S13)

The difference in value between a release at the current time and the release at the delayed time is the value of the delay.

Value of the delay = 

	(E.S14)

Resolving the Heaviside function shifts the integral to the non-zero portion.

Value of the delay = 

		(E.S15)

A change of variables in the second integral moves the integral evaluation back to zero so that the integrals can be combined.

Value of the delay = 

		(E.S16)


In order to combine the integrals, we recognize that X(0) is constant, and it increases in value at a constant rate g. This assumption follows the economics literature where the social cost of carbon typically increases over time because the stock of carbon in the atmosphere is increasing and thus the damages from climate change are increasing over time (Nordhaus, 2017).  If the social cost of carbon is rising at a constant rate, g, over time, then 

PC(t) = PC(0) egt									(E.S17a)

and

X(t) = X(0) egt										(E.S17b)

Given this increase in carbon prices at constant rate "g" and the discount rate "r", then we can define λ=r-g, where λ can be defined as a net discount rate.   Using λ, we can rewrite equation (E.S16) as

Value of the delay = 

					(E.S18)

The factor  is a constant and can be pulled outside of the integral, such that the remaining integral is exactly the value of the original release.  This means that the value of the delay is the multiplicative factor in front of the integral:

Value of the delay =

					(E.S19)

For delays that may happen in the future, we can use the same ideas to realize the value of a delay between any two time periods.

	(E.S20)

We can imagine a scenario where an initial delay is succeeded by additional delays, creating a summation of the value of these delays added together.

				(E.S21)

Note that if the intervals are successive, the summations can be combined into a single term.  As a single term, if the initial time is zero and we extend the last time out to infinity, we get the value of the entire release since the exponential term tends toward zero.  This means that the calculated values of repeated delays in release exactly add up to the value of the entire release.  That is, the value becomes the value of a permanent delay or a permanent removal.

			(E.S22)



Ie.) Deriving economically efficient ton-years (Equation 4 in the paper)

Our objective is to determine the number of tons for which the emission of 1 ton is equal to the value of the delay of N tons for a period τ years. This can be written mathematically as

 			(E.S23)


which resolves to 

N = 										(E.S24)

This is the derivation of equation 4 in the paper. The number of economic ton-years then allows us to define (Nτ), the number of tons N that must be held out of the atmosphere for τ years to have the same impact on the atmosphere, as measured by the social cost of carbon, as 1 ton emitted from an energy source.

If.) The Discrete Model

Since most calculations are likely to be done in discrete time (on a yearly basis on a spreadsheet) rather than with integrals, it is useful to provide a parallel development for the discrete model.  We can begin with the same model but with a summation rather than an integral.  Since the summation and the integral give slightly different results, we produce an exact numerical correlation by adjusting the value of X(t) so that the two values match.

					(E.S25) 

Similar to the previous calculations, we use the Heaviside function to model the delay.

			(E.S26)

The resulting calculation of the value begins at the shifted time.

							(E.S27)

And a change of variables allows the delayed release and the immediate release to be subtracted.

						(E.S28)

With a similar assumption on the constant value of X(t) and the net discounting of the time preference, the time delay portion of the exponential is moved outside of the summation.

							(E.S29)
This final equation is then subtracted from the original value to give the value of the delayed release.

						(E.S30)

This equation is the equation used in the paper to determine the value of a delay in release.  It should be noted that if a true time horizon of 100 years is implemented, it is important that the 100 years be determined from the release date, not from the present date.

Also from this final equation is the notion that the value of the delay can be expressed as a fraction of the value of the undelayed emission.  That is, there is a ratio between the two releases of carbon and we can calculate the number of tons that must be released to be equivalent to the entire sum.

		(E.S31)

Solving this equation for N, we determine the number of single tons delayed for a time period  needed to equal the value of the full initial release. The equation for N is the same when derived from the discrete model as in the continuous model:

										(E.S32)

The reduced relationship depends on the assumption that the dynamics of the release of carbon in the present time is identical to the dynamics of the release of carbon a time period  later.  For short periods of time such as one year, and possibly as many as 5 years, this seems to be both a sound and practical assumption.  In addition to the relatively slow changes in the atmospheric dynamics, reviewing and updating the dynamics at a time scale smaller than a single year is impractical for policy implementation, and current data collection methods cannot support it.

II) Relationship to the Social Cost of Carbon

The value for N in E.S24 and E.S32 can also be derived directly from the social cost of carbon. The social cost of carbon is by definition the present value of the marginal damage caused by a 1 ton impulse of carbon in the atmosphere.  However, unlike an impulse that follows the Bern model pathway shown in Figure S1, the social cost of carbon is measured as the effect of an impulse along a reference pathway of carbon concentrations in the atmosphere. This approach recognizes that when a ton is emitted into the atmosphere, its damages do not decline over time as is implied by figure S1 and the emission value in equation E.S11, but they increase over time as additional tons are stored in the atmosphere and the stock of carbon rises. 

The number of tons that need to be stored for a short period of time, such as τ, to equilibrate the damage caused by a 1-ton emission today with the value of tons stored for a short period of time, is 

							(E.S33)

Where λ = r-g. 

Solving for N

N = 									(E.S34)

N =  = 				(E.S35)

By definition, the social cost of carbon is the present value of the annual rents on a ton of carbon released: 

SCC(0) =  = 							(E.S36)

Combining E.S36 with E.S35, 

N = 									(E.S37)

The result in equations E.S33 – E.S37 show that this approach is equivalent to the carbon rental approach derived in Sohngen and Mendelsohn (2003).  There, the authors derived the value of one ton of carbon stored in forests for one year as the rental value.  The rental value is derived directly from the social cost of carbon, which can be seen from equation E.S36 as X = λ*SCC. While we have shown this value from time 0, one can derive it from any time period such that the instantaneous rental rate is X(t)= λ*SCC(t). 

The result for N, the number of tons that must be held for τ years to equal the value of one ton of carbon from energy combustion emitted into the atmosphere, is a general result that is solely a function of the interest rate and the growth rate in the social cost of carbon. It will change over time as the rate of growth of the social cost of carbon changes, and as our choice of discount rate to use for the analysis changes. Changes in climate models used to determine the Bern model will have an important influence on the estimated rate of growth of the social cost of carbon in the future, meaning that the choice of λ will change over time. 


III.)  Spreadsheet values

The attached spreadsheet illustrates how to calculate N.  There are two worksheets. One worksheet is titled "SCC=20.50; constant; r=5%", and the second spreadsheet is titled "SCC=30.81; rising 1.7%; r=5%". The SCC are set in each case so that the rental value of carbon in the initial period is exactly $1 per ton CO2.  

Both worksheets show the same set of calculations and the same columns under two different assumptions about the increase in carbon prices.

In the worksheet "SCC=20.50; constant; r=5%", column 1 presents carbon under the Bern carbon model, presented in equation E.S.1  .  Column 2 presents the annual rental value of the carbon in the atmosphere discounted to year 0:

Column 2 value = 

The rental value grows at the rate of "g" each year, which is the same rate of growth for the social cost of carbon (from which the rental rate is determined).
The ton-years in equation E.S.2 are shown in cell C8 which, over 100 years, sums to 53.07.

The value of emissions, E.S.11, is summed in C9 and C111 over 100 and 1000 years respectively.  This is the present value of the value of the carbon emission over a given time horizon. Given the role of discounting, 1000 years is sufficient to approximate infinity, but avid readers can extend the column to many more rows if they would like to experiment with the time period. 

The rental value is calculated as 

X(t) = PC(t) – PC(t)/e-(r-g)

This value is shown for period 0 in cell C5.

Columns 3 and 4 then present the same set of data, except that the carbon emission to the atmosphere is shifted forward τ periods. Users can input the number of years they wish to consider for the delayed release of carbon. We start with τ=1. Because we are making the decision in year 0, all values are discounted back to year 0.  

N is calculated four different ways. First, it is calculated for a τ-year delay over a 100 year time period by dividing cell C9, the emission value from an initial emission, by the value of the delay, which is calculated in cell C10. 

Second, it is calculated similarly for a 1000 year time period in rows 11 and 12.  

Finally N is calculated to infinity directly using the formula for N derived in E.S.24 in cell F2.

Worksheet "SCC=30.81; rising 1.7%; r=5%" conducts the same analysis for the case where the social cost of carbon is rising at 1.7% per year.
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