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1 vVAE implementation
The vanilla variational autoencoder (vVAE) is a deep, symmetrical, and undercomplete autoencoder neural network
composed of a separate encoder qφ (Z|S) and decoder pθ (S|Z), which map input sequences S to regions of a low-
dimensional latent space Z and back.1 It is a probabilistic model, and in our implementation we assume sequences
will be distributed according to a unit normal distribution in latent space, p(Z) = N [0,1](Z), as demonstrated
in Ref. 1. Training of a VAE can be understood as maximization of (the logarithm of) the dataset likelihood
L = ∑S pθ (S) = ∑S

∫
pθ (S|Z)p(Z)dZ with the addition of a Kullback-Leibler regularization term DKL[qφ (Z|S), pθ (Z|S)],

where pθ (Z|S) is the posterior of the decoder, which allows use of the fitted encoder qφ (Z|S) to perform efficient
estimation of the likelihood and its gradient by Monte-Carlo sampling, for appropriate encoder models.

Our vVAE architecture is built on the same basic VAE architecture described in Ref. 2, which itself appears to be
built on the VAE implementation provided with the Keras library.3 It is composed of 3 symmetrical ELU-activated
layers in both the encoder and decoder, each layer with 250 dense (fully-connected) nodes. The encoder and
decoder are connected by a latent layer of l nodes, we use l = 7 in the main text. Our vVAE’s input layer accepts
one-hot encoded sequences, the output layer is sigmoid-activated, and its node output values can be interpreted as
a Bernoulli distribution of the same dimensions as a one-hot encoded sequence. The first layer of the encoder and
the middle layer of the decoder have dropout regularization applied with 30% dropout rate, and the middle layer of
the encoder uses batch normalization with a batch size of 200.2,4,5 In all inferences, we hold out 10% of the training
sequences as a validation dataset, and perform maximum likelihood optimization using the Keras Adam stochastic
gradient optimizer on the remaining 90%.6 After each training epoch we evaluate the loss function for the training
and validation data subsets separately. We have tested using early-stopping regularization to stop inference once
the validation loss has not decreased for three epochs in a row as in previous implementations, but this led to some
variability in the model depending on when the early stopping criterion was reached. To avoid this variability, and to
make different models more directly comparable, we instead fixed the number of epochs to 32 for all models, since
in the early stopping tests this led to near minimum training loss and validation loss, and did not lead to significant
overfitting as would be apparent from an increase in the validation loss.

Our model was implemented using Keras building on the previous implementations of Refs. 2,3, however with a
modification of the loss function relative to both of these, to remove a scaling factor of Lq on the reconstruction loss,
which is sometimes used to avoid issues with local minima as described further below. This prefactor leads to a non-
unit variance of the latent space distribution of the dataset sequences, violating our definition that the latent space
distribution should be normal with unit variance, p(Z) = N [0,1](Z). In the next section we show that after removing
the prefactor the latent space distribution is approximately a unit normal, which more closely follows the original VAE
theory developed in Ref. 1. Our implementation is available at https://github.com/ahaldane/MSA_VAE.

To generate a sequence from the model we generate a random sample in latent space from the latent distribution
N [0,1], pass this value to the decoder to obtain a Bernoulli distribution, from which we sample once. To evaluate
the log-probability of a sequence, we use importance sampling, averaging over 1000 samples from the latent
distribution qφ (Z|S) following from the relations7,8

pθ (S) =
∫

pθ (S|Z)p(Z)dZ =
∫

qφ (Z|S)
pθ (S|Z)p(Z)

qφ (Z|S)
dZ

= E
Z∼qφ (Z|S)

[
pθ (S|Z)p(Z)

qφ (Z|S)

]
≈ 1

N

N

∑
i

pθ (S|Zi)p(Zi)

qφ (Zi|S)

(1)

where, Zi are independent samples from qφ (Z|S) and N a large number of samples. Here qθ (Z|S) plays the role of a
sampling bias function, biasing samples to regions of latent space which are likely to have generated the sequence,
leading to an accurate Monte-Carlo estimate of pθ (S). The value pθ (S) can be converted to a unit-less statistical
energy as E(S) =− log pθ (S) for direct comparison with Mi3 and Indep statistical energies.
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Figure 1. Comparison of E(S) =− log pθ (S) with the ELBO estimate for the vVAE with l = 7 fit to 1M sequences, evaluated for 1000 sequences S from the
validation dataset, with N = 1000 samples for both the ELBO estimate and the E(S) estimate.

Other publications have used the Evidence Lower Bound (ELBO) estimate as an approximation of log pθ (S),9

and we have tested (see Fig. 1) that the ELBO and the log-probability are nearly identical, and N = 1000 samples is
sufficient for an accurate estimate. The fact that the ELBO and log-probability are nearly identical is a sign that our
encoder is well fit, as the difference between these values should equal the KL divergence DKL[qφ (Z|S), pθ (Z|S)]
between the “true" posterior of the decoder pθ (Z|S) and the approximate posterior qφ (Z|S), which should be 0 if the
encoder qφ (Z|S) has accurately modelled the posterior.1

2 VAE model validation and generalization
To validate our choice of latent space size of l = 7 used in the main text, we tried fitting vVAEs with different latent
space sizes from 2 to 10. In Fig. 2 we illustrate the latent space projections of the sequences in the training
dataset. According to our specification underlying the VAE theoretically, we expect the latent space distribution to
be a multidimensional normal distribution with mean 0 and unit variance. Indeed, as can be seen in the plot, and
measured numerically, we generally find the latent space distribution of the dataset has close to unit variance and is
approximately normal, although there is some non-normal structure in the distribution.

For latent spaces of l = 8 and l = 10 we observe that some latent dimensions appear to have "collapsed", in
particular z0 for l = 8, and z1 and z6 for l = 10. From repeated runs (not shown) we observe that the number of
collapsed dimensions varies somewhat depending on the random seed used to initialize the stochastic optimizer,
and also depends on the size of the training dataset as more dimensions collapse when fitting 1M sequences than
fitting 10K sequences (not shown). For these "collapsed" dimensions, we see that the projected variance of the
illustrated sequence in red in Fig. 2 is very close to 1.0, unlike in other dimensions where the projected variance is
much smaller. These behaviors are consistent with a well known phenomenon of "posterior collapse" discussed in
VAE literature.10 It has been suggested that VAE posterior collapse can occur due to local minima in the likelihood
function which are not global minima,10 but in some situations can be a sign that additional latent dimensions are
uninformative, and that fewer latent dimensions better represent the data.11 We find that choosing l = 7 gives the
best performing model which avoids posterior collapse. Interestingly, the number of “informative” latent variables, i.e.
those that do not undergo posterior collapse, turns out to coincide with the intrinsic dimension (ID) of the dataset
of training sequences, estimated from the set of pairwise distances using a completely independent approach.12

In brief, it has been shown that graph distances calculated on k-neighbor graphs can be used to approximate
geodesics and thus to generate the distribution of “intrinsic” distances. Close to the maximum, the latter depends
exclusively on the dimension of the distance distribution’s support. This observation is used to devise a family of
estimators for the ID. Using these tools, we estimated an ID of 7 or 8 for the synthetic dataset used in the main text.
These numbers are consistent with what was observed in terms of collapse of the posterior distribution: the ID is
seemingly related to the number of informative latent variables so that if the number of nodes in the embedding
layer is increased past this number, then posterior collapse occurs, indicating that the additional variables are not
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Figure 2. Plots of latent space distribution of the training dataset for vVAE models fit with different latent space sizes of 2, 4, 6, 8, and 10 (a,b,c,d,e respectively),
fit to 1M synthetic training sequences as in the synthetic test in the main text. For each latent space size we show, for each pair of latent variables, a 2d histogram
of the projected means of 10K training dataset sequences in latent space in blue. There is one subplot for l = 2, six subplots for l = 4, etc. Each plot ranges from
-4 to 4 on both axes. The latent distribution qφ (Z|S) for single random sequence from the training dataset is shown as a red shading in proportion to probability.
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Figure 3. Performance comparison of vVAEs for different l compared to DeepSequence VAEs and Mi3 using the r20 metric on 10K synthetic (a) and 1M synthetic
(b) training sequences.

Figure 4. vVAE performance for l = 7 for varying synthetic training dataset sizes. For each training dataset size, two inferences are run with different random
seeds, shown in solid and dashed lines for each training size.

needed to explain the data.
To compare the generative capacity of different GPSMs to determine how general our results are, we computed

our MSA statistics for other VAEs besides the l = 7 vVAE shown in the main text. In Fig. 3 we show the r20 scores
for different models when fit to either 10K or 1M synthetic sequences, as in the synthetic tests in the main text. We
include the Mi3 and Indep models, as well as vVAEs for different latent space sizes, and also models produced
using the DeepSequence VAE software which comes in two variations, the "MLE" and the "SVI" algorithms,9 for
which we use the default or example parameters. All the VAEs perform fairly similarly in this metric, including
the DeepSequence VAEs. For the smaller training dataset of 10K sequence the DeepSequence SVI algorithm
outperforms the other VAEs, suggesting it is less susceptible to out-of-sample error. These results suggest that
our results for the vVAE shown in the main text generalize to other VAEs, including the significantly more complex
DeepSequence VAE, and are not strongly dependent on implementation or number of latent variables l. The models
with l ∼ 7 perform among the best of the vVAE models for both the 10K and the 1M training datasets, though the
difference between the models is small, and this further justifies our choice of l = 7 in the main text.

3 Minimizing VAE out-of-sample error
The goal of the synthetic test with 1M training sequences in the main text is to eliminate out-of-sample error
(overfitting) by using an extremely large training dataset. How large must the training dataset be to mostly eliminate
out-of-sample error for the vVAE? In Fig. 4 we show tests for the l = 7 vVAE for increasing training dataset sizes,
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finding that after 500K sequences the improvement in performance becomes small. This justifies our choice of using
1M synthetic training sequences, as there is little additional improvement to be gained by fitting to 2M sequences at
the cost of increasingly prohibitive fitting time.

4 Using vVAE as the synthetic target distribution
In the main text, our synthetic GPSM tests are performed using a Potts model as the synthetic target distribution.
This means that the target distribution is constructed without higher-order interaction terms, and a Potts model is by
definition well specified to fit data generated from this target distribution. Here, we show GPSM performance when
the synthetic target distribution instead corresponds to a vVAE, which potentially generates data which cannot be fit
by a model with only pairwise interaction terms.

In this section we take the synthetic target distribution to be described by the vVAE fit in the main text from
10K natural sequences. As described in the main text, this model potentially generates patterns of higher-order
mutational covariation which cannot be fit by the Mi3 model. We then follow the same procedure as for our synthetic
1M test of the main text, but using this target distribution. We generate 1M sequences from the target vVAE
distribution which we use as training data for each GPSM, that is for Mi3, a vVAE, and an Indep model. We generate
evaluation MSAs from each inferred model and compare it to evaluation MSAs generated from the target distribution,
using our test statistics.

In Fig. 5 we show MSA test statistics for the models fit to the vVAE target. We find that the performance of Mi3
fit to this target performs at least as well as the vVAE model fit to the same target. As in the main text 1M synthetic
test, the correlation scores are estimated from 500K evaluation sequences from the target and each GPSM, the
r20 scores using 6M evaluation sequences, the Hamming distributions from 30K sequences, and the energies are
evaluated for 1K sequences using 1000 Monte Carlo samples. For the r20 test we measure the estimation limit due
to the finite size of the evaluation MSAs by computing r20 between two MSAs of size 6M generated from the target
distribution. There is a small difference between the estimation error limit and the Mi3 result, which may be due to
out-of-sample error due to the finite 1M training data, or due to specification error, and this difference is smaller than
the difference of the vVAE fit to the same target distribution (red). In sum, we interpret these tests to show that the
Mi3 model is able accurately fit the vVAE target distribution.

5 How higher-order covariation is represented by pairwise models
One of the questions we address in the main text is whether different GPSMs are wellmspecified to describe protein
sequence variation, especially in the case of covariation of many positions in the sequence at once. Of particular
interest is whether a model which explicitly includes only pairwise interactions, such as the Potts model, is sufficient
to model higher order epistasis, or whether GPSMs with more complex functional forms, such as the vVAE, are
necessary.

For clarity, we give a brief example describing how Potts models can predict many patterns of higher-order
covariation, meaning triplet and higher patterns of residue covariation, despite only modelling pairwise interactions.
We illustrate this using a toy model describing sequences of length L = 3 with two residue types A and B, with 23 = 8
possible sequences, and show different forms of higher-order covariation which a pairwise model can and cannot
fit. We refer to Refs 13–15 for detailed discussion of these issues and theoretical results suggesting why pairwise
models are often sufficient to model many datasets.

First, we show how such a Potts model generates triplet covariation. Consider a Potts model with parameters
given by J12

AA = J23
AA =−s for some interaction strength s and all other field and coupling parameters are 0. This directly

couples the character "A" between positions (1,2) and also positions (2,3). These interactions cause pairwise
covariation between the directly coupled residues, and in the limit of large s we find C12

AA =C23
AA = 0.08, or 8%, but

they also cause covariation between the indirectly coupled pair, as C13
AA = 0.04, or 4%. Furthermore, this Potts model

predicts three-body covariation, as can be seen by computing the three-body covariation terms found in cluster
expansions in statistical physics given by

C123
αβγ

= f 123
αβγ
− f 1

αC23
βγ
− f 2

β
C13

αγ − f 3
γ C12

αβ
− f 1

α f 2
β

f 3
γ (2)

and we find that C123
AAA = 0.024, or 2.4%, which is nonzero. This shows that a Potts model generates and can fit

higher-order covariation between sets of residues even though the interactions are only pairwise, as a result of
indirect covariation through chains and loops of pairwise interactions.
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Figure 5. Synthetic test of the performance of different GPSMs when the synthetic target distribution is specified by a vVAE. a Pairwise covariance correlation
scores, as in main text Figure 2a. b r20 scores, as in main text Figure 2d. c Hamming distance distributions, as in main text Figure 3a. d Statistical energy scores,
as in main text Figure 4 panels a, c, e.
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AAA
ABB
BAB
BBA

Table 1. Example MSA following the XOR pattern.

An example of MSA triplet statistics which a Potts model is mis-specified to describe is the XOR pattern in which
the dataset is composed in equal proportions of copies of the four sequences shown in Table 1. These sequences
follow the XOR function in boolean logic, so that the 3rd position is the XOR function applied to the first two positions.
One can see that both the A and B residues have a 50% probability at each position, and that for each pair of
positions the probability of each of the four combinations AA, AB, BA, BB is 1/4. This means that the pairwise
covariances Ci j

αβ
= 0.25−0.5×0.5 are all 0. Because there are no pairwise covariances, fitting a Potts model to this

data will yield a model with no coupling terms, equivalent to an Indep model. Sequences generated from this (or
any) Indep model have all three-body covariation terms equal to 0. However, the three-body covariations of the
dataset are non-zero and C123

AAA = 0.125. This shows how a Potts model fit to XOR data will fail to reproduce the
correct three-body covariations. More generally, it will fail to model data which follows a boolean parity function,
which generalizes the XOR function to longer strings, and is defined so that the last character is set to "B" if there
are an odd number of "B" characters in the preceding sequence.

A motivation for the VAE is that it may potentially be able to model patterns of covariation such as the XOR
pattern which a Potts model cannot. Whether a VAE is able to outperform the Potts model when fit to protein
sequence data will depend on the prevalence of patterns such as XOR in the data which cannot be fit by a Potts
model. If they are undetectable, the Potts model will be well specified and third order parameters are unnecessary.
Our results with the natural dataset in the main text suggest no evidence that the Potts model is mis-specified to
our dataset, as it is able to reproduce all the MSA statistics we tested up to the limits imposed by estimation and
out-of-sample error.

6 Analysis of r20 estimation error
When computing the r20 scores we are able to quantify estimation error, as can be seen by the r20 upper limit
illustrated in Fig. 5b (black dotted line). Here we provide quantitative intuition for the behavior of the r20 score as a
function of the evaluation MSA size N, which explains the difficulty in eliminating estimation error entirely.

Consider a particular set of positions for which we estimate the frequency f of each subsequence at those
positions in the target distribution, based on a finite MSA of size N generated from the target distribution, giving
estimated marginals f̂ . We retain only the top twenty observed subsequences for use in the r20 computation.
The statistical variance in f̂ caused by finite-sampling error will be f (1− f )/N, following a multinomial sampling
process, and we will approximate that all top 20 marginals have similar magnitude and we approximate this error as
〈 f 〉(1−〈 f 〉)/N for all twenty values, where 〈 f 〉 is the mean value of the top 20 marginals.

We can then approximate that the expected Pearson correlation ρ2 between values estimated from two such
MSAs will be ρ2 ≈ χ2/(χ2 +σ2) where χ2 is the variance in the values of the top 20 marginals (reflecting the
variance of the "signal"), and σ2 ≈ 〈 f 〉(1−〈 f 〉)/N is the statistical error in each value (representing the variance of
the "noise").
〈 f 〉 and χ are properties of the protein family being modelled, at each position-set, and do not depend on N. This

invariant allows us to extrapolate, since if we solve for 〈 f 〉(1−〈 f 〉)/χ2 = N(1/ρ2−1), the rhs should be invariant
when we change the size of the dataset MSA from N to N0 or vice versa. If we estimate the rhs for a particular N0
and measured ρ0 numerically, we can solve for ρ at higher N since N(1/ρ2−1) = N0(1/ρ2

0 −1), or

N = N0
ρ2/(1−ρ2)

ρ2
0/(1−ρ2

0 )
. (3)

The approximations we used to derive this formula will become more accurate for larger N0. We have tested this
formula by predicting the expected r20 for MSAs of size N by extrapolating based on the measured r20 for MSAs of
smaller size N0, and find it is quite accurate.

This equation shows how extremely large MSAs can be required to reduce estimation errors when evaluating
r20, as the extrapolated N diverges as ∝ 1/x as x = 1−ρ2 approaches 0. For instance, if with an MSA of 6 million
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sequences we obtain r20 = 0.8, then we would require 28.5 million sequence to obtain r20 = 0.95 and 148 million to
reach r20 = 0.99.

7 Typical natural sequence dataset MSA size
The 10K sequence training datasets we use in the main text are meant to illustrate performance for typical protein
family dataset sizes. The size of 10K sequences is the number of estimated effective sequences Neff remaining
after curation and phylogenetic filtering for the 20th most frequent protein (Cadherin) in Pfam (Fig.6, right).16 Some
of our measurements show significant out-of-sample error for Mi3 and vVAE based on training sample size alone,
suggesting that the vast majority of GPSMs training on natural data could be subject to the level out-of-sample error
reported in our results.

In Pfams’s Top 20 most frequent protein domains, ranked by total number of sequences, there are between 105

and 106 total sequences each (Fig.6, right). In this work, we use the 4th most frequent protein out of this ranking,
Pkinase. After curation and phylogenetic filtering of the kinase, we retained only Neff ∼22K, or ∼5% of the original
∼424K kinase sequences (Fig.6, left). Extending this fraction of ∼5% to the other Top 20 proteins, we estimate
that Neff is capped at ∼ 105 (100K) for GPSMs trained on single domains, and that proteins outside the Top 20 can
generally expect Neff < 104 (10K). This tabulation of Pfam data demonstrates that, for the vast majority of proteins
with publicly available natural sequence data, contemporaneous GPSMs must have approximately Neff < 10K for
training, validation, and testing.
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Figure 6. Pfam Top 20. GPSMs trained on publicly available natural sequence data could be inherently data-starved. Right, Log-scaled histogram of Pfam
sequence frequencies. Sorted by the log-scaled number of sequences originally in Pfam (blue), the histogram shows estimated number of effective sequences Neff
after phylogenetic filtering at the 0.5 similarity cutoff (orange). All estimates are based on the actual Neff for Pkinase, the fourth most frequent protein family and
the one used in this work, which is ∼22K sequences, or ∼5% of the total ∼424K Pkinase sequences in Pfam (left). Cadherin, the last entry (bottom), has
Neff < 104 (10K sequences), meaning that this must be the approximate upper-bound of Neff for GPSMs training on natural data outside the Pfam Top 20. Since all
proteins outside the Pfam Top 20 must Neff < 104, we chose 10K sequences as the lower limit of total training sequences for our synthetic analysis. Left, Curation
and phylogenetic filtering breakdown for Pfam Pkinase dataset. Of ∼424K Pkinase sequences in Pfam (blue), only ∼291K (∼70%) remained after curation (grey).
This curated set was phylogenetically filtered at 0.5 similarity, resulting in Neff ∼22K (orange), or 5% of the original ∼424K.
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