

Supplementary Information for

The Global Body Size Biomass Spectrum is Multimodal

Edward W. Tekwa, Katrina A. Catalano, Anna L. Bazzicalupo, Malin L. Pinsky

Edward W. Tekwa

Email: edtekwa@gmail.com

This PDF file includes:

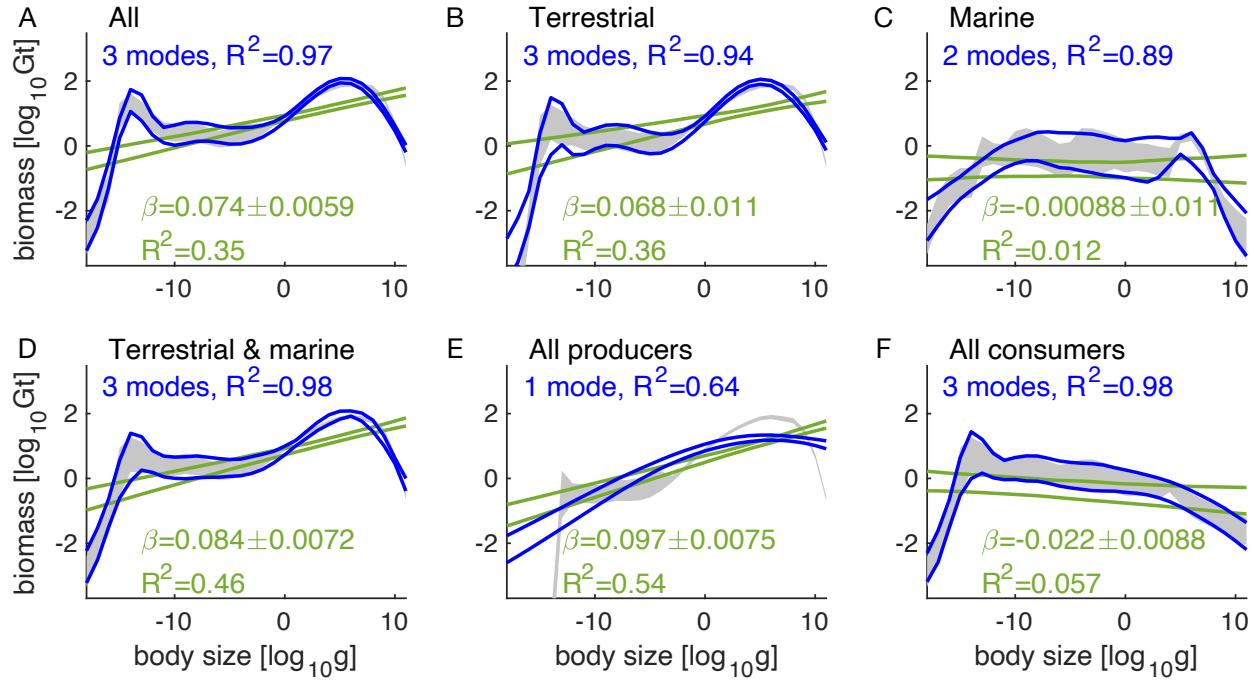
SI Text

Figures S1 to S2

Tables S1 to S8

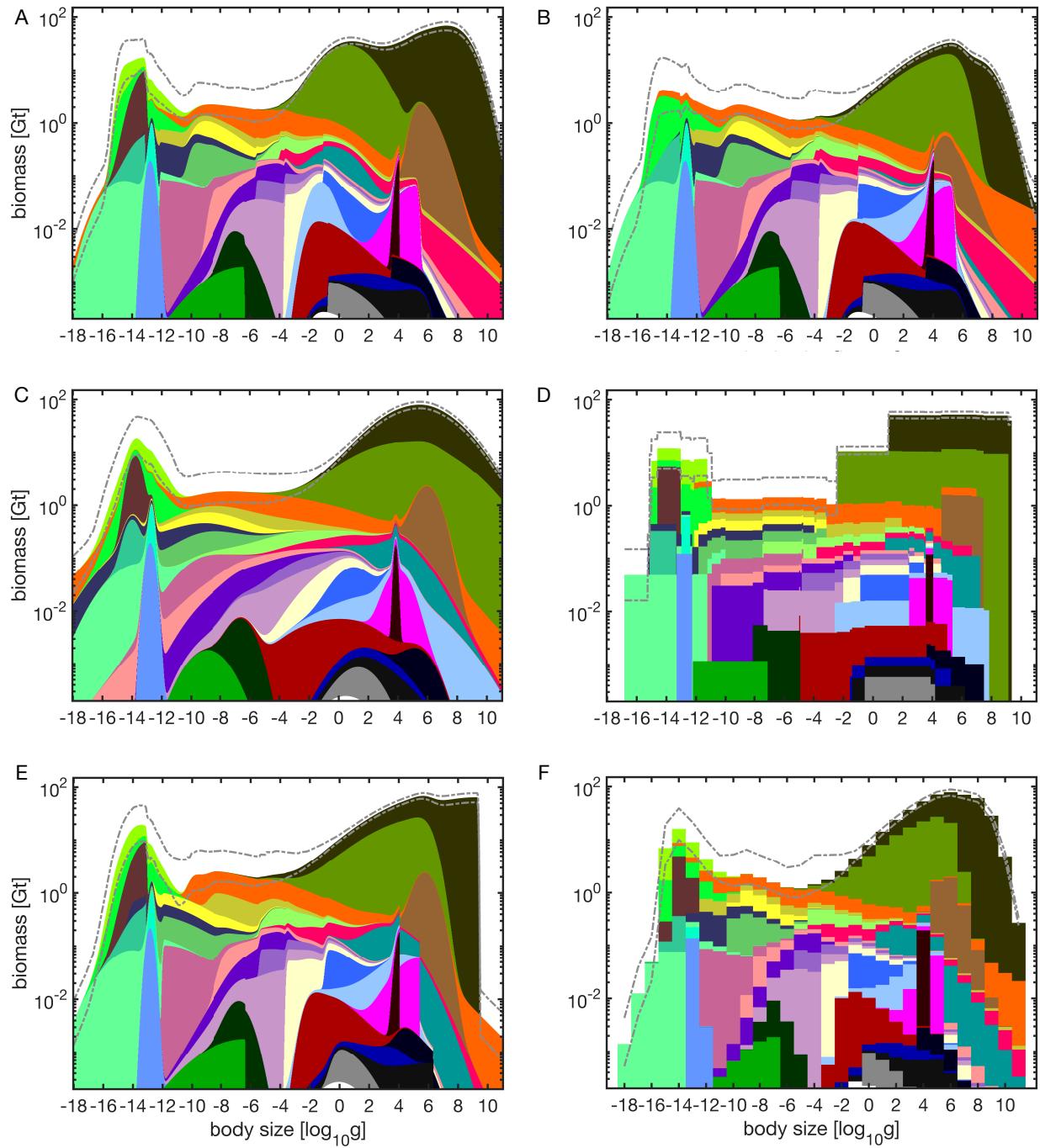
SI References

Supplementary Information Text


Statistical Evaluation of Allometric Trends and Multimodality. Statistical evaluations of the size-biomass relationship were performed among different classifications of organisms depending on ecological realms (marine, terrestrial, subterranean) and trophic levels (producer, consumer). The six classes are: all, terrestrial, marine, terrestrial and marine, producers, and consumers.

To fit statistical relationships between size and biomass, we did not perform simple hypothesis tests directly on the best estimated spectra because 1) biomass datapoints are not independent across sizes within groups, and 2) the cross-taxa biomass at any size depends on all groups, making the error structure correlated across the size range. To obtain confidence bounds, we rely on a parametric bootstrapped ensemble of possible spectra. For each bootstrap, the possible continuous spectrum is sampled once per log size bin from -18 to 11, for a sample size of 30. This is a lower resolution than used for graphical purposes; here, 30 is likely a conservative estimate of the number of independent datapoints that contribute to the cross-taxa spectrum in any trophic or habitat class. We then performed statistical regressions on 200 bootstrap sampled sets, each obtained by independently sampling from the biomass error distribution of each group and summing by size. We then found the 2.5th and 97.5th percentiles of the outputs as each regression model's 95% confidence bounds. Size bins with biomass lower than 10^{-5} Gt (1000 t) were not included as datapoints for the regression. A cutoff is necessary to avoid infinitely negative values after log transformation and to avoid size ranges that are unlikely to have been empirically observed.

We fit two kinds of regression models. For allometric relationships, ordinary least-squares regressions were performed to obtain power exponents that explain the discrete sampled log size-log biomass relationships. For Gaussian mixture models, up to four modes (components) were fit using an expectation maximization algorithm to minimize nonlinear least squares ('gauss1', 'gauss2', etc. in Matlab R2017a, MathWork, Natick, MA). During fitting for the Gaussian mixture, we added $\log_{10}(10^{-5})+1$ to log biomasses to ensure that the minimum value was 1; smaller values were already removed previously. For plotting, we subtracted $\log_{10}(10^{-5})+1$ from the solutions. Our selection among the Gaussian Mixture models was based on the minimum corrected Akaike Information Criterion (AICc, or AIC for short subsequently)¹. We also considered whether the model with the lowest AIC was much better than a


simpler model by checking whether their pairwise Δ AICs were sufficiently large. As a rule of thumb, a Δ AIC of more than 10 would indicate that the alternative model is much worse given a correct tally of the number of datapoints¹. However, in our case the true number of datapoints is unclear, making Δ AIC sensitive to the resolution at which we sample the continuous spectra and the biomass cutoff at each bin. Our main concern is that an over-inflation of datapoints would cause AIC to not penalize complexity enough, which would inflate Δ AIC between models. We therefore did not rely solely on an Δ AIC>10 to reject a simpler model. Alternatively, we may also have underestimated the true sample size, and therefore Δ AIC>10 may have been too stringent. Instead, for each of the 200 bootstrap regressions, we checked whether each model had a lower AIC than the next simplest model. The frequency at which a model was worse (had a higher AIC) than the next across bootstraps was denoted $P.\Delta$ AIC. The model with the lowest average AIC was the default best model candidate, but the model was rejected if $P.\Delta$ AIC>0.05. The next simplest model was then examined in a similar and iterative manner until the best model with $P.\Delta$ AIC>0.05 was found. This bootstrapped selection procedure incorporates uncertainty in the selection process itself beyond what the default AIC score measures².

We also recorded the frequency at which a model, including the linear and Gaussian models, was selected based on minimum AIC within a bootstrap. This selection frequency is expressed as $P.\text{minAIC}$, or the portion of resamples that a model had the minimum AIC. These results agreed with the minimum average AIC criterion, which almost always selected more modes than when we accounted for $P.\Delta$ AIC (except for consumers where all AIC criteria agreed). For producers, $P.\text{minAIC}$ selected three modes, while $P.\Delta$ AIC selected only one mode (Table S7). This was the only class in which the two methods selected models that were more than one mode apart.

Fig. S1. Statistical descriptions of body size biomass spectra across realms and trophic levels.

The empirical distributions with 95% confidence bounds (grey) are described using log-linear (green confidence bounds) and Gaussian mixture models (blue confidence bounds) from 200 bootstrap regressions over within-group biomass error distributions. The data sampling resolution was one per log size, with a cutoff biomass of 10^5 Gt. Linear regressions produced β estimates (\pm standard deviation) and mean R^2 for different habitat and trophic levels (in green). The number of components in the Gaussian models are selected according to AIC (mean R^2 in blue). “All” includes terrestrial, marine, and subterranean groups.

Fig. S2. Sensitivity of the global body size biomass spectrum to different assumptions. Groups with biomass above 2×10^{-4} GtC are shown. Grey dotted curves are 95% confidence bounds from 200 resamples from within-group uncertainties. See Fig. 2 for color reference and default assumptions. **A.** Sizes are defined for ramets or clones instead of genets. **B.** Mass with low metabolism is omitted from body size and biomass estimates (plant woody material, hard coral skeleton, and subterranean microbes). **C.** Normal biomass distribution within groups. **D.** Uniform biomass distribution within groups. **E.** Skew-normal biomass distribution within groups, with the minimum and maximum reported sizes corresponding to the 4.5th and 99.5th percentiles (instead of the 2.5th and 97.5th percentiles). **F.** Spectrum is plotted at one per log unit resolution (instead of 40 per log unit).

Table S1. Terrestrial body sizes and biomasses. ^o indicates spherical bodies formula (³ for microbes), and [^] indicates tubular bodies formula (⁴ for microbes). Biomass and uncertainty are from ⁵ unless indicated.

Group	Smallest	Largest	Min. body size (g C)	Mean body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Producers							
Forest plants	<i>Salix herbacea</i> ^o	<i>Sequoia</i> <i>dendron giganteum</i>	1.08E+01 ^{6,7}	1.13E+06	2.24E+09 ⁸	337.5 ⁶	1.2
Grassland plants	<i>Mibora minima</i>	<i>Holcus mollis</i>	3.75E-03 ⁹	4.32E+06	1.34E+09 ⁶	112.5 ⁶	1.2
Cryptogamic phototrophs	<i>Nostoc punctiforme</i>	<i>Dawsonia superba</i> [^]	1.15E-11 ¹⁰	2.72E- [*] 10	8.75E+012	2.5 [†]	2
Consumers							
Soil bacteria	<i>Actinobacteria</i> spp. ^o	<i>Proteobacteria</i> spp. ^o	7.37E-16 ¹⁵	2.86E-14	1.15E-11 ¹⁵	7.352	6
Soil archaea	<i>Crenarchaeota</i> spp. ^o	<i>Crenarchaeota</i> spp. ^o	7.37E-16 ¹⁵	2.91E-14	4.72E-14 ¹⁵	0.516	4
Soil protists	<i>Myamoeba</i> spp. ^o	<i>Dictyamoeba</i> spp. ^o	3.19E+25 ¹⁶	7.37E-13	5.03E-11 ¹⁷	1.605	4
Soil fungi	<i>Batrachochytrium dendrohabditis</i> ^o	<i>Armillaria ostoyae</i>	7.37E-13 ¹⁸	1.53E-11	9.70E+06 ¹⁹	11.802	3
Terrestrial arthropods	<i>Archegozetes longisetosus</i>	<i>Birgus latro</i>	1.50 E-5 ²⁰	2.00E-04	6.00E+02 ²¹	0.212	15
Humans	<i>Homo sapiens</i>	<i>Homo sapiens</i>	3.75E+3 ²²	8.13E+03	1.13E+04 ²²	0.055	1.1
Livestock	<i>Gallus gallus domesticus</i>	<i>Bos taurus</i>	270 ⁵	2.08E+04	2.25E+05 ⁵	0.107	1.1
Wild land mammals	<i>Craseonycteris thonglongyai</i>	<i>Loxodonta africana</i>	0.038 ²³	2.53E+03	1.65E+06 ²⁴	0.003	4
Terrestrial nematodes	<i>Protohabditis hortulana</i> [^]	Unspecified species [^]	6.02E-13 ²⁵	5.00E-08	7.74E-08 ²⁶	0.002	10
Wild birds	<i>Melisuga helenae</i>	<i>Struthio camelus</i>	0.27 ²⁷	6.67E+00	1.50E+04 ²⁸	0.199	10
Annelids	<i>Dendrobaena mammalis</i> [^]	<i>Microchaetus rappi</i>	4.16E-08 ²⁹	2.59E-04	2.25E+02 ³⁰	0.006	10
Reptiles	<i>Brookseia</i> spp.	<i>Crocodylus porosus</i>	0.027 ³¹	1.05E+02	1.80E+05 ³²	0.003	100
Amphibians	<i>Paedophryne amauensis</i>	<i>Andrias davidianus</i>	0.003 ³³	1.00E+00	7.50E+03 ³⁴	0.001 [‡]	100

^{*} Among lichens, likely the most abundant among cryptogams, we estimate that 87% contain phycobionts (*Trebouxia* 8-21 μm)¹¹ and 13% contain cyanobionts (*Nostoc punctiforme* 5 μm)¹⁰. This composition was used to estimate the mean body size.

[†] The total lichen biomass and uncertainty were obtained from Ref.¹³; to obtain cryptogamic phototrophs' biomass, the fungal portion of lichen was subtracted out. Twenty percent of fungi species occur in lichens¹⁴, so 20% of the total fungal biomass was subtracted from the lichen biomass to get the cryptogamic phototrophs' biomass.

[‡] Assumes amphibian habitat area is mainly rainforest, 5.5011347x10¹² m^2 ⁶, and 0.1 individual per m^2 (lower than ⁵'s likely overestimate). Uncertainty is unknown, so copied from reptiles which is the taxon with the highest uncertainty.

Table S2. Marine body sizes. \circ indicates spherical bodies formula (3 for microbes). Biomass and uncertainty are from 5 unless indicated.

Group	Smallest	Largest	Min. body size (g C)	Mean body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Producers							
Mangroves	<i>Rhizophora mangle</i> ^o (dwarf)	<i>Rhizophora mangle</i> ^o (canopy)	4.06E+04 ³⁵	6.49E+05*	2.88E+07 ³⁵	3.5 ³⁷	1.4
Seagrass	<i>Halophila decipiens</i> ^o	<i>Posidonia oceanica</i> ^o	2.63E-03 ³⁸	7.53E+04†	6.91E+07 _{40,41}	0.11	10
Macroalgae	<i>Phaeophyceae</i> spp.	<i>Macrocystis pyrifera</i>	1.35E-01 ^{42,43}	2.00†	2.70E+03 _{42,43}	0.14	10
Bacterial picophytoplankton	<i>Prochlorococcus</i> spp.	-	5.00E-14 ^{44,45}	9.13E-14§	1.67E-13**	0.13	10
Green algae / protist picophytoplankton	<i>Ostreococcus tauri</i>	-	1.05E-13 ^{44,46}	1.49E-13††	2.10E-13†††	0.30	10
Diatoms	<i>Thalassiosira pseudonana</i>	<i>Ethmodiscus</i> spp.	4.6E-11 ^{47,48}	9.08E-09§§	4.09E+04 _{49,50}	0.31	10
Phaeocystis	<i>Phaeocystis globosa</i> cell ^o	<i>Phaeocystis globosa</i> colony ^o	1.15E-11 ⁵¹	5.24E-04***	0.047 ⁵¹	0.28	10
Consumers							
Marine bacteria	<i>Pelagibacter ubique</i> ^o	<i>Thiomargarita namibiensis</i> ^o	5.50 E-16 ⁵²	1.32E-14	1.10E-04 ⁵³	1.327	1.8
Marine archaea	<i>Nanoarchaeum equitans</i>	<i>Staphylothermus marinus</i> ^o	1.47E-17 ⁵⁴	1.22E-14	9.90E-11 ⁵⁵	0.332	3
Marine protists	<i>Picomonas judraskeda</i> ^o	<i>Rhizarian</i> spp. ^o	1.44E-12 ⁵⁶	2.26E-12	7.37E-04 ⁵⁷	1.058	10
Marine arthropods	<i>Stygotantulus Stocki</i>	<i>Homarus americanus</i>	3.537E-08 _{20,21}	7.08E-06	3.00E+03 ⁵⁸	0.940	10
Fish	<i>Paedocypris progenetica</i>	<i>Rhincodon typus</i>	1.50E-04 ⁵⁹	6.27E-01	4.63E+06 ⁶⁰	0.668	8
Molluscs	<i>Ammonicera minoralis</i>	<i>Mesonychoteuthis hamiltoni</i>	0.01 ^{61,62}	4.02E-04	3.98E+04 ₆₃₋₆₅	0.182	10
Cnidaria	<i>Psammohydra nanna</i>	<i>Cyanea capillata</i>	1.00E-05 ^{66,67}	5.09E-03	1.00E+05 _{66,68}	0.040	10
Hard corals	<i>Leptopsammia pruvoti</i> †††	<i>Porites lutea</i>	6.41 ^{70,71}	1.54E+03†††	1.68E+07 ⁷³	0.653§§§	4
Wild marine mammals	<i>Arctocephalus townsendi</i>	<i>Balaenoptera musculus</i>	4.05E+3 ⁷⁴	7.42E+04	2.99E+07 ⁶⁰	0.004	1.4
Marine nematodes	<i>Thalassomonhystra</i> spp.	<i>Platycomopsis</i> spp.	7.50E-09 ⁷⁵	1.80E-7 ⁷⁵	1.20E-5 ⁷⁵	0.014	10
Marine fungi	<i>Malassezia restricta</i>	<i>Penicillium chrysogenum</i>	5.89E-12 _{76,77}	1.39E-11	1.89E-05 ⁷⁸	0.325	10

* *Rhizophora mangle*, similar to estimates for other typical species³⁶

† Based on genet size of *Zostera marina*, a widespread species³⁹ and carbon density⁴⁰.

‡ Based on *Laminaria saccharina*, a widespread species⁴³.

§ Diameter corresponds to definition of picophytoplankton (2 μ m), and corresponding carbon content is based on conversion formulae from the smallest species.

** Maximum sizes are estimated to correspond to the same deviation from the mean size as minimum sizes are (on log scale).

†† Same method as for bacterial picophytoplankton.

††† Same method as for bacterial picophytoplankton.

§§ Based on *Dactyliosolen fragilissimus*⁴⁷.

*** Mean size of colonies of *P. globosa* (2 mm) and *P. pouchetii* (1.5 mm), which are globally distributed and associated with bloom formation⁵¹.

††† Classified as "generalist coral" for size estimate⁶⁹.

††† Mean colony size was estimated as the geometric mean of corallite or maximum colony sizes. Only maximum colony sizes were found across species and may contain several genets, hence the geometric mean. For each estimate, measures for four coral types were converted first to cubic volumes using 3D morphologies, assuming branching morphotype for "competitive" and "weedy" corals, and massive morphotype for "generalist" and "stress-tolerant" corals⁶⁹. Each volume estimates were then converted to mass using type-specific skeletal densities⁷², C per CaCO₃, and weighted by global coral cover contributions⁷⁰.

§§§ Mean skeleton biomass was the geometric mean of two biomass estimates based on global coral cover having heights corresponding to either corallites or maximum colony sizes. Mean tissue biomass was 0.05 Gt with a 10 fold uncertainty⁵. Overall mean biomass was the sum of mean skeleton and tissue biomass, and overall uncertainty was obtained from assuming that the overall min/max correspond to the sum of min/max skeleton and tissue estimates.

Table S3. Subterranean consumer body sizes.

Group	Smallest body size	Largest body size	Min. body size (g C)	Mean body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Subterranean bacteria	<i>Proteobacteria</i> spp.	<i>Desulforudis audaxviator</i>	9.81E-16 ⁷⁹	2.1E-14 ⁸⁰	5.90E-12 ⁸¹	18.9*	3†
Subterranean archaea	<i>Thermoproteus</i> spp.	<i>Miscellaneous Crenarchaeotal Group</i> spp.	2.49E-15 ⁸³	2.1E-14 ⁸⁰	9.22E-14 ⁸⁴	8.1‡	3§

* Total subterranean microbial biomass was assumed to be the geometric mean of 23 to 31 PgC (which is 27 PgC) from ⁸⁰. 70% of microbial abundance is expected to be bacteria ⁸².

† Range of total subterranean microbial cell count from four models in ⁸⁰ was 1.6 to 11.2 x 10²⁹, with a geometric mean of 4.2 x 10²⁹. This range corresponds to a three-fold uncertainty, which is similar to bacteria and archaea groups in other habitat realms.

‡ 30% of microbial abundance is expected to be archaea ⁸². See note for bacterial biomass.

§ Same as uncertainty for subterranean bacteria.

Table S4. Body sizes measured for ramets instead of genets.

Group	Smallest body size	Largest body size	Min. body size (g C)	Mean body size (g C) [*]	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Grassland plants	no change	<i>Phyllostachys pubescens</i>	no change	3.76	3.78E3 ⁸⁵	no change	no change
Seagrass	no change	<i>Posidonia oceanica</i>	no change	5.95E-02	1.35 ⁴¹	no change	no change
Soil fungi	no change	<i>Phlebopus marginatus</i>	no change	1.88E-05	4.80E+02 ⁸⁶	no change	no change
Hard corals	<i>Madracis mirabilis</i>	<i>Mussa angulosa</i>	3.24E-03 ^{87†}	1.03E+00	2.77E+02 ^{87‡}	no change	no change

^{*} The mean sizes for these affected groups were estimated as the geometric means of the new minimum and maximum sizes (resulting in a normal distribution on log size scale).

[†] Estimated as the skeleton density of weedy corals ⁷⁰, multiplied by 0.653/0.603 (ratio of total coral biomass versus skeleton biomass) for size including tissue.

[‡] Estimated as the skeleton density of stress-tolerant corals ⁷⁰, multiplied by 0.653/0.603 (ratio of total coral biomass versus skeleton biomass) for size including tissue.

Table S5. Body sizes excluding parts with low metabolism.

Group	Smallest body size	Largest body size	Min. body size (g C)	Mean body size (g C)	Max. body size (g C)	Biomass (Gt C)	Uncertainty (fold)
Forest plants	no change	no change	2.56E+00	2.67E+05	5.30E+08	80 [*]	no change
Grassland plants	no change	no change	2.67E-03	3.07E+06	9.52E+08	80 [†]	no change
Mangroves	no change	no change	8.21E+03	1.31E+05	5.84E+06	0.8 [‡]	no change
Hard corals	no change	no change	4.91E-01	1.18E+02	1.28E+06	0.05 [§]	no change
Subterranean bacteria	no change	no change	no change	no change	no change	0	no change
Subterranean archaea	no change	no change	no change	no change	no change	0	no change

^{*} Mean allocation of plant materials to leaves and roots⁸⁸. All sizes were scaled down by 80/337.5 (ratio of non-woody biomass versus total biomass).

[†] Mean allocation of plant materials to leaves and roots⁸⁸. All sizes were scaled down by 80/112.5 (ratio of non-woody biomass versus total biomass).

[‡] Estimated based on mangroves allocating a similar amount of material to leaves and roots as tropical plants⁸⁸. All sizes were scaled down by 0.8/3.95 (ratio of non-woody biomass versus total biomass).

[§] Coral tissue biomass⁵. All sizes were scaled down by 0.05/0.653 (ratio of tissue biomass versus total biomass).

Table S6. Icon sources. All icons are in the public domain and are free to use.

Group	Icon source
Amphibians	Keynote
Wild birds	Keynote
Wild land mammals	Keynote
Reptiles	Keynote
Wild marine mammals	Keynote
Terrestrial nematodes	Custom
Marine nematodes	Custom
Cnidaria	Integration and Application Network, University of Maryland
Humans	Keynote
Livestock	Keynote
Seagrass	Integration and Application Network, University of Maryland
Bacterial picophytoplankton	Custom
Macroalgae	Integration and Application Network, University of Maryland
Molluscs	Keynote
Annelids	Pixabay.com
Terrestrial arthropods	Keynote
Phaeocystis	Custom
Green algae/protist picophytoplankton	Sally Bensusen, NASA EOS Project Science Office
Diatoms	Sally Bensusen, NASA EOS Project Science Office
Marine fungi	Custom
Marine archaea	Custom
Soil archaea	Custom
Hard coral	Custom
Fish	Keynote
Marine arthropods	Keynote
Marine protists	Sally Bensusen, NASA EOS Project Science Office
Marine bacteria	Custom
Soil protists	Custom
Cryptogamic phototrophs	Kisscc0.com
Mangroves	Integration and Application Network, University of Maryland
Subterranean archaea	Custom
Soil bacteria	Custom
Soil fungi	Pixabay.com
Subterranean bacteria	Custom
Grassland plants	Keynote
Forest plants	Keynote

Table S7. Regression statistics from 200 resamples for Fig. 3. Gauss- n stands for n -component mixture. The spectra were sampled once every log size bin (for 30 points total) and bins with biomass $<10^{-5}$ GtC were excluded. Bold refers to the model selected according to each metric. $P.\Delta\text{AIC}>0$ is the portion of bootstraps where the model had a lower AIC than the next simplest model. $P.\text{minAIC}$ is the portion of bootstraps where the model had the lowest AIC overall. The selected model is the minimum (mean AIC) or maximum (mean R^2 and $P.\text{minAIC}$) of each column, or in the case of $P.\Delta\text{AIC}>0$, the model closest to the lowest mean AIC that also has $P.\Delta\text{AIC}>0$ smaller than 0.05.

Class	Model	Mean R^2	Mean AIC	$P.\Delta\text{AIC}>0$	$P.\text{minAIC}$
All	Linear	0.35	100	0	0
	Gauss1	0.47	97	0.02	0
	Gauss2	0.87	64	0	0
	Gauss3	0.97	33	0	0.21
	Gauss4	0.98	27	0.21	0.79
Terrestrial	Linear	0.36	87	0	0
	Gauss1	0.43	87	0.53	0
	Gauss2	0.82	62	0	0
	Gauss3	0.94	42	0.03	0.33
	Gauss4	0.97	39	0.33	0.68
Marine	Linear	0.01	99	0	0
	Gauss1	0.63	72	0	0
	Gauss2	0.89	44	0.02	0.16
	Gauss3	0.95	34	0.18	0.80
	Gauss4	0.96	46	0.95	0.04
Terrestrial & Marine	Linear	0.46	94	0	0
	Gauss1	0.60	88	0	0
	Gauss2	0.92	49	0	0
	Gauss3	0.98	25	0.01	0.14
	Gauss4	0.99	7	0.14	0.86
Producers	Linear	0.54	76	0	0
	Gauss1	0.64	72	0	0
	Gauss2	0.92	21	0.15	0.03
	Gauss3	0.99	-23	0.15	0.71
	Gauss4	0.99	-17	0.73	0.27
Consumers	Linear	0.06	96	0	0
	Gauss1	0.64	70	0	0
	Gauss2	0.92	33	0.02	0.01
	Gauss3	0.98	-1	0.03	0.73
	Gauss4	0.99	4	0.74	0.26

SI References

1. Burnham, K. P. & Anderson, D. R. Multimodel Inference: Understanding AIC and BIC in Model Selection. *Sociological Methods & Research* **33**, 261–304 (2004).
2. Lubke, G. H. *et al.* Assessing Model Selection Uncertainty Using a Bootstrap Approach: An Update. *Structural Equation Modeling: A Multidisciplinary Journal* **24**, 230–245 (2017).
3. Fagerbakke, K. M., Norland, S. & Heldal, M. The inorganic ion content of native aquatic bacteria. *Canadian Journal of Microbiology* (1999) doi:10.1139/cjm-45-4-304.
4. Eibye-Jacobsen, D. & Kristensen, R. M. A new genus and species of Dorvilleidae (Annelida, Polychaeta) from Bermuda, with a phylogenetic analysis of Dorvilleidae, Iphitimidae and Dinophilidae. *Zoologica Scripta* (1994) doi:10.1111/j.1463-6409.1994.tb00379.x.
5. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. *Proceedings of the National Academy of Sciences* 201711842 (2018) doi:10.1073/pnas.1711842115.
6. Erb, K. H. *et al.* Unexpectedly large impact of forest management and grazing on global vegetation biomass. *Nature* (2018) doi:10.1038/nature25138.
7. Beerling, D. J. *Salix herbacea L.* *Journal of Ecology* (1998) doi:10.1046/j.1365-2745.1998.8650872.x.
8. National Parks Service. Giant Sequoias.
<https://www.nps.gov/seki/learn/nature/bigtrees.htm>.
9. Pemadasa, M. A. & Lovell, P. H. The Mineral Nutrition of Some Dune Annuals. *The Journal of Ecology* (1974) doi:10.2307/2259004.

10. Rippka, R. & Herdman, M. *Pasteur Culture Collection of Cyanobacterial Strains in Axenic Culture, Catalogue and Taxonomic Handbook*. (Institut Pasteur, 1992).
11. Lutzoni, F. Peltigera Project Overview. <http://lutzonilab.org/peltigera/overview/>.
12. Green, T. G. A. & Clayton-Greene, K. A. Studies on *Dawsonia superba* Grev. II. Growth rate. *Journal of Bryology* (1981) doi:10.1179/jbr.1981.11.4.723.
13. Elbert, W. *et al.* Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. *Nature Geoscience* (2012) doi:10.1038/ngeo1486.
14. Rikkinen, J., Oksanen, I. & Lohtander, K. Lichen guilds share related cyanobacterial symbionts. *Science* (2002) doi:10.1126/science.1072961.
15. Panikov, N. S. Contribution of nanosized bacteria to the total biomass and activity of a soil microbial community. *Advances in Applied Microbiology* (2005) doi:10.1016/S0065-2164(05)57008-4.
16. Geisen, S. *et al.* Soil protists: A fertile frontier in soil biology research. *FEMS Microbiology Reviews* (2018) doi:10.1093/femsre/fuy006.
17. Berney, C. *et al.* Expansion of the ‘Reticulosphere’: Diversity of Novel Branching and Network-forming Amoebae Helps to Define Variosea (Amoebozoa). *Protist* (2015) doi:10.1016/j.protis.2015.04.001.
18. Global Invasive Species Database. *Batrachochytrium dendrobatidis*. <http://www.iucngisd.org/gisd/species.php?sc=123>.
19. Smith, M. L., Bruhn, J. N. & Anderson, J. B. The fungus *Armillaria bulbosa* is among the largest and oldest living organisms. *Nature* (1992) doi:10.1038/356428a0.

20. Kawabata, K. & Urabe, J. Length-weight relationships of eight freshwater planktonic crustacean species in Japan. *Freshwater Biology* (1998) doi:10.1046/j.1365-2427.1998.00267.x.
21. Boxshall, G. A. & Huys, R. New Tantulocarid, *Stygotantulus stocki*, Parasitic on Harpacticoid Copepods, with an Analysis of the Phylogenetic Relationships within the Maxillopoda. *Journal of Crustacean Biology* (1989) doi:10.2307/1548454.
22. Walpole, S. C. *et al.* The weight of nations: An estimation of adult human biomass. *BMC Public Health* (2012) doi:10.1186/1471-2458-12-439.
23. Hill, J. E. & Smith, S. E. *Craseonycteris thonglongyai*. *Mammalian Species* (1981) doi:10.2307/3503984.
24. Wood, G. L. *The Guinness book of animal facts and feats*. (Guinness Superlatives, 1982).
25. Abolafia, J. & Peña-Santiago, R. *Protorhabditis Hortulana* Sp. N. (Rhabditida, Protorhabditidae) from southern Iberian Peninsula, one of the smallest free-living soil nematodes known, with a compendium of the genus. *Zootaxa* (2016) doi:10.11646/zootaxa.4144.3.7.
26. Mulder, C. & Vonk, J. A. Nematode traits and environmental constraints in 200 soil systems: Scaling within the 60–6000 µm body size range. *Ecology* (2011) doi:10.1890/11-0546.1.
27. Blackburn, T. M. & Gaston, K. J. The Distribution of Body Sizes of the World's Bird Species. *Oikos* (1994) doi:10.2307/3545707.

28. Nee, S., Mooers, A. & Harvey, P. H. Tempo and mode of evolution revealed from molecular phylogenies. *Proceedings of the National Academy of Sciences of the United States of America* (1992) doi:10.1073/pnas.89.17.8322.

29. Hatton, I. A., Dobson, A. P., Storch, D., Galbraith, E. D. & Loreau, M. Linking scaling laws across eukaryotes. *Proc Natl Acad Sci USA* 201900492 (2019) doi:10.1073/pnas.1900492116.

30. Jim Pattison Group. *Guinness World Records*. (1997).

31. Glaw, F., Köhler, J., Townsend, T. M. & Vences, M. Rivaling the world's smallest reptiles: Discovery of miniaturized and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. *PLoS ONE* (2012) doi:10.1371/journal.pone.0031314.

32. University of Michigan. *Crocodylus porosus*. *Animal Diversity Web* https://animaldiversity.org/accounts/Crocodylus_porosus/.

33. Rittmeyer, E. N., Allison, A., Gründler, M. C., Thompson, D. K. & Austin, C. C. Ecological guild evolution and the discovery of the world's smallest vertebrate. *PLoS ONE* (2012) doi:10.1371/journal.pone.0029797.

34. Wang, X. M. *et al.* The decline of the Chinese giant salamander *Andrias davidianus* and implications for its conservation. *Oryx* (2004) doi:10.1017/S0030605304000341.

35. Smithsonian Institution. Mangroves. <https://ocean.si.edu/ocean-life/plants-algae/mangroves>.

36. Njana, M. A., Meilby, H., Eid, T., Zahabu, E. & Malimbwi, R. E. Importance of tree basic density in biomass estimation and associated uncertainties: a case of three

mangrove species in Tanzania. *Annals of Forest Science* (2016) doi:10.1007/s13595-016-0583-0.

37. Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. *Conservation Letters* (2014) doi:10.1111/conl.12060.

38. Dawes, C. *et al.* Proximate composition, photosynthetic and respiratory responses of the seagrass *Halophila engelmannii* from Florida. *Aquatic Botany* (1987) doi:10.1016/0304-3770(87)90067-2.

39. De Witte, L. C. & Stöcklin, J. Longevity of clonal plants: Why it matters and how to measure it. *Annals of Botany* (2010) doi:10.1093/aob/mcq191.

40. Fourqurean, J. W. *et al.* Seagrass ecosystems as a globally significant carbon stock. *Nature Geoscience* (2012) doi:10.1038/ngeo1477.

41. Arnaud-Haond, S. *et al.* Implications of extreme life span in clonal organisms: Millenary clones in meadows of the threatened seagrass *Posidonia oceanica*. *PLoS ONE* (2012) doi:10.1371/journal.pone.0030454.

42. Catalina Island Marine Institute. Kelp: The Floating Forests.
<https://cimioutdoored.org/kelp-forest/>.

43. Gevaert, F. *et al.* Carbon and nitrogen content of *Laminaria saccharina* in the eastern English Channel: biometrics and seasonal variations. *Journal of the Marine Biological Association of the United Kingdom* (2001) doi:10.1017/s0025315401004532.

44. Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume, and area in phytoplankton. *Limnology and Oceanography* (1966) doi:10.4319/lo.1966.11.2.0307.

45. Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. *Microbiology and molecular biology reviews : MMBR* (1999).

46. Palenik, B. *et al.* The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. *Proceedings of the National Academy of Sciences of the United States of America* (2007) doi:10.1073/pnas.0611046104.

47. Leblanc, K. *et al.* A global diatom database- A bundance, biovolume and biomass in the world ocean. *Earth System Science Data* (2012) doi:10.5194/essd-4-149-2012.

48. NOAA Great Lakes Aquatic Nonindigenous Species Information System. *Thalassiosira pseudonana* (Hustedt) Hasle and Heimdal, (1957) 1970. <https://nas.er.usgs.gov/queries/GreatLakes/FactSheet.aspx?SpeciesID=1692>.

49. Villareal, T. A. Buoyancy properties of the giant diatom Ethmodiscus. *Journal of Plankton Research* (1992) doi:10.1093/plankt/14.3.459.

50. Strathmann, R. R. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. *Limnology and Oceanography* (1967) doi:10.4319/lo.1967.12.3.0411.

51. Throndsen, J. The Planktonic Marine Flagellates. in *Identifying Marine Phytoplankton* (1997). doi:10.1016/b978-012693018-4/50007-0.

52. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. *Nature* (2002) doi:10.1038/nature00917.

53. Schulz, H. N. *et al.* Dense populations of a giant sulfur bacterium in namibian shelf sediments. *Science* **284**, 493–495 (1999).

54. Huber, H. *et al.* A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. *Nature* (2002) doi:10.1038/417063a.

55. Schulz, H. N. & Jørgensen, B. B. Big Bacteria. *Annual Review of Microbiology* (2001) doi:10.1146/annurev.micro.55.1.105.

56. Moreira, D. & López-García, P. The rise and fall of picobiliphytes: How assumed autotrophs turned out to be heterotrophs. *BioEssays* (2014) doi:10.1002/bies.201300176.

57. Biard, T. *et al.* In situ imaging reveals the biomass of giant protists in the global ocean. *Nature* (2016) doi:10.1038/nature17652.

58. Jim Pattison Group. American lobster. in *Guiness World Records* (1977).

59. FishBase. Schindleria brevipinguis. <https://www.fishbase.se/summary/Schindleria-brevipinguis.html>.

60. McClain, C. R. *et al.* Sizing ocean giants: Patterns of intraspecific size variation in marine megafauna. *PeerJ* (2015) doi:10.7717/peerj.715.

61. Páll-Gergely, B., Hunyadi, A., Jochum, A. & Asami, T. Seven new hypselostomatid species from China, including some of the world's smallest land snails (Gastropoda, Pulmonata, Orthurethra). *ZooKeys* (2015) doi:10.3897/zookeys.523.6114.

62. Eckblad, J. W. Weight-Length Regression Models for Three Aquatic Gastropod Populations. *American Midland Naturalist* (1971) doi:10.2307/2423940.

63. Nilsson, D. E., Warrant, E. J., Johnsen, S., Hanlon, R. & Shashar, N. A unique advantage for giant eyes in giant squid. *Current Biology* (2012) doi:10.1016/j.cub.2012.02.031.

64. The Official Website of the New Zealand Government. World's largest squid landed in NZ. <https://www.beehive.govt.nz/release/worlds-largest-squid-landed-nz>.

65. Eklöf, J. *et al.* Size matters: Relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. *PeerJ* (2017) doi:10.7717/peerj.2906.

66. Pitt, K. A. *et al.* Jellyfish Body Plans Provide Allometric Advantages beyond Low Carbon Content. *PLoS ONE* (2013) doi:10.1371/journal.pone.0072683.

67. Lucas, C. H., Pitt, K. A., Purcell, J. E., Lebrato, M. & Condon, R. H. What's in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. *Ecology* (2011) doi:10.1890/11-0302.1.

68. The Marine Life Information Network. Lion's mane jellyfish (*Cyanea capillata*). <https://www.marlin.ac.uk/species/detail/2090>.

69. House, J. E. *et al.* Moving to 3D: Relationships between coral planar area, surface area and volume. *PeerJ* (2018) doi:10.7717/peerj.4280.

70. Darling, E. S., Alvarez-Filip, L., Oliver, T. A., Mcclanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. *Ecology Letters* (2012) doi:10.1111/j.1461-0248.2012.01861.x.

71. Caroselli, E. *et al.* Growth and demography of the solitary scleractinian coral *Leptopsammia pruvoti* along a sea surface temperature gradient in the mediterranean sea. *PLoS ONE* (2012) doi:10.1371/journal.pone.0037848.

72. Darling, E. S. *et al.* Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. *Nature Ecology and Evolution* (2019) doi:10.1038/s41559-019-0953-8.

73. Brown, D. P. *et al.* American Samoa’s island of giants: Massive *Porites* colonies at Ta’u island. *Coral Reefs* (2009) doi:10.1007/s00338-009-0494-8.

74. Belcher, R. L. & Lee Jr., T. E. *Arctocephalus townsendi*. *Mammalian Species* (2002) doi:10.1644/1545-1410(2002)700<0001:at>2.0.co;2.

75. Armenteros, M. & Ruiz-Abierno, A. Body size distribution of free-living marine nematodes from a Caribbean coral reef. *Nematology* (2015) doi:10.1163/15685411-00002930.

76. Amend, A. From Dandruff to Deep-Sea Vents: *Malassezia*-like Fungi Are Ecologically Hyper-diverse. *PLoS Pathogens* (2014) doi:10.1371/journal.ppat.1004277.

77. Wilson, C. *et al.* *Infectious Diseases of the Fetus and Newborn Infant. Infectious Diseases of the Fetus and Newborn Infant* (2011). doi:10.1016/C2009-0-50442-4.

78. Aguilar-Trigueros, C. A., Rillig, M. C. & Crowther, T. W. Applying allometric theory to fungi. *ISME J* **11**, 2175–2180 (2017).

79. Wu, X. *et al.* Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. *ISME J* **10**, 1192–1203 (2016).

80. Magnabosco, C. *et al.* The biomass and biodiversity of the continental subsurface. *Nature Geosci* **11**, 707–717 (2018).

81. Abe, S. Life Without the Sun. *Astrobiology at NASA* <https://astrobiology.nasa.gov/news/life-without-the-sun/> (2008).

82. Danovaro, R., Corinaldesi, C., Rastelli, E. & Dell'Anno, A. Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. *Aquat. Microb. Ecol.* **75**, 81–90 (2015).

83. Stetter, K. O. Smallest Cell Sizes Within Hyperthermophilic Archaea ('Archaeabacteria'). in *National Research Council (US) Steering Group for the Workshop on Size Limits of Very Small Microorganisms* (National Academies Press, 1999).

84. Kubo, K. *et al.* Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. *ISME J* **6**, 1949–1965 (2012).

85. Zhang, H. *et al.* Estimation of biomass and carbon storage of moso bamboo (*Phyllostachys pubescens* Mazel ex Houz.) in southern China using a diameter–age bivariate distribution model. *Forestry: An International Journal of Forest Research* **87**, 674–682 (2014).

86. Mcnabb, R. F. R. The boletaceae of New Zealand. *New Zealand Journal of Botany* **6**, 137–176 (1968).

87. Precoda, K., Hardt, M. J., Baird, A. H. & Madin, J. S. Tissue biomass trades off with growth but not reproduction in corals. *Coral Reefs* (2020) doi:10.1007/s00338-020-01925-7.

88. Poorter, H. *et al.* Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control: Tansley review. *New Phytologist* **193**, 30–50 (2012).