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Supplementary Figure 1. SE type is the most predominant alternative splicing during meiotic onset
in germ cells (A) Comparisons of frequency and the types of alternative splicing among the three different
transitions in stage of spermatogenesis. Five different types of alternative splicing are schematically shown
at the top. Publicly reported RNA sequence data were used to obtain the PSI in the four different germ cell
types indicated in the schema. A bar graph was constructed after calculating changes in the PSI (APSI) at
steps 1-3 individually. Data from differentiations of neural progenitor cells and mesenchymal stem cells
are also shown as references. A3SS: alternative 3 splice site; AS5SS: alternative 5’ splice site; MXE:
mutually exclusive exon; RI: retained intron; SE: skipping exon (B) Classification of SE type alternative
splicing into three subgroups according to the range of APSI. (C) Transcripts with an increased or
decreased PSI during meiotic onset were maintained at least up to round spermatids. Genes with PSIs that
were significantly increased or decreased at the stage corresponding to step 1 in A were selected and their
PSIs in spermatogonia, preleptene spermatocytes, pachytene spermatocytes, and round spermatids were
plotted. Data were retrieved from two independent experiments (1 and 2) conducted by Lin et al. (43). (D)
Venn diagram showing comparisons of genes with APSIs that is equal or larger than 0.1 in the
differentiation of spermatogonia, neural progenitor, or mesenchymal stem cells. No genes that showed 0.1
or larger APSI values upon differentiation were shared among the three different cell types.
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Supplementary Figure 2. Search for potential exons within genes encoding a PRC1.6 component by
SpliceAl deep learning. Sequences from pre-mRNA transcripts of genes encoding a PRC1.6 component
(Max, L3mbti2, E2f6, Rnf2, and Pcgf6) were subjected to the analyses of SpliceAl deep learning. Scores as
the splice acceptor and donor are shown as green and blue bars, respectively. Blue asterisks indicate
regions with a set of high scores for the splice acceptor and donor determined by SpliceAl except for
known exons.
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Supplementary Figure 3. RT-PCR analyses of the regions identified as putative exons by SpliceAl.
RT-PCR analyses were conducted using 16 different mRNAs with respect to the regions suggested as
putative exons by SpliceAl. Several faint and/or smear bands obtained by analyses of the E2f6 gene in
addition to the band corresponding to the canonical mRNA were found to be irrelevant bands by
sequencing PCR products. The uncropped full-length gels are presented in Supplementary Figure 6.
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Supplementary Figure 4. Confirmation of the lack of MGA in Mga-knockout HEK293FT cells by
western blot analyses. MGA and internal control LAMIN A/C proteins were detected by western blot
analyses of nuclear extracts from wildtype and Mga-null HEK293FT cells. Homozygous knockout of the
Mga gene in HEK293FT cells was conducted by CRISPR-Cas9-mediated genomic manipulation targeting
the region around the 3’-end of exon 3 of the Mga gene using oligonucleotide sequences described by
Stielow et al. (17). Generated Mga-null HEF293FT cells were identical to those generated by Stielow et al.
(17) at the single nucleotide sequencing level, i.e., 73 and 55 bp deletion in the 3'-end of exon 3 and 5'-end
of intron 3, respectively, causing abnormal splicing and a frameshift. The nuclear protein-transferred
PVDF membrane was cut into two pieces in which upper and lower portions of the filter were used for
detecting MGA and LAMIN A/C, respectively, as shown in Supplementary Figure 6.
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Supplementary Figure 5. Expression levels of meiosis-related genes during meiotic onset in publicly
reported RNA sequence data. Expression data of meiosis-related genes that are primarily subjected to
regulation by bHLHZ (Sycp3 and Sycpl) or the T-box domain (7ex/2 and Tdrkh) of MGA in
spermatogonia and preleptotene spermatocytes were extracted from publicly reported RNA sequence data
by Lin et al. (45) and shown as a bar graph. Data are shown as the mean of two independent experiments
in which each dot represents the value from an individual experiment.
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Supplementary Table 1

Oligonucleotides and TagMan Probes

Oligonucleotides

RT-PCR

L3mbtl2 Exon5-6* forward 5’-ACTGGGGCAAGTTCCTGAAG-3’
reverse 5’-TGCCTGGATGACAGTGGCGAT-3’

L3mbtl2 Exon8-9 forward 5’-GAAGAGCTACCTCATGAAGCGG-3’
reverse 5’-CACCTGAGTCTTGTCTACAACCTC-3’

E2F6 Exon 2-4 forward 5’-CTTCTAGCCAGGTGTGGTGG-3’
reverse 5’-TACCAGTGACACATCAAACCGG-3’

Pcgf6 Exon8-9 forward 5’-CCATTGGAAAAGAAGTTTGTGCGTG-3’
reverse 5’-GCTGTATCACCTATTGCACGTCG-3’

Mga Exon 15-16 forward 5’-GGTGACCACACCTACTTCATCACTG -3’
reverse  5’-TGTCCCTGAAGCTGTGGGTT-3’

Mga Exonl18-19 forward 5’-GAGGATGAGGAAGATGAGAAAACTGA-3’
reverse 5-TGTCCGTCGGTAATATGCAA-3’

ChIP-qPCR

Human CCND2 forward 5’-CGCCACCAGATCGTATCTCCTGTAA-3’
reverse 5’-CCTCACTCGCCAGGCTTTCT -3°

Human CDIP forward 5’-CAGCCTCGTGTACATTGGGCA-3’
reverse  5’-GAGGCGATTTGGCCTAGAGCT-3’

Human CNTD1 forward 5’-GTAGGACCTTCTGCCACTGGG-3’
reverse 5’-GAGCTGGTGACCCTCTGGATTCT-3’

qPCR

Meiosin forward 5’-CATTGACATGACCAAGGCCTTGC-3’
reverse 5’-TGGAGGGAGTGGAGTGTTGCT -3°

Tex12 forward 5’-GAGAAGGATTTGAGCGATATGAGCAAGG-3’
reverse 5’-CTGTAAACCTCTGCTTCAGGAACTCTC -3°

Tdrkh forward 5’-TTCTGGTGCCCAGAGCAGTC-3’
reverse 5’-GGCTGCGGGAACCAATGATTTG-3’

Gapdh forward 5’-CTCAATGACAACTTTGTCAAGCTCA-3’

reverse 5’-TTACTCCTTGGAGGCCATGTAG-3’



CRISPR/Cas9
Human MGA Exon 3

Human MGA intron 3

forward 5’-CACCGCATCTGGAAAGGTACTCCCA-3’
reverse  5’-AAACTGGGAGTACCTTTCCAGATGC-3°
forward 5’-CACCG TCATACTTGAATTGTATAC-3’
reverse 5’-AAACGTATACAATTCAAGTATGAC-3’

Genotyping for MGA-KO HEK293FT
Human MGA Exon3-intron3 forward 5’-GAAAGAGCCTCAGTGGAAATATCCTG-3’

reverse 5’-ATGAAAATTCCAGTAAGACCCGAAGAC-3’

TagqMan probes used for qPCR

Gene Symbol

Syepl
Sycp3
Hormadl
Dazl
Rec8
Gapdh

canonical Mga

variant Mga

Probe ID

Mm01298009 m]1
Mm00488519 m]
Mm00471448 ml
Mm03053726_s1
Mm00490939 m]1
Mm99999915 gl

Custom-made

forward 5’-GAAGACCACAGCAACTCACACAC-3
reverse 5’-TTTTTCATCTGCAGAGATATGGCTA-3’
probe  5’-TCCTTCAAACAGCAGTGTC-3’

Custom-made

forward 5’-GATTCCTGAGACAGTTTCCTAAGTGA -3’
reverse 5’ -TTTTTCATCTGCAGAGATATGGCTA-3’
probe  5’-TTCAGTTACCTATTAAGGTGTC-3’

*Gene symbols represent mouse genes if not indicated otherwise.
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