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Derivation of analytical solution for the 1-D and 3-D theoretical models, and comparison of their results
Let us consider an infected person in an indoor environment of length l, breadth b and height . The droplets are released by the person during an expiratory event (coughing, sneezing or speaking) and  are the coordinates of the release point. These droplets undergo diffusion along x and y directions and an additional vertical motion due to gravity along z direction. The rate of change of number concentration  of droplets can be expressed as,
								(S1)
where,  is the bulk diffusion coefficient,  is the settling velocity with drag corrections and  is the virus decay rate. First term on the RHS of Eq.(S1) represents turbulent diffusion, second term represents gravitational settling, and third term represents virus inactivation in the droplet. In the given coordinate system, the ground level is represented by  and  represents the roof of the indoor environment. Let  be the initial concentration of the droplets at the release point at t = 0, a droplet is lost due to either deposition on the wall surfaces (including roof and floor) or diffusion or gravity or ventilation, which can be mathematically expressed in the form of initial and boundary conditions,
 					(S2a)
, BC on wall x = 0 			(S2b)
, BC on wall x = l			(S2c)
, BC on wall y = 0 			(S2d)
, BC on wall y = l			(S2e)
, BC on floor z = 0		(S2f)
,	BC on roof z = H		(S2g)
where,  is the turbulent diffusive deposition velocity,  and  are the deposition velocities on the floor and the roof from boundary layer model of wall functions(10) and  is the air-exchange rate. To simplify the equations and their corresponding solutions, the equations are expressed in terms of non-dimensional parameters as shown below:
     
; 				(S3)
where, . In terms of non-dimensional parameters (Eq.(S3)), the system of equations (S1-S2) can be expressed as;
  						(S4)
							(S5a)
							(S5b)
							(S5c)
							(S5d)
 						(S5e)
						(S5f)
Let us define Laplace transform of number concentration () w.r.to  as, 
						(S6)
By using the above definition, Laplace transform of Eqs.(S4-S5) w.r.to , 
         (S7)
where, , , , and . 
							(S8a)
							(S8b)
							(S8c)
							(S8d)
 						(S8e)
						(S8f)
Eqs.(S7-S8) can be solved using method of separation of variables as the droplets dynamics in all the directions are independent of each other. Therefore, solution for rate of change of concentration of droplets in the transformed coordinates can be expressed as,
					(S9)
where,  and  are normal harmonic eigen functions governed by,
								(S10)
								(S11)
The explicit solutions for Eqs.(S10-S11) are,
							(S12a)
							(S12b)
where, , and
	
Substituting Eq.(S9) in Eq.(S7), we get,

 				(S13)
where,  is Green’s function defined as
				(S14)
By comparing the coefficients of  and  between Eq.(S13) and Eq.(S14), we can write, 
	(S15a)
					(S15b)
					(S15c)
Eqs.(S15) can be solved by estimating the roots and substituting the boundary conditions in the given eigenvalue equation. Alternatively, these set of equations can also be solved using a simpler two region method, where the domain of the given problem is divided into two regions I and II as shown in Fig. S1. For example, the region I extends from  to the source location i.e. . Region II is the region between  and the top i.e. . In this approach, suppose the concentrations in region I and II be  and  respectively, the governing equations for concentration profile in each regions can be written such that, at the interface of these two regions (), solution must be continuous and hence should match.                                       
                                                                                                                
		Region-II: conc: 
		----------------------------------------------------------------    source 
		Region-I: conc: 
                                                                                                                          
                                                                                                               
Figure S1. Indoor environment split in to two regions for solving transformed equations
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,						(S16a)
,						(S16b)
where, , and 
.
 and  are unknown constants, need to be determined. For this purpose, following four algebraic equations are obtained by substituting the boundary conditions (Eq.(S8)) in the solution (Eq.(S16)). 
					(S17a)	
 				(S17b)
					(S17c)
	 		(S17d)
The four unknowns (, ) are obtained by solving Eq.(S17) which is a function of s, and then the complete concentration profile will be obtained by Laplace inversion. However, our key parameter of interest is not the concentration profile but mean residence time of the droplets containing virus in the indoor atmosphere, i.e., how long the droplets survive in the airspace. The mean residence time can be obtained without full solution of concentration distribution as shown below.
Residence time
Let us assume  particles are released at a location from a given source. At , integration of concentration profile over the complete spatial domain will give total number of particles i.e. . Mathematically, it can be expressed as,
					(S18)
Some fraction of these particles will be lost due to settling and plate out, and at any point of time , number of surviving particles is given by, 
 						(S19)
Out of these,  will be removed from the airspace between  and . That is, these particles (), which have survived up to time  and got removed exactly at time , have resided exactly up to time t. Hence, the mean residence time  averaged over all the  particles can be expressed as,
  		(S20)
The number of particles in the integral can also be expressed in terms of integration of concentration profile over the entire spatial domain from Eqs.(S19) and (S6) as,
						(S21)
where,  is the mixing time of the puff, and it is to be noted that the lifetime is of the order of the mixing time.  is Laplace transformed concentration in terms of dimensionless parameters. Substituting Eq.(S9) in Eq.(S21), we get,
								(S22)
where, 
									(S23a)
									(S23b)
								(S23c)
If we define, , then the mean residence time will be,
								(S24)
In actual terms, for all practical purposes, except for , root corresponding to all other harmonics are close to . Therefore, the term corresponding to n = m = 0 will dominate the mean residence time and the expression will reduce to, 
								(S25)
One-dimensional system 
The vertical motion of the droplets along z direction is considered in the 1-D system. Eq.(S1) is then reduced to, 
								(S26)
The droplets are assumed to be released at ; the ground level is represented by  and  represents the top of the indoor containment (roof). The initial and boundary conditions in the 1-D system are,
								(S27a)
					(S27b)
					(S27c)
By following the methodology used in 3-D case study, one can obtain mean residence time for this 1-D system as, 
 							(S28)
where, ; ; ; 
; 
and the subsidiary equations are, 
; ;       								(S29) 
Comparison of 1-D and 3-D models
Admittedly, 3-D solution is more complicated than 1-D. A comparison of these models are carried out for a typical indoor environment. Let us consider a rectangular enclosure with dimensions 4 m (l) x 4 m (b) x 3 m (H), with a ventilation rate of 1 h-1; . The numerical simulations are carried out using Mathematica (30), and the results are presented in the Table S1 below:
Table S1: Comparison of 1-D and 3-D results
	Initial droplet diameter (dpm
	Release height (z0), m
	u*,
m/s
	Residence time (),
min
	Mathematical model

	10
	0.3
	0.05
	9.01
	1-D

	
	
	
	9.01
	3-D

	
	
	0.2
	11.22
	1-D

	
	
	
	11.21
	3-D

	
	1
	0.05
	10.35
	1-D

	
	
	
	10.35
	3-D

	1
	1
	0.2
	57.40
	1-D

	
	
	
	56.91
	3-D

	0.1
	1
	0.2
	57.20
	1-D

	
	
	
	53.45
	3-D

	0.01
	0.3
	0.2
	31.92
	1-D

	
	
	
	18.47
	3-D



The above results show that 1-D and 3-D models yield same residence time values for dp > 0.1 m. There is significant difference only for 10 nm droplets. Also, the results are sensitive to release height but insensitive to the friction velocity (u*). Hence, for all super micron droplets/particles, we can use 1-D model, which means, for mean residence time, only height information matters. 



Table S2: Input Parameters & constants
	Parameter
	Typical value
	Range

	Release height ()
	1.5 m
	(0.3, 1, 1.5) m

	Air exchange rate ()
	1.0 h-1
	(0-5) h-1

	Relative Humidity (RH)
	50%
	(10-90) %

	Eddy diffusion coefficients (D)
	0.003 m2 s-1
	(0.001-0.03) m2 s-1

	Kinematic viscosity of air ()
	0.15 cm2/s
	-

	Diffusion coefficient of water molecules in air at 250C ()
	0.219 cm2/s
	Temperature correction applied

	Boltzmann constant ()
	1.38 × 10-23 m2 kg s-2 K-1
	-

	Thermal conductivity of air ()
	0.024 W m-1 K-1
	-

	Specific heat of water ()
	4184 J kg-1 K-1
	-

	Latent heat of water ()
	2.26 x 106 J kg-1
	-

	Specific heat of air ()
	993 J kg-1 K-1
	-

	Air viscosity ()
	1.85 x 10-5 Pa.s
	-

	Acceleration due to gravity (g)
	9.8 m.s-2
	-

	Viral decay rate
	0.63 h-1
	-

	Drop temperature
	350C
	-

	Ambient temperature
	250C
	(10-40) 0C

	Viral load
	108 RNA copies/mL
	(103-1012) RNA copies/mL

	Residue composition
(Mole fraction - 0.71%)
	Na+
	0.0230 kg/mole
(0.091 mole/L)
	-

	
	K+
	0.0391 kg/mole
(0.060 mole/L)
	-

	
	Cl-
	0.0355 kg/mole
(0.102 mole/L)
	-

	
	Lactate
	0.089 kg/mole
(0.044 mole/L)
	-

	
	Glycoprotein
	0.742 kg/mole
(0.102 mole/L)
	-



