

ADDITIONAL FILES

Additional files for:

Automated classification of time-activity-location patterns for improved estimation of personal exposure to air pollution

Lia Chatzidiakou^{1*}, Anika Krause^{1,2}, Mike Kellaway³, Yiqun Han⁴, Yilin Li¹, Elizabeth Martin¹, Frank J Kelly⁴, Tong Zhu⁵, Benjamin Barratt⁴ and Roderic L Jones¹

*Correspondence:
ec571@cam.ac.uk

¹Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, CB2 1EW Cambridge, UK
Full list of author information is available at the end of the article

The Personal air pollution monitor and data procedures

The PAM: is an autonomous unit that incorporates multiple sensors for activity, air quality and thermal conditions[1]. Following the methodology described in that paper, the raw measurements of gaseous pollutants and particulate matter were converted to physical units. The compact and lightweight design of the PAM (~ 400 g) makes the unit suitable for personal exposure assessment. The PAM was deployed in an easy-to-use carry case for protection. The time resolution of the measurements was set at 20 sec time intervals in the UK deployments[2] and 1 min in the Chinese deployment[3] resulting in a battery life on a single charge for ~10 and ~20 hours respectively.

GPS receiver: Detailed data on location and speed were captured using an integrated GPS unit [4] with high precision positioning. Diagnostic information of the GPS quality was collected for each spatial point including number of satellites visible, satellite fix, and horizontal precision of dilution (HDOP). Raw GPS data were not consistently reliable due to errors caused by multi-path signal reflection, loss or blocking which was primarily observed indoors. The multi-path problem occurred mainly in urban areas where tall buildings and structures reflect satellite signals many times before they reach a GPS device [2] leading to GPS coordinate errors. Such errors were identified and removed when the speed derived from the Euclidean distance between two consecutive points exceeded 170 m/s or when three successive points formed a linear segment (indicating no change of direction).

Accelerometer signal representing vector magnitude: The signal representing the vector magnitude of the accelerometer (svm) was calculated from the triaxial signal components x , y and z as:

$$svm = \sqrt{x^2 + y^2 + z^2}$$

Accelerometer and microphone feature extraction: Readings of the triaxial accelerometer and microphone were recorded at 100 Hz. In order to reduce the data transmission, feature extraction was performed in the ARM micro-processor of the PAM. The raw time-series data of the accelerometer and the microphone were grouped into 20-second non-overlapping segments. Descriptive statistics, such as minimum, maximum and mean, were

extracted for each of these windows. Additionally, four threshold values were set that correspond to sedentary, light, moderate and vigorous intensity levels of physical activity. Crossings and duration of the signal magnitude vector above these thresholds were counted for each 20-sec window.

Variables evaluated for mode of transport classification with Random Forest models

The periods classified as *in transit* were classified into five modes of transportation. Variable selection for the classification was implemented using RF in the VSURF package[5] in R. We included 31 variables collected with the PAM as shown in the table A1 below. We also included metrics extracted from the spatio-temporal analysis summarised in Table A2.

Table A1 31 variables collected with the PAM

Variable	Description	Source: PAM sensor
hour	local hour	GPS
longitude		GPS
latitude		GPS
altitude		GPS
gps sats	N visible satellites	GPS
gps hdop	horizontal dilution of precision	GPS
gps fix	position solution	GPS
mic mean (min, max, σ)	Mean (min, max, σ) value of 1 min window from 100 Hz	microphone
mic c χ	Counts above four thresholds χ in 1 min window from 100 Hz	microphone
mic d χ	Duration above four thresholds χ in 1 min window from 100 Hz	microphone
svm ¹ mean (min, max, σ)	Mean (min, max, σ) value of 1 min window from 100 Hz	Tri-axial accelerometer
svm c ψ	Counts above four thresholds ψ in 1 min window from 100 Hz	Tri-axial accelerometer
svm d ψ	duration above four thresholds ψ in 1 min window from 100 Hz	Tri-axial accelerometer
svm	signal of vector magnitude	

Table A2 19 variables from spatio-temporal movement analysis

Variable	Description	Source: R package
nnn	closest neighbours of each point	TLoCoH
area	area of the isopleth the point belongs to	TLoCoH
perim	perimeter of isopleth	TLoCoH
tspan	timespan	TLoCoH
nep	number of enclosed points in isopleth	TLoCoH
scg.enc.mean (σ)	average (σ) speed of all points enclosed in isopleth	TLoCoH
scg.nn.mean (σ)	average (σ) speed of all points identified as nearest neighbors	TLoCoH
elongation	eccentricity of ellipse enclosing hull	TLoCoH
nsv	Visitation rate	TLoCoH
mnlv	Duration of visit	TLoCoH
abs.angl	the angle between each move and the x axis	AdehabitatLT
rel.angl	the turning angles between successive moves	AdehabitatLT
R2n	the squared net displacement between the current relocation and the first relocation of the trajectory	AdehabitatLT
comevent	Commuting event (trajectory)	AdehabitatLT
burst	Segment of trajectory	AdehabitatLT
dist euc	Euclidean distance between two successive points	
dist	length of move	AdehabitatLT

Participant recruitment and feedback

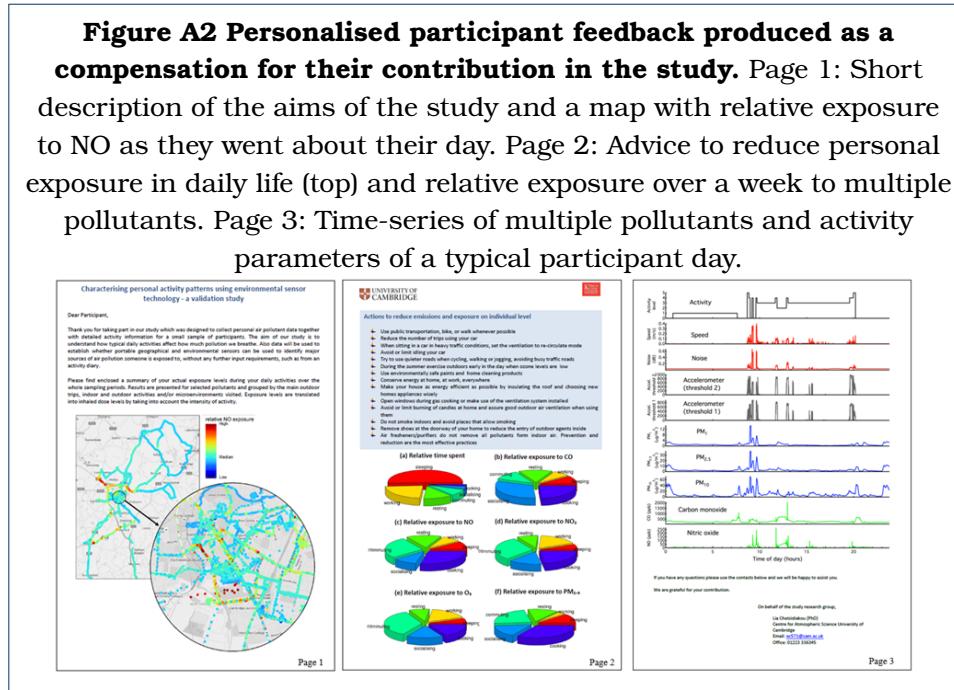

Figure A1 Participant recruitment for the evaluation of the time activity model. Each line represents the participation period of an individual. In total, 13 individuals residing in Cambridge (black) and 24 in London (blue) were recruited. The study took place from July to December 2015.

Table A3 19 variables from spatio-temporal movement analysis

Participants	N= 37
Residence	
London	24
Cambridge	13
Age	
18-22	2
23-30	13
31-40	10
41-50	4
51-60	3
61-65	2
Unknown	3
Gender	
Female	20
Male	17
Education	
Secondary school	1
Further education (A-Level or similar)	1
Higher Education (degree)	32
Unknown	3

Overall, the participants reported 665 time-activity entries. These entries were assigned to a main theme (for example, office work: writing, reading, coding etc) which was grouped to two core categories: *location* and *activity* as shown in Table A4 below.

Table A4 Location and activity classifications derived from the semi-structured manual activity logs. Bold indicate classifications that this paper focuses on with more detailed work in the future on cooking activities and indoor emission sources characterisation.

Location	Activity	Main themes from reported activities
home	cooking	baking, frying, grilling, stove
	resting	bedroom, candle, fireplace, meditating, online, reading/studying, resting, TV, gaming
	personal care	housework, eating, shower, hairdryer
	sleeping	
work	work	lab, meeting, office work, lecture, break
in transit	walking running cycling train/metro car bus	including overground, station including taxi including bus stop
other locations	socialising	cinema, coffee, friends, pub, restaurant
	other (high intensity)	childcare, gardening, shopping, sports
	other activities	library, hospital visit, dentist, church, singing, smoking

Author details

¹Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, CB2 1EW Cambridge, UK.

²Institute for Chemistry, University of Potsdam, Baumhasselring 110A, 14469 Potsdam, Germany.

³Atmospheric Sensors Ltd, SG19 3SH Bedfordshire, UK. ⁴Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, W12 0BZ London, UK. ⁵BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, 100871 Beijing, China.

References

1. Chatzidiakou, L., Krause, A., Popoola, O.A., Di Antonio, A., Kellaway, M., Han, Y., Squires, F.A., Wang, T., Zhang, H., Wang, Q., *et al.*: Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. *Atmospheric measurement techniques* **12**(8), 4643–4657 (2019)
2. Moore, E., Chatzidiakou, L., Jones, R.L., Smeeth, L., Beevers, S., Kelly, F.J., Quint, J.K., Barratt, B.: Linking e-health records, patient-reported symptoms and environmental exposure data to characterise and model copd exacerbations: protocol for the cope study. *BMJ open* **6**(7), 011330 (2016)
3. Han, Y., Chen, W., Chatzidiakou, L., Krause, A., Yan, L., Zhang, H., Chan, Q., Barratt, B., Jones, R., Liu, J., *et al.*: Effects of air pollution on cardiopulmonary disease in urban and peri-urban residents in beijing: protocol for the airless study. *Atmospheric Chemistry and Physics* **20**(24), 15775–15792 (2020)
4. u-blox GNSS product overview. Technical report (2019). www.u-blox.com/guided-product-selector
5. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random forests. *Pattern recognition letters* **31**(14), 2225–2236 (2010)