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S1 Band structure reconstruction

S1.1 Physical foundations

The three quantities of common interest for the interpretation of photoemission spectra are (1)

the bare band energy, εk, (2) the complex-valued electron self-energy, Σ(k, E) = ReΣ(k, E) +

iImΣ(k, E), and (3) the transition matrix elements connecting the final (f ) and initial (i) elec-

tronic states, Mf,i(k, E). An established interface between theory and experiment for quantitat-

ing and interpreting the photoemission signal is the formalism of an experimental observable:

the single-particle spectral function [5, 70], A(k, E). For a single energy band of a many-body

electronic system,

A(k, E) =
1

π

ImΣ(k, E)

[E − εk − ReΣ(k, E)]2 + [ImΣ(k, E)]2
. (10)

Within this framework, the band loci of the photoemission (or quasiparticle) band structure

(BS), b(k, E) = εk + ReΣ(k, E), correspond to the bare band dispersion modulated by the

real part of the electron self-energy, and they occupy the local maxima of the spectral function

evaluated at different momenta. However, in the photoemission process, the intensity counts

registered by the detector are modulated by the transition matrix elements [19], the Fermi-Dirac

occupation function, fFD(E), and the resolution of the measuring instrument, G(E, σE, σk),

typically a multidimensional Gaussian function. This leads to the expression of the photoemis-

sion intensity, I(k, E), registered on an energy- and momentum-resolved detector,

I(k, E) ∝ |Mf,i(k, E)|2fFD(E)A(k, E)⊗G(E, σE, σk). (11)

For a multiband electronic structure, band mapping measurements, in principle, have access to

the spectral functions of at least all valence bands. The photoemission intensities are combined

in summation to form the multiband (MB) counterpart of the single-band formula.

IMB(k, E) =
∑
j

Ij(k, E) ∝
∑
j

|Mfj ,ij(k, E)|2fFD(E)Aj(k, E)⊗G(E, σE, σk) (12)

∼
∑
j

Aj(k, E)⊗G(E, σE, σk), (when|Mfj ,ij(k, E)| → 1, fFD(E)→ 1). (13)

The condition fFD(E)→ 1 applies to valence bands, while |Mfj ,ij(k, E)| → 1 may be achieved

through nonlinear intensity normalization or contrast enhancement in data processing. The
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expression of the multiband photoemission intensity in Eqs. (12)-(13) provides the physical

foundation and inspiration for the approximate generation of band mapping data (see Section

S2) that we employ to validate the reconstruction algorithm introduced in this work.

S1.2 Markov random field modeling

The Markov random field (MRF) model for the photoemission band structure in photoemission

band mapping data can be constructed similarly for data in multiple dimensions. In traditional

angle-resolved photoemission spectroscopy (ARPES), photoemission intensities are measured

in the (k,E) coordinates, the proximity of the momentum positions in the band structure can be

modeled using an MRF composed of a 1D chain of random variables as shown in Supplemen-

tary Fig. 1a. Band mapping data in (kx, ky, E) coordinates, as described in the main text, can

be modelled using a 2D MRF. In addition, the algorithm can be extended to higher dimensions

involving coordinates beyond energy and momenta. For example, time-resolved photoemission

data recorded in (kx, ky, E, t) coordinates can be modelled using a 3D MRF as shown in Sup-

plementary Fig. 1c. In the following, we provide a brief introduction to the theory underlying

MRF and provide a simplified derivation of the 2D MRF model introduced in the main text.

Deriving the MRF amounts to determining the joint distribution of the random variables as-

sociated with its graphical representation. In graphical model theory [71], a graph is constructed

from the fundamental components called cliques. Each clique C of a graph is a subset of nodes

that shares an edge with another node in C, with the total number of nodes in C defined as

its size. The MRFs in Supplementary Fig. 1a-c that model the photoemission data are built

out of cliques of sizes 1–2 shown in Supplementary Fig. 1d. Although larger cliques can be

constructed similarly [71], their parent graphical models are described by more complex joint

distributions with drastically higher computational costs in optimization, therefore are not used

in our MRFs. Mathematically, each clique is represented by a so-called potential function, ψC ,

which is used to derive the joint distribution that characterizes the MRF. The potential function

only depends on the node configuration in the cliques, XC , and satisfies ψC(XC) > 0. Accord-

ing to the Hammersley-Clifford theorem [71–73], the joint distribution of a vector of random

variables, X, can be written in the factorized form,

p(X) =
1

Z

∏
C∈C

ψC(XC). (14)
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Here, C is the set of all cliques in the graph, and the partition function Z is a normalization

constant given by

Z =
∑
X

∏
C∈C

ψC(XC).

The graphical representation of the MRFs relevant to this work are rectangular grids shown in
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Supplementary Figure 1: Examples of the MRF models for photoemission spectroscopy
data. a, 1D MRF model for data in (k,E) coordinates, represented as a chain of random vari-
ables Ẽi. N is the number of measured momentum values. b, 2D MRF model of photoemission
data in (kx, ky, E) coordinates as introduced and demonstrated for use in the main text, with
the random variables Ẽi,j connected on two dimensions kx and ky. c, 3D MRF model for time-
and momentum-resolved photoemission spectroscopy data in (kx, ky, E, t) coordinates. The
random variables Ẽi,j,m are first connected in the graph to the neighboring momentum positions
as in b, then subsequently along the neighboring time points. The time variable in c may also
be replaced with other variables without changes in the structure of the graphical model. In a-c,
the MRFs are constructed using components (cliques) with sizes 1 (left) and 2 (right) in d, with
their respective potential functions written below the illustrations.

Supplementary Fig. 1. The respective potential functions of the size-1 and size-2 cliques are

interpreted as the likelihood and prior of the probabilistic graphical model, respectively. To cast

the band structure reconstruction problem into this framework, we assign the band energies as

the random variables (or model parameters) in the model, and the potential function of each

node (size-1 clique) as the (preprocessed) photoemission intensity at the respective grid posi-

tion. For simplicity and computational efficiency, this formulation doesn’t explicitly account

for the intensity modulations described in Eq. (11) and preprocessing steps are required to neu-

30



tralize their effects. The continuity assumption (i.e. no sharp jump) of the band energies along

momentum directions means that the potential function of size-2 cliques can be represented by

a Gaussian on adjacent momentum grid positions. Intuitively, this means that the closer the two

adjacent energies is, the more probable they are the actual band loci, and vice versa.

In the 1D case (see Supplementary Fig. 1a), the potential function of each node (containing

one band energy random variable Ẽi) is given by

ψi(Ẽi) = Ĩ(ki, Ẽi), (15)

where Ĩ is the photoemission intensity after preprocessing. The potential function of two con-

nected nodes (describing the similarity between two neighboring band energy random variables)

is given by

ψj,j+1(Ẽj, Ẽj+1) = exp

[
−(Ẽj − Ẽj+1)2

2η2

]
. (16)

Plugging Eqs. (15)-(16) into Eq. (14) yields

p(Ẽ1, ..., ẼN) =
1

Z

N∏
i=1

ψi(Ẽi) ·
N−1∏
j=1

ψj,j+1(Ẽj, Ẽj+1)

=
1

Z

N∏
i=1

Ĩ(ki, Ẽi) ·
N−1∏
j=1

exp

−
(
Ẽj − Ẽj+1

)2

2η2

 (17)

as the joint distribution of the 1D MRF, with N being the total number of momentum grid

points. Analogously, we can derive the joint distribution of the 2D MRF as given in the main

text, and that for the 3D MRF in the (kx, ky, E, t) coordinates is

p({Ẽi,j,m}) =
1

Z

∏
i,j,m

Ĩ(kx,i, ky,j, tm, Ẽi,j,m) ·
∏

(i,j,m),(l,o,q)|NN

exp

[
−(Ẽi,j,m − Ẽl,o,q)2

2η2

]
.

The MRF models in different dimensions discussed here follow the same Bayesian interpreta-

tion as the 2D MRF (Eq. (1) in the main text).

S1.3 Optimization procedure

Optimization of the MRF model is a local minima-finding process [71]. The following proce-

dures are described using the 2D MRF in the main text as an example, but the approach can be
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extended to arbitrary dimensions. Due to the large number of random variables (∼ 104 for the

2D MRF in the main text) and their complex dependence structure in the MRF, we solved it nu-

merically using iterated conditional mode (ICM) [57] procedure and implemented with efficient

parallelization schemes, including the coding method and the hierarchical grouping of random

variables. Next, we discuss the motivations and clarify the details of these three aspects. We

provide the associated pseudocode in Algorithm 1.

1. Iterated conditional mode: Originally developed for similar optimization problems arising

in image denoising [71, 74, 75], ICM is applicable to optimizing MRF at any dimension. The

ICM procedure includes (i) initialization of the random variables (e.g. {Ẽi,j} in 2D MRF) and

(ii) selection of a single random variable to optimize in the loss function L while keeping all

the other random variables fixed. Each round in (ii) requires to compute at most five terms

in the loss (Eq. (3) in the main text Methods section) which depend on the selected random

variable Ẽi,j . We can simply evaluate these terms at the energy axis values measured in the

experiment to determine the energy associated with the lowest loss. (iii) iterate over all other

random variables using the same procedure in (ii).

2. Coding method: The ICM procedure described above operates sequentially over every Ẽi,j ,

which is inefficient for the MAP optimization involving a large number of parameters. To im-

prove the optimization performance, we implement the ICM with a checkerboard paralleliza-

tion scheme (or coding method) [59] that scales favorably on multicore computing clusters.

The scheme assigns the nodes of the MRF alternately with white and black colors, as shown

in Supplementary Fig. 2a. If the white nodes are blocked, the black nodes are no longer con-

nected through paths (i.e. sequences of connected edges and nodes). This property is called d-

separation [71, 76]. Analogously, blocking the black nodes d-separates the white nodes. Since

the MRF models satisfy the Hammersley-Clifford theorem [72], d-separation is equivalent to

conditional independence, meaning that the random variables represented by the black nodes

are independent if we condition on those represented by the white nodes. Therefore, condition-

ing on the nodes of one color allows us to compute the terms in the log-probability loss (Eq. (3)

in main text Methods) that depends on the nodes of another color in parallel, which means that

the nodes associated with different colors can be updated alternately. Further details and proofs

related to the coding method have been elaborated in [73, 77].
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Algorithm 1 Optimization procedure for reconstructing a single energy band.
Input: I (3D momentum-resolved photoemission data), E0 (2D initialization from density func-
tional theory calculation), E (1D energy axis)
Parameter: η (hyperparameter of the Markov random field), N (number of epochs)
Output: Erec (Reconstructed 2D energy band)

# Initialize the momentum index grid for an energy band
1: size kx, size ky, size E = size(I)
2: ind x, ind y = meshgrid(range(size kx, step=2), range(size ky, step=2))

# Divide data into four-node units. Eu(i,j,...), Iu(i,j,...) are the band energies and
# photoemission intensities for the node (i,j) in a unit (u) in Supplementary Fig. 2,
respectively

3: for i in [0, 1] do
4: for j in [0, 1] do
5: Eu[i, j, :, :] = E0[ind x + i, ind y + j]
6: log Iu[i, j, :, :, :] = log(I[ind x + i, ind y + j, :])

# Iterative optimization of energy values
7: for n in range(N) do

# Update white nodes
8: Eu[0, 0, :, :] = update E(0, 0, log Iu, Eu, E)
9: Eu[1, 1, :, :] = update E(1, 1, log Iu, Eu, E)

# Update black nodes
10: Eu[0, 1, :, :] = update E(0, 1, log Iu, Eu, E)
11: Eu[1, 0, :, :] = update E(1, 0, log Iu, Eu, E)

# Assemble reconstruction from all nodes in the units
12: for i in [0, 1] do
13: for j in [0, 1] do
14: Erec[ind x + i, ind y + j] = Eu[i, j, :, :]

# Function to update the energy of the element (i, j) within a four-node unit
15: function UPDATE E(i, j, log Iu, Eu, E)

# Calculate the difference between current and all possible energies
16: squ diff = (Eu - E) ** 2 / (2 * η ** 2)

# Calculate all possible log p values, start with log-likelihood
17: log p = log Iu[i, j, :, :, :]

# Substract by energy differences from nearest neighbor nodes within unit
18: log p -= squ diff[(i + 1) % 2, j, :, :, :]
19: log p -= squ diff[i, (j + 1) % 2, :, :, :]

# Substract by energy differences from nearest neighbor nodes of the neighbor-
ing unit

20: log p -= shift(squ diff[(i + 1) % 2, j, :, :, :], 2 * i - 1, axis=2)
21: log p -= shift(squ diff[i, (j + 1) % 2, :, :, :], 2 * j - 1, axis=3)

# Return optimal energy values
22: return E[argmax(log p)]
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a b

Supplementary Figure 2: Numerical optimization of the MRF model. a, Schematic of the
checkerboard parallelization (or coding method) and hierarchical grouping schemes for speed-
ing up the ICM. The nodes of the MRF are alternately colored white and black (checkerboard
parallelization) and each set of four neighboring nodes are group into a unit as colored in grey
(hierarchical grouping). The updates in optimization are carried out first at the four-node unit
level, then alternately on the white or black nodes within the units. b, An example loss curve
for reconstructing the second valence band of WSe2 using the 2D MRF model and parallelized
ICM implementation. L0 is the initial value of the loss at the start of the optimization. Within
an epoch in the parallelized scheme, the white nodes and subsequently the black nodes are sep-
arately updated, therefore each band energy random variable is effectively updated once. The
loss decreases rapidly in the beginning and reaches a minimum after about 90 epochs.

3. Hierarchical grouping: The introduction of the checkerboard parallelization scheme re-

duces the translation symmetry of the original graph (originally symmetric by translation of an

arbitrary number of nodes, now only symmetric by a translation of two nodes in each direction),

which complicates the matrix operations needed to update the loss. However, we can restore

the translation symmetry and carry out the computation on a higher level by grouping a set of

four neighboring nodes into a unit, as illustrated in Supplementary Fig. 2a. In this way, updat-

ing the loss requires only standard matrix operations at the unit level followed by consecutive

updates of the nodes within the units. During the optimization, the loss is updated by two sets

of operations concerning (i) the nearest neighbor nodes within the unit (line 18-19 in Algorithm

1) and (ii) the nearest neighbor nodes of the neighboring unit (line 20-21 in Algorithm 1). The

latter operations are carried out by shifting the higher-level rectangular grid formed by the units

by one step vertically or horizontally, followed by an operation on nodes of the respective units

of the original and the shifted grid. The procedure is implemented in the open-source fuller

package [60] using Tensorflow [58]. Supplementary Fig. 2b shows an example loss curve (i.e.
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loss as a function of iteration) in reconstruction of an energy band, where the optimization is

essentially complete within ∼ 90 iterations.

4. Robust initialization: Since the current MRF model doesn’t include any explicit regular-

ization on the outcome with respect to the initialization, the optimizer is free to explore a large

range of values. In other words, the initial band dispersion is able to freely deform to fit to

the band loci embedded in the data. This design improves the robustness of the algorithm to

initialization. As a result, in scenarios with only non-crossing energy bands, the MAP optimiza-

tion can simply be initialized with constant energy values to yield consistent results. In general

situations involving band crossings, the optimization procedure requires an initialization with

approximate energy values that preserves the band-crossing information, such as those provided

by electronic structure calculations. In this scenario, the robustness of the algorithm is mani-

fest in the fact that it can tolerate a certain amount of deviation in the initialization and still

converges to a satisfactory reconstruction, which, in realistic settings, is closer to the real band

structure contained in photoemission data than the initialization (e.g. from electronic structure

calculations). Quantitative examples demonstrating the robustness of initialization are provided

using synthetic data in Supplementary Figs. 6-9 (see Section S2).

S1.4 Hyperparameter tuning

The optimization process in the band structure reconstruction involves the tuning of three kinds

of hyperparameters, which are the momentum scaling parameter, the rigid energy shift and the

width of the nearest-neighbor Gaussian prior. A flowchart presented in Supplementary Fig. 3

illustrates the general steps in obtaining a desirable reconstruction including where the tuning

of each hyperparameter fits in.

1. Momentum scaling: applied to equalize the momentum scale and resolution between the

BS calculation (e.g. conducted on relaxed unit cells, see Supplementary Table 3) and the exper-

imental data (measured on real materials). In our reconstruction procedure, the scaling factor

is fixed in the reconstruction of all energy bands using a particular level of density functional

theory (DFT) calculation as initialization.

2. Rigid energy shift (∆E): separately applied to each energy band in the calculated BS to

coarse-align to the band mapping data. In our case, the shift is chosen manually by visual
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Supplementary Figure 3: Flowchart for reconstruction tuning. Illustration of the steps for
tuning the reconstruction starting from preprocessed data (outcome from the procedure illus-
trated in the main text Fig. 1c-f). Tuning of the three hyperparameters – the momentum scaling,
energy shift (∆E) and nearest-neighbor Gaussian width (η), are placed in sequence within the
workflow. The workflow outputs reconstruction of a single band with tuned hyperparameters at
the end. For reconstructing the dispersion of multiple energy bands, the workflow is repeated
over each band.
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inspection of the theoretical band energies overplotted on photoemission data (usually in the

energy-momentum slices). In practice, the necessary energy shifts vary between bands and also

depend on level of approximation in the BS calculation used as initialization, as illustrated in

Fig. 2a of the main text.

3. Width of the nearest-neighbor Gaussian prior (η): The value of the parameter η is chosen

manually from an initial estimate and subsequently optimized by visual inspection of the re-

construction outcome. In the case of WSe2, the momentum grid of the experimental data has a

spacing of ∆kx = ∆ky ≈ 0.015 Å
−1, we used η ∈ [0.05, 0.2] eV. Generally speaking, the initial

estimate of η has the order of magnitude proportional to the momentum grid spacing times the

dispersion due to the following argument: To obtain a consistent reconstruction, we expect the

posterior to stay relatively constant and be independent of the momentum grid spacing, which

should be sufficiently fine to ensure band continuity. Since after preprocessing the data, the

intensity (i.e. the likelihood) is normalized and stays constant with respect to the momentum

grid spacing, the nearest-neighbor Gaussian prior term should stay constant correspondingly.

For example, for two nearest-neighbor energy variables along the kx axis, the reasoning above

requires,

const ≈ (Ẽi+1,j − Ẽi,j)2

η2
≈
(
∂E

∂kx

)2
∆k2

x

η2
. (18)

Thereby, we obtain η ∝ ∂E
∂kx

∆kx, which provide an order-of-magnitude estimate of η. The same

lines of reasoning apply to the ky axis, for detector systems with relatively constant momentum

resolution. As the grid spacing is the same in both kx and ky directions, a single η is used for

reconstructing each band in the case of WSe2, but the best η differs somewhat between energy

bands due to their various amounts of dispersion and how they are connected to the neighboring

bands (i.e. their environment), hence the range of η as specified earlier.

To demonstrate the process of hyperparameter tuning, we provide an example showing the

reconstruction of the second valence band of WSe2 (see Supplementary Fig. 4), visualized in

the top view of the reconstruction outcome and in the momentum path along high-symmetry

lines of the projected Brillouin zone. The orange-framed subfigures represent the range of

hyperparameter settings that yield a good reconstruction, which represents a relatively broad

acceptance range to yield a good reconstruction. Although this aspect is dependent on the data,

in our experience, the hyperparameter tuning may be carried out in semi-automated fashion
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Supplementary Figure 4: Demonstration of hyperparameter tuning. An example of tuning
the hyperparameters, the rigid energy shift (∆E) and the width of the nearest-neighbor Gaussian
prior (η), for reconstructing the second valence band of WSe2. a, Evolution of reconstructed
energy band during hyperparameter tuning. b, Evolution of the initialization and reconstructed
band along high-symmetry directions of the hexagonal lattice of WSe2. The energy bands are
overlaid on top of preprocessed data from photoemission band mapping of WSe2 (Fig. 1f in the
main text). In a,b, the images showing the optimal region for the hyperparameters identified by
the scientists are emphasized with orange-colored frames.
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Supplementary Figure 5: Band structure reconstructions with different theory initializa-
tions. Comparisons between reconstructed photoemission band structures (abbreviated as re-
con.) and calculated band structures (abbreviated as calc.) from density functional theory
(DFT) with different exchange-correlation functionals, including a, local density approxima-
tion (LDA); b, PBE generalized gradient approximation (GGA); c, PBEsol GGA; d, HSE06
hybrid functional. For each set of DFT band structure, the same energy shift (as in Supplemen-
tary Fig. 12) is applied globally to all bands to align the energy zero at the K point with the
reconstruction. e, The distribution of hyperparameters used for the reconstruction in a-d.
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guided by visualization and heuristics. Typically, 10-20 trials are sufficient to yield a good

reconstruction, although a grid search may also be carried out for completeness. For a given

dataset, the hyperparameters typically fall within a similar range, therefore, determining the

range of hyperparameters need only be carried out once. The choice of hyperparameters is

more flexible for reconstructing more isolated bands or those with fewer crossings, and vice

versa. The band-wise reconstruction and the computational efficiency of the algorithm also

enable further parallelization in hyperparameter tuning by distributing the optimization tasks in

a high-performance computing infrastructure.

S1.5 Reconstructions using different theories as initializations

Comparison between reconstructed and theoretical band structures for 2H-WSe2 are presented

as a similarity matrix in the main text. To provide more intuitive visual guidance in interpret-

ing the BS distance metric used in constructing the similarity matrix, we compare these band

structures along the high-symmetry lines of the Brillouin zone in Supplementary Fig. 5.

S2 Generation of and validation on synthetic data

The advantage of using synthetic data is that the underlying band structure (i.e. ground truth)

is exactly known such that they can be used for benchmarking the performance of the MAP re-

construction algorithm described in this work. Benchmarking includes numerical experiments

on two interrelated aspects: (1) testing the robustness of the reconstruction algorithm using dif-

ferent initializations and comparing the deviations of the outcome from the ground-truth; (2)

testing the accuracy of reconstruction by determining the closest-possible reconstruction out-

come from a given initialization. In the following, we first describe the workflow of generating

the band structure, the photoemission data and the initializations, which provide all essential

components to carry out the tests. Then we present the benchmarking results on various cases.

S2.1 Generation of band structure data

We have adopted two approaches to generate band structure data to meet the needs for testing

the reconstruction algorithm. Firstly, we used analytic functions to describe the band dispersion

(see Supplementary Fig. 6). They are computationally efficient, contain tunable parameters, can
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be produced at any resolution, and are easily extendable to higher dimensions. In 2D momen-

tum space, we constructed a multi-sinusoidal band and two double-crossing parabolic bands.

In 3D momentum space, we constructed a scaled version of the strongly oscillating second-

order Griewank function [78] and the tight-binding formulation of the two-band graphene band

structure [79] as model band dispersion surfaces. The modified Griewank function takes the

form,

Egriewank(kx, ky) =
1

16000
(k2
x + k2

y)− cos(2kx) cos(
√

2ky). (19)

The two-band tight-binding model of graphene has the energy dispersion relations,

E±(kx, ky) = ±

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
. (20)

Here, E+ and E− refer to the conduction band and the valence band, respectively. Secondly,

we used numerical band structures from DFT calculations with different exchange-correlation

functionals (see section S4). They are more physically realistic, but also require more compu-

tation to obtain than generating bands from analytic functions.

S2.2 Initialization tuning

For simple bands constructed using analytic functions, tuning can be achieved by modifying

the parameters in the functions. In the complex multiband situation such as that of WSe2, we

tuned the initialization of the reconstruction algorithm by scaling or perturbing the coefficient

amplitudes of the constituent bases of the band structure. In our case, the bases are the terms

of the hexagonal Zernike polynomials (ZPs) [34, 80]. Although unconstrained basis tuning

is prone to unrealistic results, it achieves a level of ad hoc control for efficient generation of

a large amount of distinct initializations. For more physically realistic tuning, we used DFT

calculations with different exchange-correlation functionals (see section S4).

S2.3 Approximate generation of photoemission data

We approximately synthesized momentum-resolved photoemission data for each energy band

by plugging the band energy and linewidth parameter at each momentum position into the Voigt

profile [81] (with Gaussian and Lorentzian parameters σ and γ, and amplitude B) computed

using the Faddeeva function W [82]. The Voigt profile approximates the convolution of a

41



a

c

e

d

f

b

Intensity
Intensity

−1 0 1
k (a.u.)

−5.0

−2.5

0.0

E
ne

rg
y 

(a
.u

.)

−1 0 1
k (a.u.)

ground truth

initialization

reconstruction

Intensity

−6 −4 −2 0 2 4 6
kx (a.u.)

−6

−4

−2

0

2

4

6

k y
(a

.u
.)

Ground truth

−6 −4 −2 0 2 4 6
kx (a.u.)

Initialization

−6 −4 −2 0 2 4 6
kx (a.u.)

Reconstruction

−2

−1

0

Energy
(a.u.)

−6 −4 −2 0 2 4 6
kx (a.u.)

−6

−4

−2

0

2

4

6

k
y

(a.u.)

Difference

−0.1

0.0

0.1

Energy
(a.u.)

−1.0

−0.5

0.0

0.5

1.0

k y
(Å
−
1
)

Conduction Band

Ground truth Initialization Reconstruction

−1.0 −0.5 0.0 0.5 1.0
kx (Å−1)

−1.0

−0.5

0.0

0.5

1.0

k y
(Å
−
1
)

Valence Band

−1.0 −0.5 0.0 0.5 1.0
kx (Å−1)

−1.0 −0.5 0.0 0.5 1.0
kx (Å−1)

0
1
2
3

Energy
(eV)

−3
−2
−1
0

Energy
(eV)

−1.0 −0.5 0.0 0.5 1.0
kx (Å−1)

−1.0

−0.5

0.0

0.5

1.0

k
y
(Å
−
1)−0.1

0.0

0.1

Energy
(eV)

−1.0

−0.5

0.0

0.5

1.0

k
y
(Å
−
1)

Difference

−0.1

0.0

0.1

Energy
(eV)

E
ne

rg
y 

(a
.u

.)

k (a.u.) k (a.u.)
−1 0 1

−10

−5

0

−1 0 1

ground truth

initialization

reconstruction

Intensity

E
ne

rg
y

E
ne

rg
y

Supplementary Figure 6: Validations on 2D and 3D synthetic data. Test results for the re-
construction algorithm on band structures generated with analytic functions. a, Reconstruction
of a multi-sinusoidal band. b, Reconstruction of two double-crossing parabolic bands. c,d,
Reconstruction of a multi-extrema band with dispersion following the second-order Griewank
function (see Eq. (19)) [78]. e,f, Reconstruction of the two bands of graphene nearby its Fermi
level (e,f) formulated in the tight-binding model (see Eq. (20)) [79]. The volumetric renderings
in c,e, display the synthetic data. The initialization for the reconstruction in a is a flat line, while
2D flat bands are used to initialize the cases in d,f. In b, two double-crossing curves are needed
as initialization to preserve the crossing in the reconstruction. The values in the difference plots
in d,f are calculated by subtracting the ground-truth band energies from the reconstructed ones.

single-particle spectral function (see Section S1), describing the photoemission observable, with

a Gaussian energy resolution function. The synthetic photoemission intensity, Isynth, for a band

structure composed of a set of energy bands, EB = {Ebi}, is generated by combining multiple

Voigt profiles in summation, similar to Eqs. (12)-(13).

Isynth(kx, ky, E) =
∑
j

Bj(kx, ky)

σj
√

2π
Re

[
W

(
E − Ebj(kx, ky) + iγj(kx, ky)

σj
√

2

)]
(21)
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Without loss of generality, we assume the energy resolution in detection for all bands to be the

same (σj = σ). For the cases shown in Supplementary Figs. 6-9, the linewidth parameter γ

are set to a constant throughout the band. In all synthetic data, we omitted the inhomogeneous

intensity modifications in realistic photoemission data due to experimental factors such as the

experimental geometry, sample condition, matrix element effect, photon energy, etc. This omit-

tance relies on the assumption that the essential preprocessing step, such as symmetrization and

contrast enhancement [25] in our workflow (see main text Methods), can sufficiently restore

the intensity continuity along the energy bands. The momentum resolution effect is also not

accounted for because the instrument (such as METIS 1000 [7, 55]) has a higher momentum

resolution than the momentum spacing used in data binning or generation.

S2.4 Validation of the reconstruction algorithm

Using synthetic data generated from analytic functions of varying complexities as the band

structure, we test out the accuracy of reconstruction algorithm (see Supplementary Fig. 6);

Using synthetic multiband data generated from the LDA-level DFT (LDA-DFT) band structures

of WSe2 (see section S4), we tested out the sensitivity of reconstruction to the initialization

(see Supplementary Fig. 9). In this case, to capture sufficient physical realism similar to the

photoemission band mapping of WSe2 presented in the main text, we set the energy resolution

parameter of σ = 100 meV, the lineshape parameter γ = 50 meV [83], and the energy spacing of

data to ∼ 18 meV, identical to the energy bin size for the experimental data. The tests include

four sets of numerical experiments summarized below:

1. Reconstructing non-crossing bands: For isolated bands, we tested synthetic data con-

structed from a multi-sinusoidal band (Supplementary Fig. 6a), the band generated by the

Griewank function (Supplementary Fig. 6c-d), and the two-band tight-binding model of graphene

(Supplementary Fig. 6e-f). In these cases, initialization with a flat band without any initial

knowledge of the band dispersion (i.e. cold start) is sufficient to recover its shape, regardless of

the complexity of the dispersion.

2. Reconstructing crossing bands: We tested the simplest case of crossing bands with two

parabolas of opposite directions of opening (Supplementary Fig. 6b), a recurring pattern in

band structures. To recover the dispersion without band index scrambling, the knowledge of
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Supplementary Figure 7: Essential information in initialization for reconstruction. Results
from a series of numerical experiments for demonstrating the effects of band-crossing infor-
mation in the initializaiton. For clarity, the results are compared against the ground truth (g.t.)
band dispersion – double-crossing parabolas – by overplotting in dashed lines. The tuning in-
volves initializing the reconstruction with three sets of common curves: a-c, parallel straight
lines, d-f, single-crossing straight lines, and g-l, double parabolas. The red check marks (X) la-
bel the reconstructions with correct crossings, while the blue check marks (X) label those with
anti-crossings. All numerical experiments used the same simulated data from a toy model with
double-crossing parabolas containing only the second and zeroth-order terms. For reconstruc-
tion experiments, the nearest-neighbor Gaussian width hyperparameter (η) in the MRF model
is tuned, while the relative position of the initial conditions is shifted to each configuration.
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crossing needs to be included numerically in the initialization. This means, operationally, that

the initialization requires crossing bands at nearby energy values, or that the reconstruction

needs a warm-start optimization. For the double-crossing parabolas, the initializations that

yield feasible outcomes are generated by slight tuning of the parabola parameters in the range

that retains the crossing. A careful examination over possible scenarios largely confirms this
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Supplementary Figure 8: The effects of data resolution on reconstruction. Results from a
series of numerical experiments for demonstrating the effects of data resolution in either in-
strument resolution (σ) or energy spacing of data (∆E) on the accuracy in reconstruction. The
results are compared against the ground truth (g.t.) band dispersion – displaced parabolas – by
overplotting in dashes lines. The σ parameter is tuned to 50 meV, 100 meV and 200 meV, while
the ∆E parameter to 6 meV, 12 meV and 24 meV. In a-i, the synthetic data with ground truth
dispersion is shown on the left, the reconstruction outcome is displayed on the right, along with
a zoomed-in view near the crossing placed at the bottom. Quantitative values of the reconstruc-
tion error are given in Supplementary Table 1.

intuition: (1) Initialization with parallel straight lines (without any crossing) only results in non-

crossing bands in the reconstruction (Supplementary Fig. 7a-c). When the initial straight line
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contains the crossings in the ground truth, a symmetry breaking in the reconstruction takes place

(Supplementary Fig. 7c), depending on the data and the Gaussian width hyperparameter (η).

(2) Initialization with two straight lines containing a single crossing yields a reconstruction with

at most a single crossing (Supplementary Fig. 7d-f). (3) Initialization with double parabolas

yields a reconstruction with at most the same number of crossings within the range of the

data (Supplementary Fig. 7g-l). When the reconstruction is successful, the crossings in the

initialization are close to the intersection between the two parabolas. Besides, double-crossing

parabolas with other parameters from those in Supplementary Fig. 7 are tested and similar

outcomes are obtained.

Supplementary Table 1: Reconstruction error in resolution tuning experiments. For each
band, the reconstruction error is the root-mean-square error per momentum spacing (unit in
meV) between reconstruction and the ground truth, according to Eq. (8). In each numerical
experiment, the tabulated reconstruction error is averaged over the corresponding two parabolic
bands shown in Supplementary Fig. 8. The columns are the instrument resolution (σ) and the
rows are the energy spacing (∆E) used to generate the intensity data.

σ = 50 meV σ = 100 meV σ = 200 meV
∆E = 6 meV 2.1 3.7 7.5
∆E = 12 meV 2.3 3.8 7.9
∆E = 24 meV 2.4 4.6 10.4

The crossing-band model is also an effective test case for resolution effects of the recon-

struction algorithm. In this case, a momentum shift is introduced to two parabolic bands to

produce the crossing, similar to the Rashba-split surface states of Au [84], which if often used

to calibrate experimental resolution in photoemission studies. We conduct a series of numerical

experiments using different width of the instrument resolution and energy spacing to simulate

the resolution effect in the synthetic data, using reasonable parameter values. All numerical

experiments use a nearest-neighbor Gaussian width hyperparameter η within [0.08, 0.11] for

the reconstruction and no rigid energy shift is introduced. We tabulate the outcomes visually

in Supplementary Fig. 8 as gridded figures and quantitatively in Supplementary Table 1 using

the reconstruction error (root-mean-square error between ground truth and reconstruction) with

unit in meV. These results show that the reconstruction accuracy, as quantified by the error, has

the same trend as the data resolution, which is determined by both the instrument resolution and

energy sampling. The instrument resolution appears to have a larger effect on the reconstruction
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than the energy spacing. In other words, the worse the data resolution (σ = 200 meV and ∆E

= 24 meV being the worst case), the higher the reconstruction error. From visual inspection of

the reconstruction in Supplementary Fig. 8, including the zoomed-in region where the crossing

is present, it appears that these changes in reconstruction accuracy create essentially no differ-

ence in the band dispersion away from the band crossing and only a marginal difference in the

vicinity of the band crossing.

3. Sensitivity of reconstruction to scaled energies as initialization: We scaled the energies

of the LDA-DFT band structure of WSe2 (using the first 8 valence bands) around the mean

energy of each band (see Supplementary Fig. 9c) for use as the initialization. The accuracy

of the reconstruction outcome is evaluated by its average error ηavg (Eq. (8) in the main text

Methods), calculated with respect to the ground-truth band energies. The results displayed

in Supplementary Fig. 9d,f show that the average error and its spread in the reconstruction are

reduced from the corresponding values in the initialization. Quantitatively, in the reconstruction,

ηavg is within the range 20-65 meV, while in the initialization, ηavg varies within 45-100 meV

for all 8 valence bands.

4. Sensitivity of reconstruction to differently calculated band structures as initialization:

We used DFT band structure calculations of WSe2 with PBE, PBEsol and HSE06 exchange-

correlation functionals (see section S4) to initialize the reconstruction. The accuracy of the

reconstruction is quantified similarly as in the previous numerical experiment using ηavg. The

results displayed in Supplementary Fig. 9e,g,h show that, despite the huge spread in the aver-

age error for the different levels of DFT calculations (used as initialization without global shift

alignment of energy zero), the corresponding reconstructions all have average errors at around

or below 40 meV for every band. The value of ηavg varies by up to∼ 30 meV (i.e. between band

#1 and #6) in each set of reconstructed bands, much lower than those in the initialization.The

former can be improved by casting the experimental data into finer bins in the preprocessing

stage (single-electron events can be binned into various sizes) or interpolating between existing

bins, while the latter can be improved by using a continuous probabilistic model [71] to formu-

late the reconstruction problem, albeit at the cost of much increased computational demand.

The results of the above numerical experiments demonstrate that the reconstruction by MAP
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Supplementary Figure 9: Validation on 3D synthetic multiband photoemission data. a,
Synthetic photoemission data with b, the underlying band structure obtained from LDA-level
DFT calculation of WSe2 (only the first 8 valence bands are used here). c, Comparison of two
sets of differently scaled (by 0.8 and 1.2 times, respectively) initial conditions with respect to
the ground-truth band structure calculation (LDA calc.), shown for a kx-E (left) and a ky-E
(right) slice. d,e, Comparison of the average error ηavg for energy bands used as initializations
(solid dots) and reconstructions (hollow dots). The initializations are constructed by scaling
the ground-truth band energies (d) or by using other DFT calculations (e). The reconstructions
all have reduced ηavg compared with the initialization and ηavg is consistent across all energy
bands. f,g, Reconstruction, ground truth (LDA), and initialization overlaid on the synthetic data
along high-symmetry lines of the hexagonal Brillouin zone, corresponding to two of the cases
in d and e, respectively. The energy zeros of the initialization in d-e are aligned with the ground
truth via a global shift. h, Comparisons of ground truth (LDA), reconstructed bands, and the
differences between initialization (PBE), reconstruction and ground truth (g.t.) for each band.
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optimization converges to a consistent range in the tested scenarios and initializations. It should

be noted here that the fundamental accuracy in reconstruction reported here is still limited by

the coordinate spacings of the data along all dimensions and the discrete nature of the MRF

model (the output is centered only at the bin locations).

S2.5 Computational benchmarks

We used the available synthetic photoemission datasets based on the computed band structure

of WSe2 to construct benchmarks. The synthesis made use of the approach described in section

S2.1. The two datasets used here, taken from [85], exhibit different characteristics, which may

be qualitatively described using the energy range of an energy band. The more overlap in energy

range between two energy bands, the more likely they have crossings (or anti-crossings). The

dataset-specific information is as follows:

• The synthetic dataset of the WSe2 K-point shows close proximity in energies between neigh-

boring momentum locations. The energy ranges of all energy bands have no or up to a moderate

degree of overlap. The dataset size is 30 × 30 × 500 and contains 900 photoemission spectra.

• The synthetic high-symmetry line dataset of WSe2 exhibits large dispersion. Since the high-

symmetry line often represents the direction with the most dispersion in the band structure, the

energy ranges of all energy bands are strongly overlapping. The dataset size is 186 × 500 and

contains 186 photoemission spectra.

In both cases, the ground-truth band dispersions are taken from the LDA-DFT calculation, in-

cluding all 14 valence bands, while the initializations for benchmarking both band reconstruc-

tion approaches are the PBE-DFT calculation (partial example see Supplementary Fig. 9g).

Using these two datasets, we compare the reconstruction algorithms based on pointwise fitting

(using the code in [39]) and MRF as introduced in this work. The hyperparameters for the

pointwise fitting involves only the band-wise relative shifts applied in each band initialization

(14 hyperparameters in total for 14 bands), which were tuned for each band sequentially from

band #1 to band #14 using an expanding window approach (introduced in [39]). For the MRF

reconstruction, the hyperparameters (including the band-wise shift and the width of the nearest-

neighbor Gaussian prior, 28 hyperparameters in total for 14 bands) were tuned individually

while reconstructing each band. The hyperparameter tuning made use of grid search through

49



a range of preset values, using the root-mean-squared (RMS) error for determining the final

choice. All benchmarks were run on a on-premises computing server (Dell PowerEdge R840),

equipped with four Intel Xeon Gold 6150 multicore CPUs.

Supplementary Table 2: Algorithm comparison using benchmark datasets. Two syn-
thetic datasets with different number of spectra (Nspec) and the range of band indices
(Rband) are used for benchmarking the algorithm performance. The per-band, per-spectrum
reconstruction error (ηbk) is calculated using Eq. (22). The instability (rband) quantifies the
variation of the fitting residuals among all spectra within a dataset using the standard de-
viation of residuals, as in Eq. (23). The single-run time (tmono) is the averaged elapsed
time in a single execution of fitting, while the tuning time (ttune) is the total time used for
tuning the parameters to reach the final outcome. Both methods use DFT calculation as the
initialization for the band positions.

Dataset 1 Nspec Rband

Pointwise line fitting 2 MRF reconstruction
tmono

(s)
ttune

(s)
ηbk

(eV)
rband

(eV)
tmono

(s)
ttune

(s)
ηbk

(eV)
rband

(eV)

WSe2

K point
900

1-2 42 421 4.6e-4 3.2e-4 6.6e-1 34 5.8e-3 4.1e-3
3-4 168 2519 3.6e-1 1.4e-1 1.0 96 1.1e-2 5.5e-3
5-8 412 11964 1.5e-1 5.3e-2 2.2 134 6.0e-2 2.1e-2

9-14 2792 78181 3.6e-1 9.6e-2 3.8 236 7.8e-2 2.1e-2

WSe2 high-
symmetry

line
186

1-2 13 191 3.6e-1 2.1e-1 3.9e-1 32 1.1e-2 2.0e-2
3-4 46 692 6.2e-1 2.9e-1 2.9e-1 31 1.9e-2 1.8e-2
5-8 385 8858 5.5e-1 1.7e-1 8.6e-1 56 3.0e-2 1.4e-2

9-14 872 27889 3.3 8.7e-1 1.6 109 4.1e-2 1.1e-2
1 Datasets are obtained from [85].
2 Executed using the software described in [39].

The computational performance of the two algorithms were evaluated using four different

metrics as summarized in Supplementary Table 2. The timing metrics provided in the table

include the average single-run computing time in each dataset as well as the total computing

time of the hyperparameter tuning, which covers all grid search steps of the energy bands (in-

dices described in Rband) in every benchmarking stage. The computing time for the single runs

of each dataset show a clear advantage of the machine learning-based algorithm and the gap

between the two algorithms only widens as the number of bands increases. The accuracy of the

reconstruction is quantified by an RMS error averaged over all reconstructed bands and spectra,
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following the expression for “band delta” in [67].

ηbk(Egt, Erecon) =

√√√√ 1

NbNspec

Nb∑
i=1

∑
k

(Egt,i,k − Erecon,i,k)2, (22)

where Nb is the number of bands and the subscript i is the band index. The instability is

quantified by the standard deviation of the residual (difference between the ground truth and

reconstructed energy dispersion), δE = Egt − Erecon.

rband(Egt, Erecon) =

√√√√ 1

Nb

Nb∑
i=1

∑
k

(δE2
i,k − δEi,k

2
), (23)

where the overline indicates the mean. This metric has been used in earth sciences to quantify

surface roughness [41, 86], which may be interpreted similarly in our case. The difference is

that the roughness in reconstructed surface is largely due to the instability of the optimization,

besides the quality of the data, because band dispersions are generally smooth and continu-

ous. In the main text Fig. 4, these tabulated metrics are normalized by the number of spectra

to allow comparison between datasets, as is also adopted in [39]. We interpret the results in

Supplementary Table 2 in the following two aspects:

• Computing time (tmono and ttune): For the same dataset, the single-run computing time of the

MRF reconstruction is about 2-3 orders of magnitude faster than distributed pointwise fitting.

Even with the hyperparameter tuning included, the MRF reconstruction still runs 1-2 orders of

magnitude faster, although the MRF reconstruction requires tuning one more hyperparameter

than the pointwise fitting approach for each band.

• Reconstruction quality (ηband and rband): The significantly higher reconstruction error and

instability for pointwise fitting is due to the lack of connectivity between neighbors come pri-

marily from the (theoretical) initialization. Because for each band, even though a global energy

shift hyperparameter is tuned, it cannot guarantee that everywhere locally the shift is optimal

for band reconstruction, resulting in scrambled band indices in the local patches that the fitting

fails. This scenario is a failure mode of the pointwise fitting-based reconstruction as illustrated

in [39] for real-world experimental data. This limitation of pointwise fitting approach is less

pronounced when the energy range overlap between bands is small, yet becomes more severe

in the high-symmetry line dataset, where the strong energy range overlap and the multiple band
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crossing (or anti-crossing) make the reconstruction harder to resolve by tuning a single energy

shift parameter. The probabilistic framework of the MRF approach largely circumvents this lim-

itation using a physical prior that accounts for the proximity of the neighboring energy values

and achieves high stability in the reconstruction.

S3 Reconstruction for other experimental datasets

To test the functionality of our MRF reconstruction algorithm on other materials, we have ac-

quired photoemission band mapping datasets from gold (Au), a metal, and bismuth tellurium

selenide (Bi2Te2Se), a topological insulator. Due to the complexity of the electronic structure

of these materials, we focus here on reconstructing a subset of the energy bands of these two

materials that are pronounced within the measured energy range.

S3.1 Near-gap electronic bands of a topological insulator (Bi2Te2Se)

The dataset for Bi2Te2Se was measured at room temperature at the Fritz Haber Institute in

Berlin using a momentum microscope (SPECS METIS 1000). The sample growth method was

previously described in [87]. A clean surface was prepared in vacuum by in situ cleaving with

a Scotch tape. During the measurement, light excitation of 800 nm was used to examine ultra-

fast dynamics. The temporal features were ignored here and averaged to improve the signal to

noise ratio of the data. The photoemission spectra of Bi2Te2Se near the Fermi level features

a topologically-protected surface state (SS) that intersects at the Dirac point (DP) as shown in

Supplementary Fig. 10b. The SS bridges the valence and conduction bands, an identifiable and

prominent feature for this class of materials directly measurable via photoemission [35, 88].

Preprocessing of the 3D band mapping data follows the procedure for WSe2 data described in

the main text, except that the rotational symmetrization is only threefold, due to the symmetry

of the material. We used numerical initializations from simple functions such as paraboloid and

Gaussian in 2D, instead of any first-principles calculation. The reconstructed energy disper-

sions were smoothed using Chambolle’s total variation denoising algorithm [89] implemented

in scikit-image [90], removing the high-frequency noise as a result of the Poisson statistics

of the photoemission data. As shown in Supplementary Fig. 10c, the simple initializations

we chose are sufficient to reconstruct the complex dispersion from the first two valence bands,
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Supplementary Figure 10: Band reconstruction for Bi2Te2Se and Au(111). a, 3D view of
the photoemission band mapping data of the topological insulator Bi2Te2Se around the Dirac
point (DP). The energy bands near the DP are labeled in b in a 2D slice through the DP. The
outcome of reconstruction is superimposed on the preprocessed data in c. Momentum-resolved
reconstruction is shown in 2D (d) and 3D (e), where the color map represents the energy values
within each band. The experimental photoemission data for Au(111) is shown in f with desig-
nations of the band structures labeled. Reconstruction of some of the d bands are shown in g
along with the theoretical calculations used for initialization.
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the SS and parts of the first conduction band occupied by excited electronic population. The

appearance of the first conduction band for Bi2Te2Se is a result of photoexcitation [91]. The

reconstructed bands show sixfold symmetry and warping in agreement with previous theoretical

investigations [35, 88], which is more straightforwardly visualized in 2D and 3D as in Supple-

mentary Fig. 10d-e. For the dispersion surfaces of the SS and conduction band, we limited the

band dispersion to realistic energy range not far from the photon energies of the excitation light

pulses.

S3.2 Bulk electronic bands of gold (Au)

The Au dataset was measured at 100 K at the SGM-3 beamline [92] of the synchrotron radi-

ation facility ASTRID2 in Aarhus, Denmark. The Au samples were purchased from MaTecK

GmbH with a (111) surface. The sample preparation procedure has been previously described

[93]. The photoemission data were measured along the high-symmetry direction (ΓKMΓ) of

Au(111), which exhibits a hexagonal symmetry in the surface Brillouin zone [94] (indicated

with an overbar over each symmetry label) similar to WSe2. As shown in Supplementary Fig.

10f, the collection of energy bands present in the photoemission data for Au(111) include the

surface state (SS), which have sufficient momentum and energy resolution, are composed of

momentum-shifted parabolas [84]. The sp bands and the d bands are the low-energy bulk

electronic bands of Au. The Au data has been preprocessed using contrast enhancement and

intensity smoothing as described in the main text for the WSe2 data before reconstruction. The

reconstruction used existing DFT calculations, which feature a Au(111) slab containing five

Au layers conducted according to [95], as initialization to retrieve parts of the d bands that are

resolvable within the current dataset. The comparison between initialization and reconstruction

is shown in Supplementary Fig. 10g.

S4 Band structure calculations

S4.1 DFT calculations

The crystal structure of bulk WSe2 with 2H stacking (2H-WSe2) belongs to the P63/mmc space

group and consists of two Se-W-Se triatomic layers as shown in Supplementary Fig. 11. The

stacking order of the two hexagonal layers is -BAB-ABA- and the long c-axis is oriented per-
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pendicular to the layers. Electronic structure calculations were performed within DFT using

the local density approximation (LDA), the generalized-gradient approximation (GGA-PBE

and GGA-PBEsol), and hybrid (HSE06) exchange-correlation functionals as implemented in

FHI-aims [66]. The atomic orbitals basis sets, the integration grids and Hartree potential em-

ployed for all calculations are according to the default “tight” numerical settings of FHI-aims.

A 16×16×4 uniform k-gird was used to sample the Brillouin zone. The Broyden-Fletcher-

Goldfarb-Shanno optimization algorithm was used to relax the atomic positions until the resid-

ual force component per atom was less than 10−2 eV/Å. Supplementary Table 3 shows the

optimized lattice constants, a and c, as obtained by the evaluation of the analytical stress tensor

[96] using different exchange-correlation functionals. In all BS calculations, we included the

effect of spin-orbit coupling, which is known to introduce a large splitting of the outermost

valence states of bulk 2H-WSe2 [97].

a b

Supplementary Figure 11: Crystal structure of bulk 2H-WSe2. a, Side view and b, top view
of the crystal structure of 2H-WSe2. The space group of the hexagonal structure is P63/mmc
with the c-axis oriented perpendicular to the stacking layers. In each case, the real-space unit
cell is labelled by dashed black lines.

The calculated BSs of bulk 2H-WSe2 using different levels of approximation for the exchange-

correlation (XC) functional are shown in Supplementary Fig. 12. For each XC functional, the

calculations were performed on (1) fully optimized structures (black lines), and on (2) opti-

mized structures by fixing the lattice parameters of the unit cell to the experimental values

(colored lines). All calculations using different XC functionals reveal an indirect band gap with
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a b

c d

Supplementary Figure 12: Bulk electronic band structure of 2H-WSe2. a-d, Band structure
of bulk 2H-WSe2 along the Γ-K-M-Γ momentum path of its Brillouin zone including the effect
of spin-orbit coupling. Calculations were performed using the LDA (green, a), PBE (orange,
b), PBEsol (yellow, c), and HSE06 (blue, d) exchange-correlation functionals and optimized
structures (see Supplementary Table 3) with the unit cell dimensions kept fixed at the experi-
mental lattice constants. Black lines in a-d represent the corresponding calculations using fully
optimized geometries. For comparison, the two band structures in each plot are rigidly shifted
to align their uppermost valence state at the K high-symmetry point, where we also define as
the energy zero. All band structure calculations used kz = 0.35 Å

−1
.
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Supplementary Table 3: Parameters from density functional theory calculations. Op-
timized lattice constants, spin-orbit splitting of the topmost valence states at the K high-
symmetry point, and the band gap of bulk 2H-WSe2 calculated within density functional
theory using the LDA, PBE, PBEsol and HSE06 exchange-correlation functionals. For com-
parison, we also report the corresponding experimental values at room temperature.

xc-functional LDA PBE PBEsol HSE06 Experiment
a (Å) 3.250 3.317 3.269 3.295 3.28
c (Å) 12.827 14.921 13.211 13.863 12.98

Spin-orbit splitting at K (eV)
0.485 1

0.490 2

0.473 1

0.481 2

0.476 1

0.484 2

0.467 1

0.480 2
0.5 3

Band gap (eV)
1.022 1

1.052 2

1.186 1

1.074 2

1.105 1

1.060 2

1.679 1

1.582 2
1.219 4

1 Fully optimized structure.
2 Optimized structure by fixing the lattice parameters to experimental values.
3 Ref. [10].
4 Ref. [98].

the conduction band minimum located along the Γ-K path (Γ and K being the bulk equivalents

of the Γ and K high-symmetry points). For both sets of optimized structures, the LDA results

reveal a valence band maximum at the Γ point, compatible with experimental measurements,

while the PBE, PBEsol, and HSE06 band structures obtained for fully optimized structures ex-

hibit a valence band maximum at the K point. Nevertheless, fixing the unit cell dimensions at

the experimental lattice constants reproduces the experimental behavior that the valence band

maximum resides at the Γ point. The difference between the two sets of calculations obtained

using PBE, PBEsol, and HSE06 functionals is attributed to the overestimation of the lattice pa-

rameter c and the residual strain along the c-axis [99]. The calculated indirect band gaps and the

spin-orbit splitting of the two topmost valence states at the K point using both sets of optimized

structures are shown in Supplementary Table 3.

S4.2 Brillouin zone tiling

Generation of a large and densely sampled patch of energy bands covering the first Brillouin

zone and beyond is crucial for initialization of the MRF model. To balance the computational

cost using different XC functionals with the dense sampling similar to the experimental data

grid, we used the symmetry properties of the Brillouin zone to tile the calculated momentum-
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Supplementary Figure 13: Geometric featurization of the energy bands of WSe2. a-d, De-
composition of the 14 valence energy bands of WSe2 into hexagonal Zernike polynomials for
the DFT band structure calculations carried out at the levels of LDA (a), PBE (b), PBEsol (c),
and HSE06 (d), respectively. Similar characteristics are seen compared with the reconstructed
band structure shown in Fig. 3a in the main text, including the sparse distribution of significant
basis terms and the decreasing dependence on higher-order basis terms. e-h, Cosine similarity
matrices between the 14 energy bands of WSe2 for the DFT band structure calculations carried
out at the levels of LDA (e), PBE (f), PBEsol (g), and HSE06 (h), respectively. The character-
istics of these matrices resemble that calculated for the reconstructed band structure as shown
in Fig. 3c in the main text.
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Supplementary Figure 14: Approximation to the band structure of WSe2 by a polynomial
basis. a-j, Demonstration of the convergence properties of the polynomial approximation using
reconstructed photoemission band structure (a-d) and DFT band structure calculated at the LDA
level (e-h). When summing the hexagonal Zernike polynomial in the default order, the average
and relative approximation errors for the reconstructed (a,b) and theoretical (e,f) energy bands
converge much slower than summing the polynomials in an ordering ranked by the magnitude
of their coefficients (coefficient order). This observation is similar for reconstructed (c,d) and
theoretical (g,h) energy bands. i-j, Visualization of the difference in convergence rates using the
reconstructed band structure along the high-symmetry lines. The naturally-ordered polynomial
basis has not yet converged with 150 terms (i), while the coefficient-ranked polynomials (j)
produces an accurate approximation well within that limit.
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space rectangular patch that covers the Γ, K and M points of the Brillouin zone. The hexagonal

Brillouin zone of WSe2 has a sixfold rotation symmetry axis and two independent mirror planes

in the (kx, ky) coordinates. The initial rectangular patch is first symmetrized about the two

mirror planes in the Γ-K and Γ-M directions to form a larger patch, which is then rotated by

60◦ and 120◦, respectively, and combined with the original mirror-symmetrized patch. The

composite patch is then shifted along all six Γ-M directions by one unit cell distance and the

result is cut to the required shape compatible with photoemission data.

S5 Band structure informatics

S5.1 Global scale structure descriptors

Unbiased approximators allow us to use informatics tools for data retrieval, representation and

comparison for entire bands. We extend the examples given in Fig. 3 of the main text to other

bands and band structures used in the present work. Supplementary Fig. 13 displays the band-

wise comparison of dispersion surfaces within other DFT calculations. These results contain

similar features as Fig. 3a and 3c in the main text, reaffirming that the geometric featurization

provides a sparse representation of the band dispersions and that the dispersion similarities

are largely preserved despite the use of different exchange-correlation functionals in the DFT

calculations. They may, therefore, be regarded as general features of the WSe2 band structure.

In Supplementary Fig. 14, we demonstrate numerically the approximation capability of

the hexagonal ZP basis set to all 14 valence bands of WSe2. Despite the stark differences in

energy dispersion, the approximation to reconstructed bands (Supplementary Fig. 14a-d) and

theoretical band structure at the level of LDA-DFT (Supplementary Fig. 14e-h) show compa-

rable convergence rates. Quantitatively, the approximation using hexagonal ZPs ordered by the

magnitude of the corresponding coefficients (i.e. coefficient order) converges to within 10-30

meV/band within 50 polynomial basis terms, significantly faster than using the default order

(see also Fig. 3b for reference). The remaining errors are on par with the finite step size along

the energy axis in the data (∼ 18 meV) that results in the imperfect smoothness of the recon-

structed bands. This further proves that the hexagonal ZPs can provide an accurate and sparse

approximation for the band structure data. The trend of convergence between these two types

of polynomial ordering is further illustrated in Supplementary Fig. 14i-j in the momentum path
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Supplementary Figure 15: Local band structure parameters. a, The first valence band of
WSe2 with constant-energy contours. The patches around high-symmetry points K and M′ from
reconstruction (with LDA-DFT as the initialization) are overlaid in color. b,c, Patch around the
M′-point, a saddle point in the dispersion surface, visualized in 3D (b) and 2D (c), respec-
tively. The energy gap at M′ due to spin-orbit coupling (SOC) results in the energy difference
∆EM′,1−2. d,e, Patch around the K-point, the energy maximum of the valence band, visualized
in 3D (d) and 2D (e), respectively. The SOC results in the energy gap ∆EK,1−2. The outcome
of fitting to a trigonal warping (TW) model around K from k·p theory [28] is shown in e.
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along high-symmetry lines of the reconstructed band structure.

S5.2 Local scale structure descriptors

Local structural information includes energy gaps, effective masses, warpings, (avoided) cross-

ings, etc. We extracted some of their associated parameters at and around three high-symmetry

points (K, M′, and Γ, see Supplementary Fig. 15a) and compiled the results in Supplementary

Table 4. The dispersions and band structure parameters from the MAP reconstruction are com-

pared with those extracted by line-by-line fitting of the EDCs, which used the band energies

from the reconstruction as initialization to improve robustness. Around K, two spectral peaks

corresponding to two spin-split bands were fit simultaneously, while around M′ and Γ, four

were fit simultaneously due to the spectral proximity of the first four valence bands (see Sup-

plementary Fig. 5). The fitting is carried out using a linear superposition of Voigt lineshapes

and the lmfit package [100] with the reconstructed band energy as initialization (but not fixed).

The fitting procedure iterates over the EDCs (e.g. a total of 50×50 EDCs for the patch around

M′). Unstable fits yielding erratic results (e.g. if differing significantly from neighboring val-

ues) are re-fit with either algorithmically or manually adjusted initialization. Supplementary

Table 4 shows that the local structural information from reconstruction is generally consistent

with those obtained by iterative pointwise fitting, while differing from DFT calculations. The

deviations in the size of energy gaps at K and M′ between reconstruction and pointwise fitting

lie in the same range as the momentum-averaged reconstruction errors (see section S2), which

are due to the finite coordinate spacing in the data (∼ 18 meV in energy).

The region extracted around K (see Supplementary Fig. 15d-e) contains about 10% of the

distance of Γ − K. Due to the strong trigonal warping (TW) effect in this class of materials,

the effective masses and the TW parameters around K were fit simultaneously in 2D using the

momentum-space model derived from k·p theory [28].

E(q) =
~2q2

2mK
+ C|q|3 cos(3ϕq + θ) + E0. (24)

Here, q is the momentum vector k recentered on a particular K (or K′) point by translation,

mK is the effective mass of the hole at K point, C is the magnitude of the TW (named C3w

in [28]), ϕq is the polar angle in the coordinate system centered on a K (or K′) point, θ is an

auxiliary fitting parameter used to accommodate the orientation of the TW with respect to the
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Supplementary Table 4: Band structure parameters from experiment and theory.
Effective masses of holes (mK), trigonal warping parameters (C) are extract at K point
in the first two valence bands. Two directional effective masses at M′ (mM′), and one
at Γ (mΓ), are obtained for the first valence band. The energy gaps (∆E) between the
first two valence bands are obtained at both K and M′ points. The number (1 or 2) in
the subscript of the parameter symbols denotes the valence band index, me is the mass
of an isolated electron.

Symmetry point Parameter LDA recon. 1 Line fitting 2 LDA 3 HSE06 3

K mK,1/me −0.62 −0.60 −0.49 −0.42
K mK,2/me −0.74 −0.78 −0.64 −0.54
K CK,1 (eV·Å3) 5.3 5.8 6.2 4.5
K CK,2 (eV·Å3) 4.0 3.9 3.9 3.2
K ∆EK,1−2 (meV) 419 446 485 467
M′ mM′−Γ,1/me 0.71 0.72 0.25 0.17
M′ mM′−K′,1/me −1.6 −1.5 −1.1 −0.90
M′ ∆EM′,1−2 (meV) 352 338 127 48
Γ mΓ,1/me −0.82 −1.1 −0.81 −1.0

1 Using band dispersion reconstructed globally by the proposed probabilistic machine learning algo-
rithm with DFT calculation at the LDA level as the initialization.

2 Using band dispersion from iterative lineshape fitting of the energy distribution curves (in an region
around the corresponding high-symmetry points).

3 With fully optimized structure, see Supplementary Table 3.

pixel coordinates defined by the rectangular region of interest,E0 accounts for the energy offset.

The energy gaps at K (∆EK,1−2) and M′ (∆EM′,1−2) are illustrated in Supplementary Fig. 15

(b and d), respectively. The M′ (or M) point situates at a saddle point of the dispersion surface

(first valence band), as shown in Supplementary Fig. 15b-c. Its lower symmetry (compared

with K, K′ and Γ) means that the effective masses exhibits anisotropy, with opposite signs and

magnitude along the M′−Γ and M′−K′ directions. We fit the dispersion locally using a model

that also accounts for the spin-orbit interaction involving a linear momentum-dependent shift

(Eq. 14 in [28]). The second valence band is not fitted at M′ due to the pronounced dispersion

modulation by interband coupling unaccounted for in the existing saddle-shaped model. At

around Γ, a single effective mass is extracted by fitting a paraboloid to a local patch of the

dispersion surface.
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Supplementary Video 1

Left side shows the position of the cut viewed from the first projected Brillouin zone of WSe2.

Right side shows the corresponding 2D cut in (ky, E) coordinates from volumetric band map-

ping data, overlaid with the DFT calculation performed at the LDA level (LDA-DFT), used to

initialize the reconstruction, and the resulting 14 reconstructed valence bands.

Supplementary Video 2

Left side shows the position of the cut viewed from the first projected Brillouin zone of WSe2.

Right side shows the corresponding 2D cut in (kx, E) coordinates from volumetric band map-

ping data, overlaid with the DFT calculation performed at the LDA level (LDA-DFT), used to

initialize the reconstruction, and the resulting 14 reconstructed valence bands.

Supplementary Video 3

The movie explores the reconstructed valence bands from photoemission band mapping data

on WSe2 using LDA-level DFT calculation as the initialization. It illustrates the generation of

an exploded view of the bands from the original reconstruction, the bands viewed collectively

from different angles and the individual view of each band.
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