

Supplementary Material

Contents

Pre-surgical Screening Protocol	2
Surgical Study Timeline	4
Decoding upper extremity movement intent	4
In-Laboratory ECoG Power Analysis	5
In-Laboratory Channel Montage Selection	6
In-Laboratory Feature Extraction and Supervised Learning Dataset Generation	8
Specific Classifier Parameters	9
Functional tasks	9
Lower extremity closed-loop trials	10
In-Laboratory Classifiers	10
Home Decoder Development	12
At-Home Feature Extraction	13
At-Home Decoder Architecture	14
Hidden Markov Model decoder	14
Linear Discriminant Analysis Decoder	16
LDA-HMM Decoder	16
Lagged decoding	17
Cross-validation	17
Threshold setting	18
Artifact Detection	18
Functional Task Accuracy	19
Phone-based User Application Development	20
Clinical Assessments	23
References	27

31 Pre-surgical Screening Protocol

32 Briefly, individuals with C5 quadriplegia who called or visited The Miami Project to Cure Paralysis
33 or who had registered with the research center with an interest to participate in research were
34 offered the opportunity to participate in this screening study.

35 Each participant underwent screening measurements and testing during a 1-3-month evaluation
36 period (depending schedule and availability). A total of up to 16 sessions were required for
37 subjects to be considered for the surgical protocol. During each session the ability of the subject
38 to reliably trigger electrical stimulation of the hand using motor imagery was tested. A subset of
39 the results comparing the performance of healthy volunteers and SCI subjects has been
40 separately published¹. Upon completing these tests, the subject underwent a brain fMRI study to
41 characterize the ability of motor imagery related to hand movement to lead to changes in the
42 BOLD signal.

43 TABLE S1 SURGICAL PROTOCOL MAJOR INCLUSION CRITERIA

Inclusion Criteria	Measure	Rationale
Age \geq 22	Years of age	Higher rates of neurological recovery in adults and better potential for rehabilitation
Age \leq 50	Years of age	Lower risk of complications
AIS Grades A & B	Neurological exam	Standard neurologic assessment for spinal cord injury
Level of injury C5 motor complete	Neurological exam	The appropriate injury level for measuring detectable restoration of both triceps and hand function
Local community dwelling	Proof of local community address	Higher compliance to weekly follow-up visits

Stable chronic injury	1-15 years post injury	Suitability for efficacy measurements while excluding complications that develop with excessive time post-injury
Stable health status and upper extremities	No significant joint contractures at the elbow, wrists, or hands	Minimize interferences with the ability to perform outcome measure tests like transfer or pinch
Participation in Clinical EEG Protocol	Successful screening and assessments outlined in Clinical EEG Protocol	Selection of candidates screened in Clinical EEG Protocol ensures participants possess ability to trigger orthosis with motor imagery

44

45 **TABLE S2 SURGICAL PROTOCOL MAJOR EXCLUSION CRITERIA**

Exclusion Criteria	Measure	Rationale
Coagulopathy	Lab test	Higher risks of complications
Anticoagulation	Lab test	Higher risks of surgical complications
Pregnancy	Urine or serum pregnancy test	Risk to fetus

46

47 **Additional Exclusion Criteria**

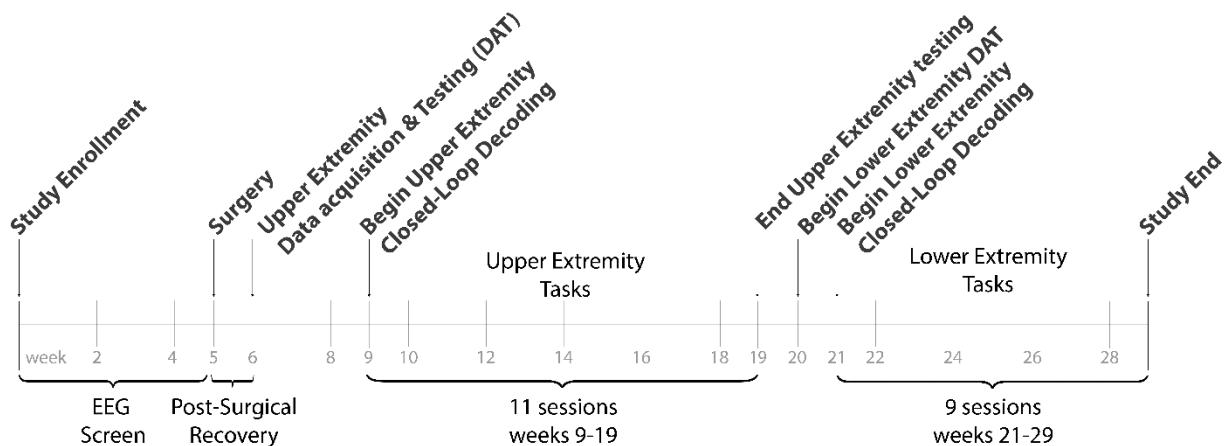
- 48 1. Subjects with severe non-CNS injury or serious concurrent medical issues.
- 49 2. Subjects with metal prosthetics.
- 50 3. Subjects with tendon transfers.
- 51 4. Subjects with a history of cardiac arrhythmia.
- 52 5. Subjects with cognitive issues. During Screening, subjects will undergo a Neuropsychological testing and use the Mini-Mental Status has a guide to severity of dementia. A MMSE score of ≤ 15 will be an absolute exclusion. Anything above that score but still abnormal will be a relative contraindication requiring discussion amongst the research team.
- 53 6. Subjects who have made a suicide attempt or are severely depressed. Severe depression should be defined based on a depression assessment scale.
- 54 7. Subjects with peripheral nerve damage that will affect planned investigational testing will be excluded.
- 55 8. Subjects with medical condition that requires regular post-implant MRIs.
- 56 9. Subjects who suffer from claustrophobia (contraindication for fMRI).
- 57 10. Subjects who have a life expectancy of less than 2 years.

64 **11.** Subjects diagnosed with peripheral polyneuropathy.
 65 **12.** Subjects with another implanted stimulator (e.g., pacemaker, defibrillator, cochlear
 66 implant, neurostimulator, etc.)
 67 **13.** Subjects who have been, or are currently, enrolled in another investigational study.
 68 **14.** Subjects who have skin ulcerations, a history of poor wound healing, an active infection,
 69 or significant pain in the lower extremity that is being treated.
 70 **15.** Subjects unable to give informed consent.
 71 **16.** Subjects who are prisoners or wards of the state.
 72 **17.** Subjects who are pregnant or planning to become pregnant.
 73 **18.** Subjects that speak languages without local site level expertise for translation and verbal
 74 communication.
 75 **19.** Screening Study Specific Exclusion

- a. fMRI does not show reproducible hand/arm activation
- b. External triceps stimulation does not produce consistent, adequate, and
 reproducible contraction
- c. EEG BCI studies do not lead to viable control

80 Surgical Study Timeline

81 The presented subject was enrolled in the study on November 2, 2018 and surgical implantation
 82 occurred on November 30, 2018. A timeline of the important study events is given Figure S1.



83 **FIGURE S1 STUDY TIMELINE. DAY 0 OF THE STUDY BEGINS ON THE DATE THE SUBJECT SIGNED INFORMED CONSENT TO BEGIN
 84 THE SCREENING PROTOCOL WITH EEG.**

86 Decoding upper extremity movement intent

87 After surgical recovery, the subject came to the laboratory 2-3 times per week for 1-2 hours at a
 88 time. A timeline of the 29-week trial is included in the Supplementary methods (Figure S1). During
 89 the duration of the study, the subject participated in 121 upper extremity experimental sessions,
 90 with an average of 11 sessions per week (range 5-12). Each session consisted of 100 trials during

91 which the subject was asked to perform motor imagery of continuous movement of the dominant
92 right hand. The 100 trials were completed in blocks of 20 trials with several minutes of rest in
93 between so that subject does not become fatigued. During the motor imagery tasks, the subject
94 was instructed to think of relaxing his hand for 3 seconds, followed by thinking continuously of
95 moving the right hand for 3 seconds during which time the ECoG activity was recorded (Figure
96 **1C and D**). During study weeks 6-8, “open-loop” experiments were run where the subject was
97 asked to perform move or rest motor imagery, but FES was not applied to the hand. Offline
98 analysis included calculating average band power within pre-defined frequency bins (see
99 Supplementary methods) during the “rest” and “move” periods, that were used as features for
100 training various classifiers (bagged trees, k-nearest neighbors, linear discriminant, logistic
101 regression, linear support vector machine, and a neural network). The purpose of training and
102 testing various classification algorithms was to use the one which gave highest decoding accuracy
103 and consistency, to be used for online closed-loop experiments.

104 In-Laboratory ECoG Power Analysis

105 The Activa PC+S device was configured with the following montage such that the ECoG data
106 from channels 1 and 3 (time channels) was sampled at 200Hz, whereas channels 2 and 4 (power
107 channels) were configured for onboard computation of the average signal power between 4-36Hz
108 and sampled at 5Hz (see Table S3). Data from the implanted device was transmitted via the
109 antennae to an external laptop running Matlab 2015b. Data packets were received every 400ms.
110 For each trial, all the packets from the “rest” or “move” phase were collected to yield 3 seconds
111 of data for each phase. The power content of both time channels for each separate experiment
112 phase was estimated using the pspectrum function in Matlab. The frequencies were binned into
113 8 pre-specified segments based on typical frequency ranges commonly used to describe
114 EEG/ECoG as: 1-8Hz, 8-12Hz, 12-18Hz, 18-26Hz, 26-35Hz, 35-45Hz, 45-70Hz, and 70-100Hz.
115 The average signal power within each bin was computed for each of the time channels and

116 together with the onboard -computed power channel values used to create an 18-dimensional
117 feature vector for each experimental phase.

118 **TABLE S3**

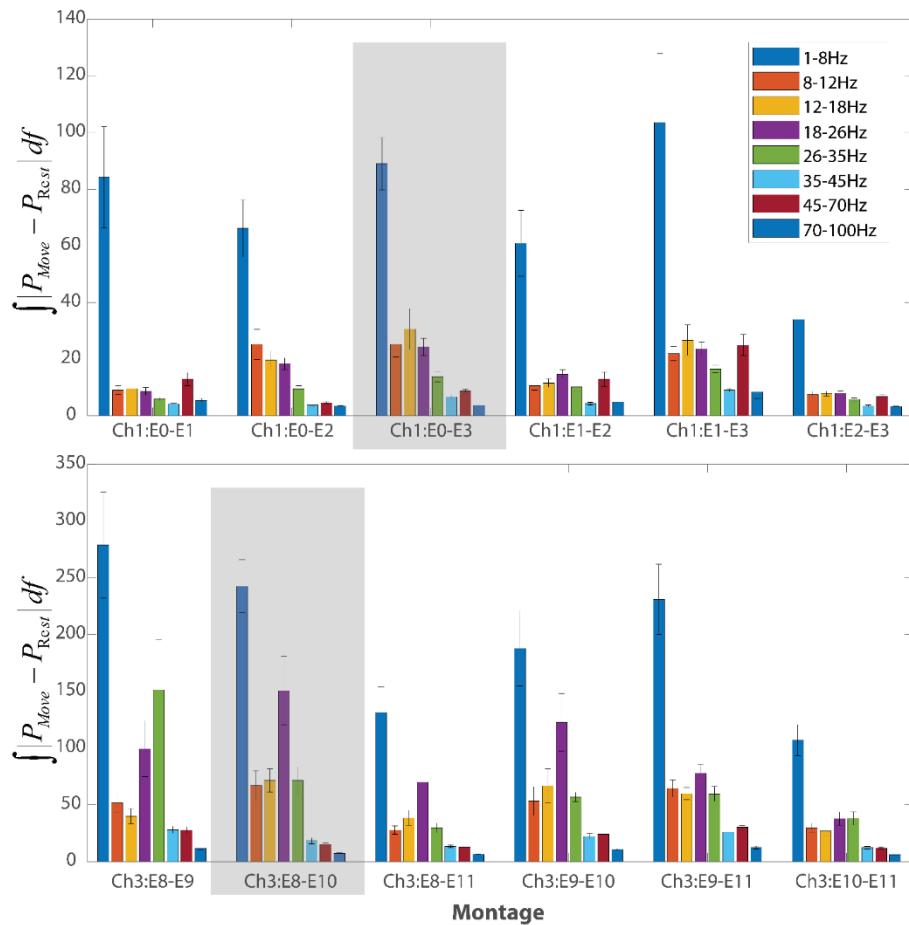
Channel Number	Electrode Configuration	Sample Rate (Hz)	Output Type
1	E0-E3	200	Raw Channel 1 Signal
2	E1-E2	5	Avg. Power in Channel 2 Signal between 4-36Hz
3	E8-E10	200	Raw Channel 3 Signal
4	E9-E11	5	Avg. Power in Channel 4 Signal between 4-36Hz

119
120 For channels 1 and 3, the average power in 8 pre-defined frequency ranges were used as
121 features, whereas for channels 2 and 4 the average power between 4Hz and 36Hz yielded two
122 additional features (Figure S3). All 18 (8 features per channel x 2 channels + 1 feature per power
123 channel x 2 power channels) values were used as a feature vector for classifier training.
124 Additionally, during study weeks 6-8, all bipolar combinations of the surface contacts were tested
125 with this paradigm to determine the montage that yielded the highest power difference between
126 rest and move signals (Figure S2). The final electrode montage is summarized in Figure 1B. It
127 was determined that the best performing classifier was the bagged tree classifier which was
128 therefore chosen for online decoding for the remainder of in-laboratory experiments from weeks
129 9-29.

130 **In-Laboratory Channel Montage Selection**

131 “Open-loop” tasks which consisted of the subject performing only motor imagery of either hand
132 rest or movement were then run with each possible electrode montage configuration and the
133 integrated absolute difference in signal power between the rest (P_{Rest} and move (P_{Move}) phases
134 computed in each frequency bin of interest. These trials were used to determine the electrode
135 montage that allowed for the best discrimination between the “rest” and “move” states. As shown

136 in Figure S2, the configuration E0-E3 for channel 1 and E8-10 for channel 3 resulted in the largest
137 power differences between the “rest” and “move” states and were therefore used for the
138 remainder of the experiments.



139
140 **FIGURE S2 CHANNEL MONTAGE COMPARISONS.** THE POWER DIFFERENCES BETWEEN THE MOVE AND REST STATES WERE
141 INTEGRATED WITHIN A SET OF FREQUENCY BANDS LISTED IN THE LEGEND. THE MONTAGE CONFIGURATIONS HIGHLIGHTED
142 IN GRAY WERE CHOSEN DUE TO THE ABILITY TO CAPTURE THE HIGHEST DIFFERENCES IN THE BETA BAND (18-26Hz) AND
143 LOW GAMMA (26-35Hz).

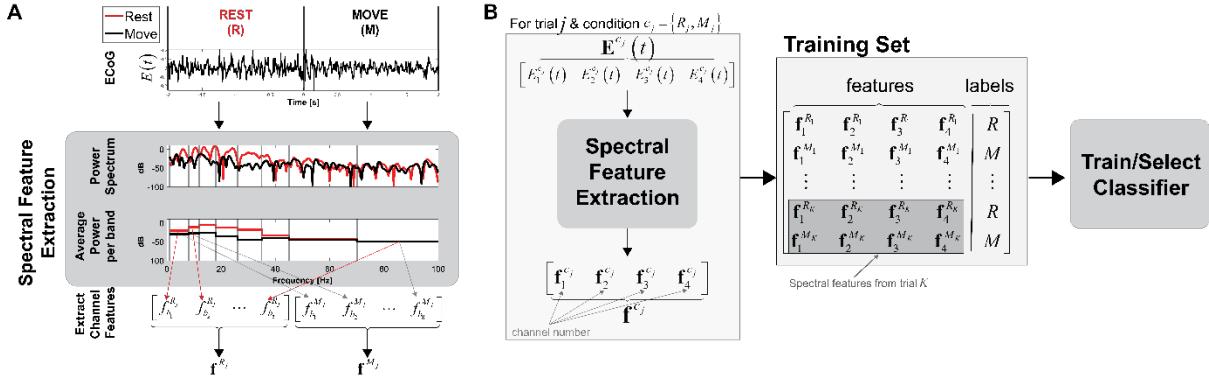
144 From study weeks 9-19, “closed-loop” upper extremity experiments were conducted where the
145 decoded motor imagery state from the online classifier was used to drive FES of the right upper
146 extremity via an external orthosis (Bioness H200, Bioness, Valencia, CA). For these experiments,
147 each session consisted of blocks of 20 trials. On session 1 of week 9, the first block was performed
148 in “open loop” and used to train the online classifier for use in session 2. Subsequent sessions in
149 closed loop were run with a classifier trained using the previous 1-5 blocks until maximum of 5

150 prior blocks were available for training; all subsequent blocks used the online classifier obtained
151 from training with the prior 5 blocks of data. Figure 1D shows average spectrograms for rest and
152 move motor imagery across all closed-loop sessions with the final selected electrode montage
153 which is shown in Figure 1B.

154 In-Laboratory Feature Extraction and Supervised Learning
155 Dataset Generation

156 Figure S3 Panel A shows a sample ECoG channel, $E(t)$, during REST (R) and MOVE (M) states
157 during trial j . For channels 1 and 3, the power spectrum of the signals is estimated based on
158 approximately 3 seconds worth of data for each continuous time channel sampled at 200 Hz using
159 the pspectrum function. The average power in each bin is computed yielding 8 features for each
160 time channel, $ch = 1,3$, and movement condition, c_j , and saved as the feature vectors $f_{ch}^{c_j}$. For
161 Channels 2 and 4, the average power in a frequency bin centered at 20 Hz with a bin width of
162 16Hz (4-36Hz) is computed online within the PC+S and output from the device at a sample rate
163 of 5Hz. The average power from Channels 2 and 4 for condition, c_j , ($f_2^{c_j}$ and $f_4^{c_j}$ respectively) are
164 then added as additional features to those computed from Channels 1 and 3 to produce a 18-
165 dimensional feature vector $f^{c_j} = [f_1^{c_j}, f_2^{c_j}, f_3^{c_j}, f_4^{c_j}]$ Panel B shows how for each trial j and
166 condition, c_j , spectral features are extracted and used to construct a training set that could be
167 used to select among different types of classifiers.

168



169

170 **FIGURE S3 FEATURE EXTRACTION AND CLASSIFIER TRAINING DATASET.** PANEL A SHOWS A SAMPLE ECoG CHANNEL, $E(t)$,
 171 DURING REST (R) AND MOVE (M) STATES DURING TRIAL j . FOR CHANNELS 1 AND 3, THE POWER SPECTRUM OF THE SIGNALS
 172 WAS ESTIMATED BASED ON APPROXIMATELY 3 SECONDS WORTH OF DATA FOR EACH CONTINUOUS TIME CHANNEL SAMPLED
 173 AT 200 Hz. THE AVERAGE POWER IN EACH BIN WAS COMPUTED YIELDING 8 FEATURES FOR EACH TIME CHANNEL, $ch = 1, 3$,
 174 AND MOVEMENT CONDITION, c_j , AND SAVED AS THE FEATURE VECTORS $f_{ch}^{c_j}$. FOR CHANNELS 2 AND 4, THE AVERAGE POWER
 175 IN A FREQUENCY BIN CENTERED AT 20 Hz WITH A BIN WIDTH OF 16Hz (4-36Hz) WAS COMPUTED ONLINE WITHIN THE PC+S
 176 AND OUTPUT FROM THE DEVICE AT A SAMPLE RATE OF 5Hz. THE AVERAGE POWER FROM CHANNELS 2 AND 4 FOR CONDITION,
 177 c_j , ($f_2^{c_j}$ AND $f_4^{c_j}$ RESPECTIVELY) WERE THEN ADDED AS ADDITIONAL FEATURES TO THOSE COMPUTED FROM CHANNELS 1 AND
 178 3 TO PRODUCE A 18-DIMENSIONAL FEATURE VECTOR f^{c_j} . PANEL B SHOWS HOW FOR EACH TRIAL AND CONDITION, SPECTRAL
 179 FEATURES WERE EXTRACTED AND USED TO CONSTRUCT A TRAINING SET THAT WAS USED TO SELECT AMONG DIFFERENT TYPES
 180 OF CLASSIFIERS.

181 Specific Classifier Parameters

182 All classifiers were trained in Matlab 2018b but online experiments were conducted in 2015a.

183 Off-line classifiers were selected as outlined in Table S4

184 Functional tasks

185 From weeks 11-19, several tasks were performed alongside the upper extremity trials to quantify
 186 any improvements in upper extremity function. Starting on week 11, whenever a correct move
 187 state was decoded and the subject was receiving FES to open and close the hand, he was asked
 188 to pick up and move a small cup (or a checker introduced from week 13) from one side of the
 189 table to the other at the center of a target. The placement accuracy was measured as a function
 190 of the distance of the cup/checker to the target. Additionally, during weeks 8-29 a modified version
 191 of the Jebsen-Taylor Hand Function Test (JHFT)²³ was performed once per week to quantify
 192 functional improvement. Passive and active range of motion was also measured each week.

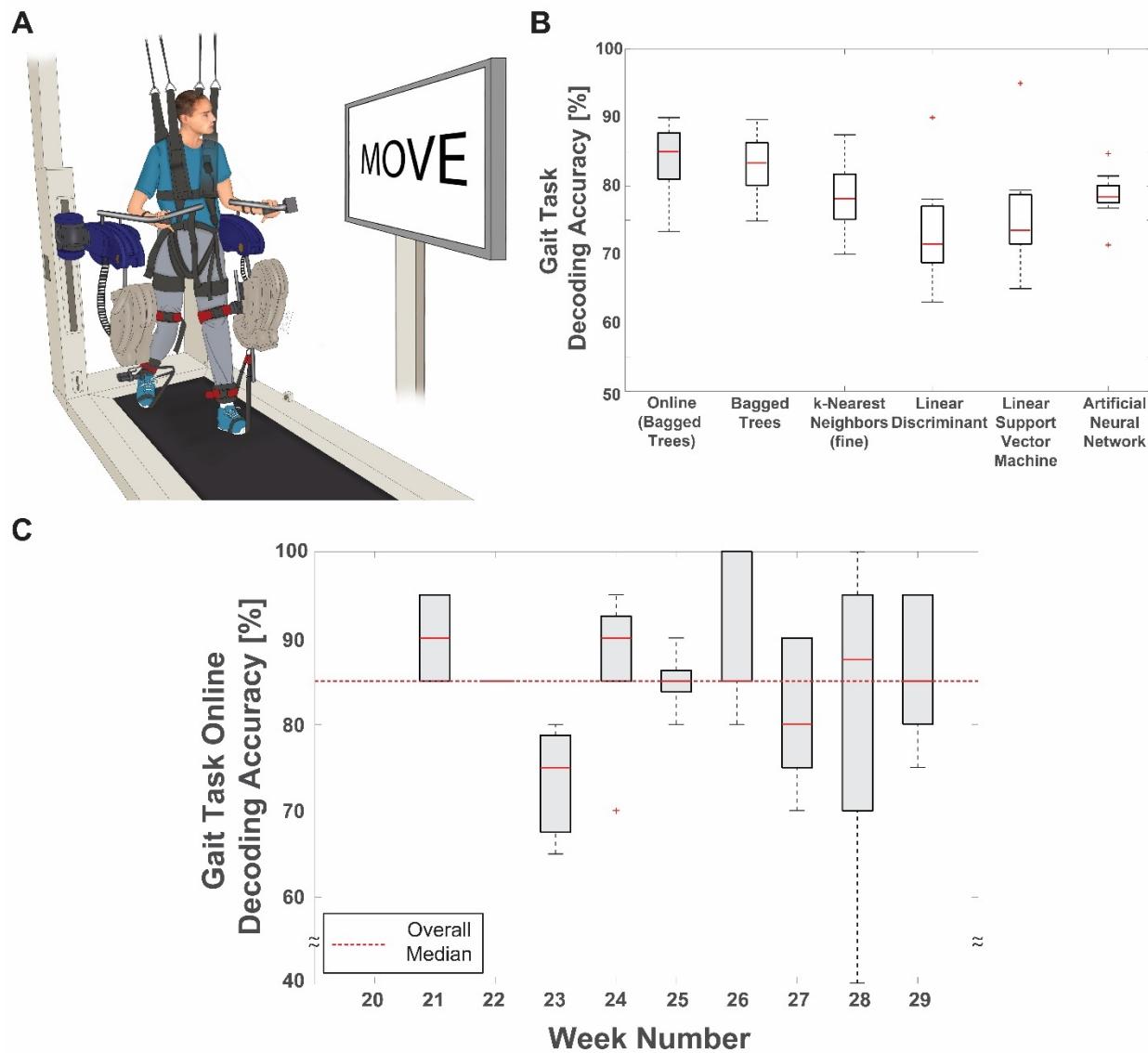
193 **Lower extremity closed-loop trials**

194 In order to assess the ability of this class of implant to be used to control other functional
195 movements, we sought to test the ability to trigger stepping instead of upper extremity FES.
196 Beginning on study week 14, the subject underwent tilt table training for 1 hour per week to assist
197 with maintaining a standing posture without significant orthostatic hypotension. Beginning on
198 study week 20, the subject began to participate in lower extremity tasks consisting of ambulating
199 for one hour on a robotic-assisted weight supported treadmill training device (ReoAmbulator,
200 Motorika, Mount Laurel, NJ) 1-3 times per week. During each session, the subject would try to
201 participate in 50 trials (with 10 trials per block). Each session was structured similarly to the upper
202 extremity session. For each trial, the robot was configured to walk at a speed of 0.6-1.7 km per
203 hour for 4-6 gait cycles and then stop. As the robot was slowing down, a visual cue would prompt
204 the subject to think about moving the dominant upper extremity. If a move state was correctly
205 decoded, the robot would be triggered to resume stepping for an additional 4-6 gait cycles (Video
206 S1). Closed-loop lower extremity trials were conducted from study weeks 21-29.

207 **In-Laboratory Classifiers**

208 Figure **2A** summarizes decoding performance across all upper extremity sessions (open-loop and
209 closed loop) for weeks 9-19 for different classifier types. For offline analysis of the closed loop
210 experiments, a total of 80-240 trials were used with half of the data set used for training and the
211 other half for testing. The accuracies presented represent the average of 100 monte-carlo
212 simulations. Mean online decoding accuracy per week was 89.0% (median 88.75%, range 78-
213 93.3%) which was not significantly different from offline performance across the 5 types of
214 classifiers tested (Kruskall-Wallis test with Tukey-Kramer adjustment for multiple comparisons,
215 $p>0.06$). Online decoding during weeks 9-19 remained relatively stable for upper extremity tasks
216 across weeks as shown in Panel **2B**. Figure **S4C** summarizes decoding performance across all
217 lower extremity gait tasks for weeks 21-29 across different classifier types. Mean online decoding
218 accuracy per week for the lower extremity tasks was 84.15% (median 85%, range 73.3-90%).

219 There was no significant difference between online decoding accuracies on upper versus lower
220 extremity tasks (two-tailed t-test, $p = 0.13$).



221
222 **FIGURE S4 LOWER EXTREMITY DECODING PERFORMANCE.** PANEL A SHOWS THE LOWER EXTREMITY AMBULATION TASK
223 WHICH WAS PERFORMED ON A WEIGHT-SUPPORTED TREADMILL TRAINING DEVICE. WHEN A MOVE STATE WAS CORRECTLY
224 DECODED, THE ROBOT WAS ENABLED TO CONTINUE WALKING FOR A FIXED NUMBER OF STEPS. PANEL B SHOWS THE DIFFERENT
225 TYPES OF CLASSIFIERS TO DECODE REST/MOVE DURING THE GAIT TASK. PANEL C SHOWS THE ONLINE DECODING ACCURACY
226 DURING THE GAIT TASK ACROSS STUDY WEEKS. ONLINE DECODING ACCURACY DURING LOWER EXTREMITY TASKS WAS SLIGHTLY
227 MORE SENSITIVE TO SUBJECT'S ATTENTION AND THIS IS REFLECTED IN THE SLIGHTLY INCREASED VARIABILITY OF DECODING
228 ACCURACY DURING THESE TASKS COMPARED TO THE UPPER EXTREMITY ONES.

229

230

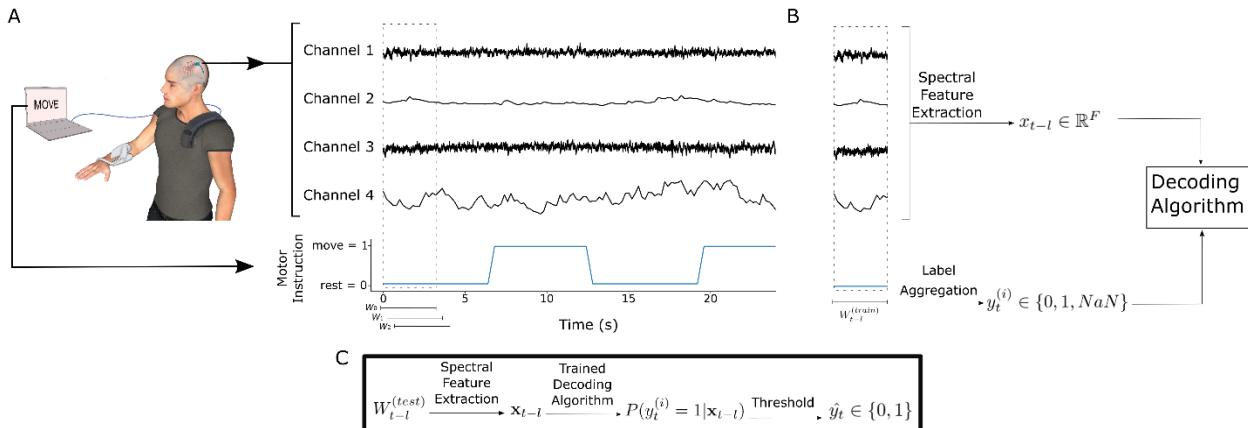
231
232
233

234 **TABLE S4 – CLASSIFIER PARAMETERS**

Classifier Name	Matlab Function	Parameters
ensemble Bagged Trees	fitcensemble	MaxNumSplits=79; Method='Bag'; NumLearningCycles=30;
K nearest neighbor (kNN)	fitcknn	Distance='Euclidean', Exponent=(); NumNeighbors=1; DistanceWeight='Equal'; Standardize='true'
linear discriminant analysis (LDA)	fitcdiscr	DiscrimType='linear'; Gamma=0; FillCoeffs='off';
support vector machine (SVM)	fitcsvm	KernelFunction ='linear'; PolynomialOrder = (); KernelScale='auto'; BoxConstraint=1; 'Standardize' = true
fully connected artificial neural network (ANN)	learnNN ²	NumberHiddenLayers=3; ActivationFunction=tanh

235

236 Home Decoder Development



237

238 **FIGURE S5 AT-HOME DECODER METHODS.** PANEL A SHOWS THE RAW DATA RECORDED WITH THE DOTTED BOX REPRESENTING
239 ONE WINDOW OF DATA. OVERLAPPING WINDOWS W_0, W_1, W_2 ARE SHOWN AT THE BOTTOM WHERE EACH WINDOW WAS
240 w SECONDS LONG WITH A WINDOW STEP OF 0.4 SECONDS. MOTOR INSTRUCTION WAS USED AS LABELS FOR DECODER
241 TRAINING. PANEL B SHOWS THE PREPROCESSING OF THE DATA. SPECTRAL FEATURES FROM ALL FOUR CHANNELS WERE
242 COMPUTED AND CONCATENATED, RESULTING IN FEATURE VECTOR x_{t-l} FOR WINDOW W_t WHERE t IS THE TIME AT THE END
243 OF THE WINDOW AND l IS THE LAG HYPER-PARAMETER. MOTOR INSTRUCTION LABELS OVER THE WINDOW WERE AGGREGATED
244 USING METHOD i . THE RESULTING FEATURE VECTOR x_{t-l} AND LABEL $y_t^{(i)}$ WERE COMPUTED FOR ALL WINDOWS W_t IN THE
245 TRAINING SET WERE USED TO TRAIN THE DECODING ALGORITHM. HYPER-PARAMETERS $\{w, l, i, \text{decoding algorithm}\}$
246 WERE SELECTED VIA CROSS-VALIDATION (TABLE S5). PANEL C SHOWS A FLOW DIAGRAM OF ONLINE DECODING OF MOTOR
247 STATE AS APPLIED TO THE OPEN-LOOP AND CLOSED-LOOP AT-HOME DATA.

248

249 **At-Home Feature Extraction**

250 Feature extraction and decoder development hyper-parameters were selected by leave-one-out
251 cross-validation over the 33 trials in the at-home training data set. The first hyper-parameter was
252 window size for the ECoG spectral estimate, $w \in \{0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2\}$ measured in
253 seconds. Overlapping windows, with a step of 0.4 seconds, resulted in N windows per trial where
254 N varied with window duration w . As a result of windowing, motor instruction labels were
255 aggregated from each sample in the window, where 1 indicates motor intent and 0 indicates rest.
256 In order to build a decoding model robust to transitions from a move to rest state, windows with
257 data collected during both move and rest states were not removed for training. Three possible
258 methods for aggregating windows of labels were considered during cross-validation (Figure **S6**).

259 For each window, vector $\mathbf{y} = \{y^{(1)}, y^{(2)}, y^{(3)}\}$ of labels was computed where

- 260 ○ $y^{(1)} \in \{1, 0\}$ is the last label of the window.
- 261 ○ $y^{(2)} \in \{1, 0\}$ is the majority of labels in the window.
- 262 ○ $y^{(3)} \in \{1, 0, \text{NaN}\}$ is 1 or 0 if there is unanimous consensus within the window (all
263 1 or all 0), or *NaN* if there are both move and rest labels in the window. This
264 aggregation is motivated by aiming to provide the decoder with the highest
265 quality data. *NaN*-labelled windows were not used for supervised learning.

266 For ECoG channels 1 and 3, the PSD of each window was computed using the multitaper method
267 in the MNE python package³ with normalized half-bandwidth $T = 3$, and a bandwidth of $b = \frac{2 \times T}{0.4 \times w}$
268 ⁴. $2T - 1 = 5$ tapers were used and an adaptive weighting routine was used to combine estimates
269 of different tapers⁵. Spectral power was estimated for a frequency range between 0-100Hz and
270 was converted to decibels. Spectral estimation for channels 1 and 3 resulted in $x^{(ch\ 1)} \in \mathbb{R}^{F_{psd}}$

271 and $x^{(ch\ 3)} \in \mathbb{R}^{F_{psd}}$, respectively and where F_{psd} is the length of the PSD. For channels 2 and 4,
272 median power $\tilde{x} \in \mathbb{R}_+$ for each window was calculated. Spectral estimates from all channels were
273 aggregated into one spectral feature vector $\mathbf{x} \in \mathbb{R}^F$ for each window where $F = 2 \times F_{psd} + 2$

274 At-Home Decoder Architecture

275 Three decoding model architectures were considered during cross-validation. Each decoding
276 model used a fixed window length and labeling method.

277 Hidden Markov Model decoder

278 In order to incorporate the temporal dynamics of switching between move and rest states, we
279 used a Hidden Markov Model, a state-space model that has been used to describe time series
280 data in a wide variety of fields⁶. It assumes an M -state system has $\{q_0, q_1, \dots, q_{M-1}\}$ discrete latent
281 states which evolve over time, driven by a first-order, ergodic Markov chain resulting in a
282 sequence of N states $Z = (z_0, z_1, \dots, z_{N-1})$. Observations of the system (x_n) are distributed
283 according to state-specific Gaussian emission distributions $\mathbf{B} = \{\mathbf{b}_m\}$ where $\mathbf{b}_m \sim \mathcal{N}(\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$ for
284 each state q_m with mean $\boldsymbol{\mu}_m$ and covariance $\boldsymbol{\Sigma}_m$, which was constrained to be diagonal so that
285 training would be more computationally tractable. The Markov chain transition matrix is $A = \{a_{ij}\}$
286 where $a_{ij} = Pr(z_{n+1} = q_j | z_n = q_i)$. The initial state of the system is drawn from the discrete initial
287 state distribution $\boldsymbol{\pi}$. The entire HMM is fully parameterized by $\lambda = (A, \mathbf{B}, \boldsymbol{\pi})$. In the model system,
288 the state of the system at each discrete time n is based on the Markov chain transition
289 probabilities and an observed feature is generated according to current state z_n resulting in a
290 sequence of observations $\mathbf{X} = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{N-1})$.^{6,7}

291 Each HMM was trained with the Baum-Welch algorithm with random parameter initialization and
292 a maximum of 10 iterations using the hmmlearn python package⁸. For prediction of latent state,
293 the forward algorithm was used in order to estimate the probability of being in each state at each
294 time n . The normalized forward algorithm computes the probability of being in each latent state

295 q_i , at time n , and is defined as $\alpha_n(q_i) = Pr(z_n = q_i | x_0, \dots, x_n, \lambda) = \hat{x}^{(i)}$ resulting in $\hat{\mathbf{x}}_n \in [0,1]^M$
 296 where M is the number of HMM states and $\sum_{i=1}^M \hat{x}^{(i)} = 1$. We let the number of states in the HMM
 297 vary with $M \in \{3,5,7\}$ because although our target was binary, a number of different states could
 298 be reflected in the neural signal related to different aspects hand grasp initiation and termination.
 299 M was selected in cross-validation (Figure S6, Table S5)

300 Logistic regression (LR) is used to map HMM state probabilities $\hat{\mathbf{x}}_n$ to binary move/rest targets.
 301 For each window beginning at time point n that did not have a *NaN* label, the feature vector is
 302 accompanied by a label $y_n \in \{0,1\}$ indicating whether the window corresponds with rest (0) or
 303 motor intent (1). *NaN* labeled windows were dropped for fitting LR parameters. A LR model is
 304 parameterized by a vector $\boldsymbol{\beta} \in \mathbb{R}^{M+1} = [\beta_0, \beta_1, \dots, \beta_M]^T$. For a given parameterization $\boldsymbol{\beta}$, the LR
 305 estimated likelihoods of motor intent for window starting at time point n are given by:

306
$$Pr(\text{Motor Intent} | \hat{\mathbf{x}}_n; \boldsymbol{\beta}) = \frac{\exp \boldsymbol{\beta}^T \tilde{\mathbf{x}}_n}{1 + \exp \boldsymbol{\beta}^T \tilde{\mathbf{x}}_n}$$

307
$$Pr(\text{Rest} | \hat{\mathbf{x}}_n; \boldsymbol{\beta}) = \frac{1}{1 + \exp \boldsymbol{\beta}^T \tilde{\mathbf{x}}_n}$$

308 Where $\tilde{\mathbf{x}}_n = [1, \hat{\mathbf{x}}_n]^T$ is the HMM state probability vector with a one prepended, enabling β_0 to
 309 serve as a constant offset. Thus, fitting an LR model entails finding the parameters that maximize
 310 the elastic net regularized log-likelihood of the labels corresponding to the training data:

311
$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1-\rho}{2} \|\boldsymbol{\beta}\|_2^2 + \|\boldsymbol{\beta}\|_1 + \sum_{n=1}^N -\log Pr(y_n | \mathbf{x}_n; \boldsymbol{\beta})$$

312 Where $\|\boldsymbol{\beta}\|_2^2 = \boldsymbol{\beta}^T \boldsymbol{\beta}$ and $\rho = 0.5$. The LR parameter vector $\hat{\boldsymbol{\beta}}$ was computed using scikit-learn
 313 with elasticnet regularization and the SAGA solver.⁸

314 Linear Discriminant Analysis Decoder

315 The second decoding model architecture was a Linear Discriminant Analysis (LDA) decoder.
316 Since the observations to the HMM decoder were the derived spectral features, the latent states
317 fitted by the HMM are not guaranteed to be related to motor intent. LDA is a supervised
318 classification technique that separates groups of labelled data by maximizing the ratio of between-
319 class to within-class separability.⁹ This yields a *linear discriminant* vector which maximally
320 separates the two classes.

321 First, the training data $\mathbf{X} \in \mathbb{R}^{F \times N}$ were divided by motor intent label into the subset $\mathbf{X}^{(0)} \in \mathbb{R}^{F \times N_0}$
322 for data labelled as a rest state, $\mathbf{X}^{(1)} \in \mathbb{R}^{F \times N_1}$ for data labeled as a move state, and $\mathbf{X}^{(NaN)} \in$
323 $\mathbb{R}^{F \times N_{NaN}}$ for data without a label (see Windowing). $\mathbf{X}^{(NaN)}$ was not used for parameter fitting as
324 LDA is a supervised learning method which necessitates labelled data. For $j \in \{0,1\}$ and $N^* =$
325 $N_0 + N_1$, let $\boldsymbol{\mu}_j$ be the sample mean of $\mathbf{X}^{(j)}$ and define the *scatter matrix* as the unnormalized
326 sample covariance matrix $\mathbf{M}_j = \sum_{n \in N^*} \left((\mathbf{x}_n^{(j)} - \boldsymbol{\mu}_j) (\mathbf{x}_n^{(j)} - \boldsymbol{\mu}_j)^T \right)$. *Within-class* scatter matrix is
327 defined as $\mathbf{M}_W = \mathbf{M}_0 + \mathbf{M}_1$ and the *between-class* scatter matrix was defined as $\mathbf{M}_B =$
328 $(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^T$. Thus, the linear discriminant $\mathbf{v}^* \in \mathbb{R}^F$ is found as the solution to:

$$329 \quad \mathbf{v}^* = \underset{\mathbf{v}}{\operatorname{argmax}} \frac{\mathbf{v}^T \mathbf{M}_B \mathbf{v}}{\mathbf{v}^T \mathbf{M}_W \mathbf{v}}$$

330 Which maximizes the variance between classes while minimizing the variance within classes.
331 LDA models were implemented using the scikit-learn Python package.⁸

332 LDA-HMM Decoder

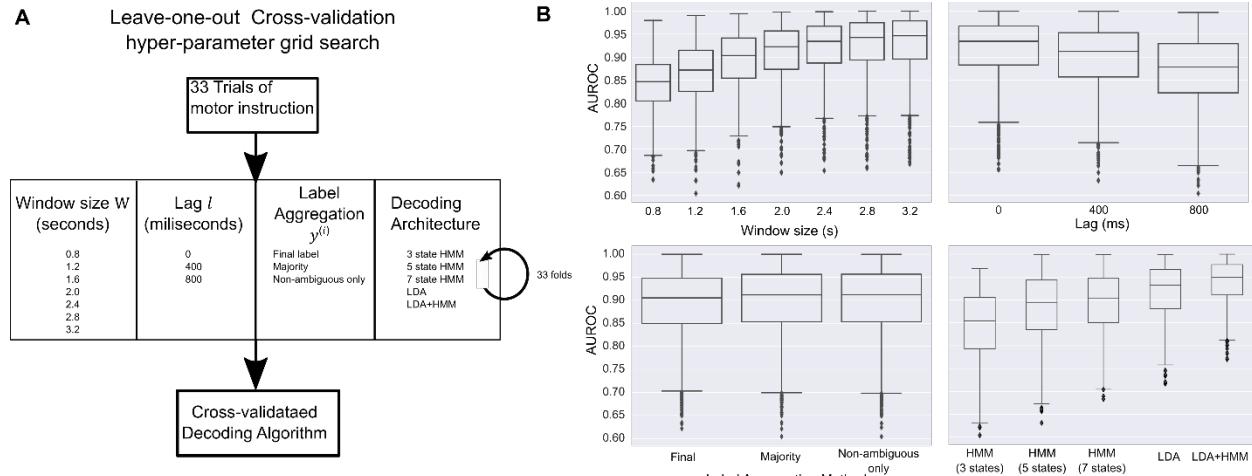
333 The third decoder architecture was a combination of the described LDA and HMM decoders. The
334 LDA parameters were fitted as described above, but rather than using LDA directly for
335 classification, the spectral feature vector \mathbf{x}_n was used to generate the LDA scores $\mathbf{x}_n^* = \mathbf{x}_n^T \mathbf{v}^*$ for

336 every window n . The sequence of LDA scores $\mathbf{X}^* = (\mathbf{x}_0^*, \mathbf{x}_1^*, \dots, \mathbf{x}_{N-1}^*)$ was then used as the
 337 observations for a 2-state HMM decoder which generated prediction of motor state as described
 338 above.

339 **Lagged decoding**

340 Introducing a time lag in decoding between neural features and the label can contribute to
 341 increases in decoder performance in motor BCIs.^{10,11} Because packets of data are transmitted
 342 every 0.4 seconds from the recording device, the values considered for a lag were multiples of
 343 0.4 seconds. Parameter $l \in \{0.8, 0.4, 0.0\}$ is the number of seconds feature vector \mathbf{x} precedes the
 344 associated label y .

345 **Cross-validation**



346

347 **FIGURE S6 CROSS-VALIDATION OVERVIEW** **A)** GRID SEARCH FOR LEAVE-ONE-TRIAL-OUT CROSS-VALIDATION DEPICTED FOR 33
 348 TRIALS OF MOTOR INSTRUCTION. SELECTED HYPER-PARAMETERS ARE SUMMARIZED IN TABLE S5. **B)** IMPACT OF EACH HYPER-
 349 PARAMETER PLOTTED OVER ALL OTHER HYPER-PARAMETERIZATIONS. WINDOW SIZE, LAG, AND DECODER ARCHITECTURE HAD
 350 LARGE IMPACTS ON PERFORMANCE, BUT LABEL AGGREGATION METHOD HAD A SIMILAR DISTRIBUTION OF PERFORMANCE
 351 OVER ALL OTHER HYPER-PARAMETERIZATIONS.

352 In order to select the optimal set of hyper-parameters, we used leave-one-out cross-validation
 353 over the 33 trials in the train dataset. The grid search for each parameter was

354

- **Window size:** $w \in \{0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2\}$ where w is the duration in seconds of the
 355 window of neural data used for each prediction.

356 • **Label Scheme:** $y^{(i)} \in \mathbf{y}$ where y is one of the three labeling schemes defined above
 357 • **Decoder Architecture:** A total of 5 decoder architectures were considered. Three
 358 different HMM decodes were considered, one for each value of $M \in \{3, 5, 7\}$. The above-
 359 described LDA decoder and LDA-HMM decoder were also considered.
 360 • **Lag:** $l \in \{0.8, 0.4, 0.0\}$ where l is seconds between feature vector x and target label y
 361 We compared cross-validated models using median area under the receiver-operator
 362 characteristic curve (AUC) for each fold. In order to compute the AUC for each fold, we chose to
 363 use the non-ambiguous labeling scheme $y^{(3)}$ to bias the hyperparameters for reliability in
 364 decoding. Impact of each hyperparameter on performance during cross-validation is summarized
 365 in Figure S6B and the set of hyperparameters that were selected can be found in Table S5.

Hyperparameter	Selected Value
Window size, w (seconds)	3.2
Label Scheme, y	$y^{(3)}$
Decoder Architecture	LDA-HMM
Lag l (seconds)	0.0

366 **TABLE S5 FINAL DECODER HYPER-PARAMETERS SELECTED VIA LEAVE-ONE-OUT CROSS-VALIDATION**

367 **Threshold setting**
 368 The decoded motor intent was calculated by thresholding the predicted probability of motor intent
 369 for the final trained model. The receiver-operator characteristic (ROC) curve was calculated using
 370 the training dataset to calculate Youden's J score across different threshold. Youden's J score
 371 balances the sensitivity and specificity of the decoder for a specific threshold. The optimal
 372 threshold was selected by maximizing Youden's J score, resulting in a value of 0.969.

373 **Artifact Detection**
 374 The Medtronic PC+S recording device included quality control protocols which resulted in periodic
 375 electrical artifacts occurring approximately every 10 minutes. When artifacts were detected,

376 decoding was paused for 0.8 seconds until the artifact passed, during which the previously
377 decoded motor state was maintained.

378 **Functional Task Accuracy**

379 A relative distance score, r_i , was assigned to each target based on the distance of the object from
380 the center of the target as shown in Figure 3A. A placement score for the i th object placement
381 was computed as

382

$$S_i = \frac{1}{1 + r_i}$$

383 so that a higher score corresponded to objects placed closer to the center of the target. The
384 functional task was repeated a total of 20 times during each block leading to a maximum score
385 $S_{t_{MAX}} = 20$ per block. The subject's accuracy was determined then as the sum of all the individual
386 trial scores, S_t , divided by maximum block score:

387

$$\text{accuracy} = \frac{S_t}{S_{t_{MAX}}} = \frac{\sum_{i=1}^{20} S_i}{S_{t_{MAX}}}$$

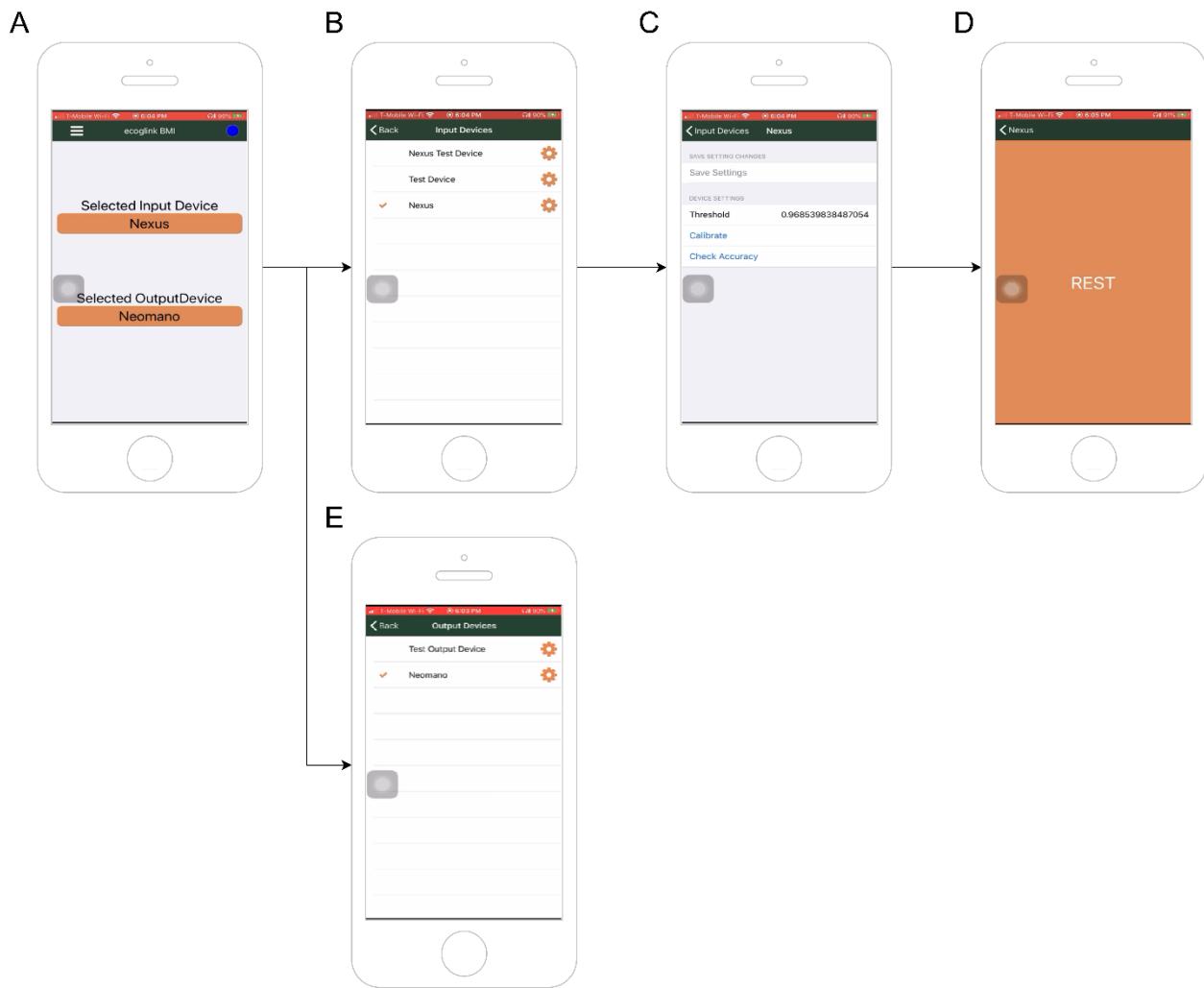
388 The subject showed improvement in the mean (\pm std. error) accuracy of placing a small cup,
389 $60.1\% \pm 7.8\%$ at week 11 versus $82.8\% \pm 4.7\%$ at week 19 ($p=0.03$) or a checker ($64.5\% \pm$
390 7.3% at week 13 versus $88.8\% \pm 4.8\%$ at week 19, $p=0.03$) at the center of a target as
391 summarized in Figure **3A** and **3B**.

392 Functional improvement was quantified as the reduction in the average time taken to perform
393 specific components of the JHFT (Figure **3C**). Significant improvements were observed in lifting
394 small objects, lifting light cans, and lifting heavy cans through orthotic-assisted tasks. Along with
395 a trend towards improvement in writing speed (32.3s to 26.4s, $p=0.15$), clarity of the handwriting

396 also improved throughout the course of the study (Figure **3D**). Further, pinch force increased from
397 1lb to 3lb within 10 weeks.

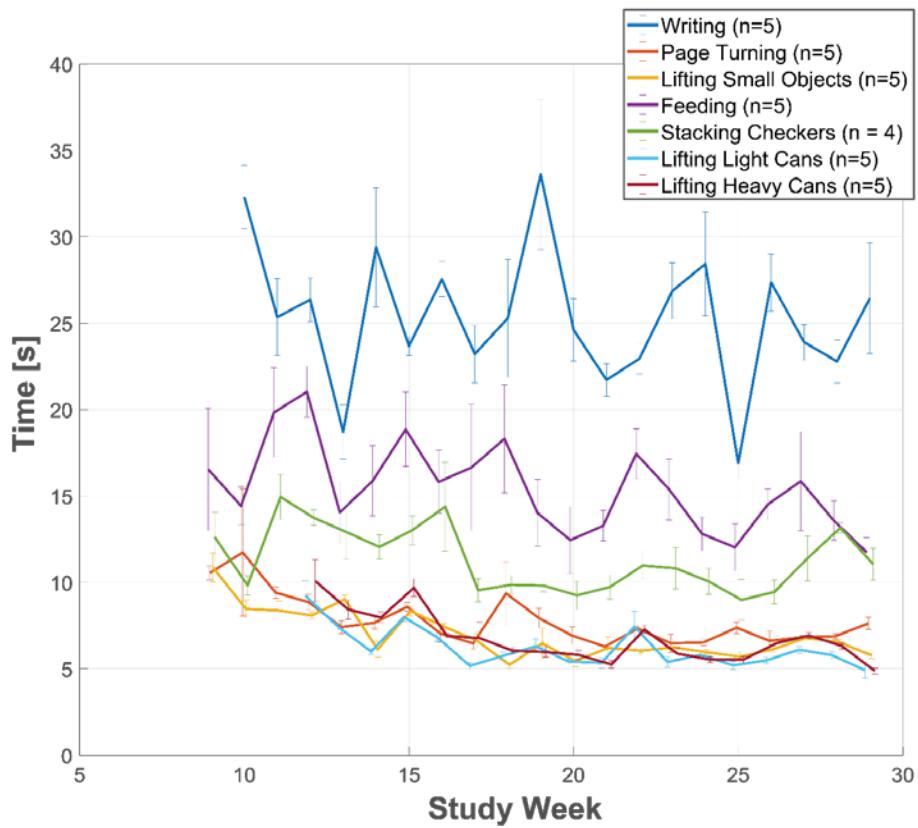
398 Phone-based User Application Development

399 A custom-made mobile application was designed allowing the subject to interact with and modify
400 settings of the BCI. The home screen (Figure **S7A**) displays the currently connected and selected
401 devices in use by the subject. The application was designed by generalizing devices that could
402 connect to the system, thus providing a method to select from a list of connected input (Figure
403 **S7B**) and output (Figure **S7E**) devices. These list views provided links to device-specific settings
404 such as the decoder threshold linked to incoming data from the Activa PC+S (Figure **S7C**). The
405 settings also allowed the subject to initiate data collection sessions to assess the accuracy of the
406 current decoder (Figure **S7D**).



407

408 **FIGURE S7** FLOW DIAGRAM OF THE MOBILE APPLICATION USED BY THE SUBJECT FOR AT-HOME INTERACTION AND
409 ADJUSTMENT OF THE BCI



410

411 **FIGURE S8 JEBSEN HAND FUNCTION TEST OVER THE STUDY COURSE. ERROR BARS REPRESENT STANDARD ERROR FROM THE**
 412 **MEAN. FIGURE 3C COMPARES THE FIRST AND LAST SESSIONS.**

413

414

415

416

417

418

419

420

421

422

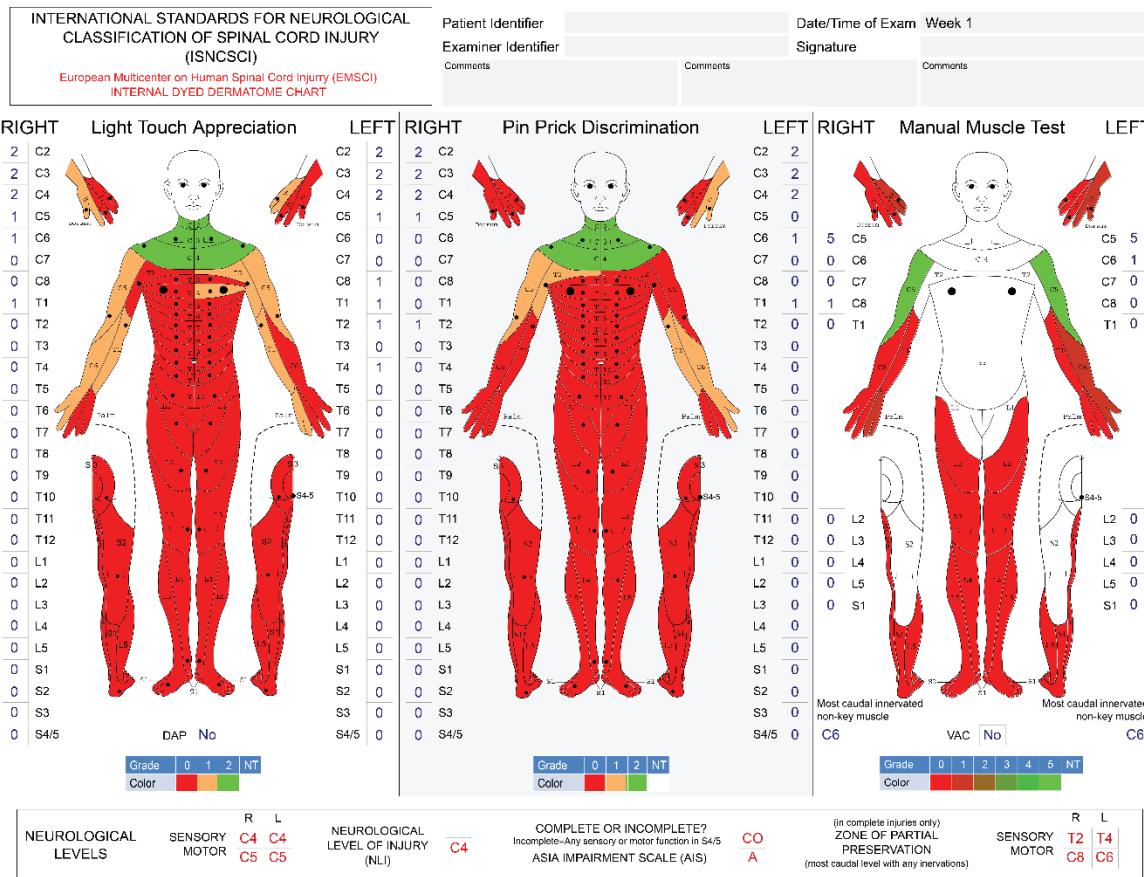
423

424 Clinical Assessments

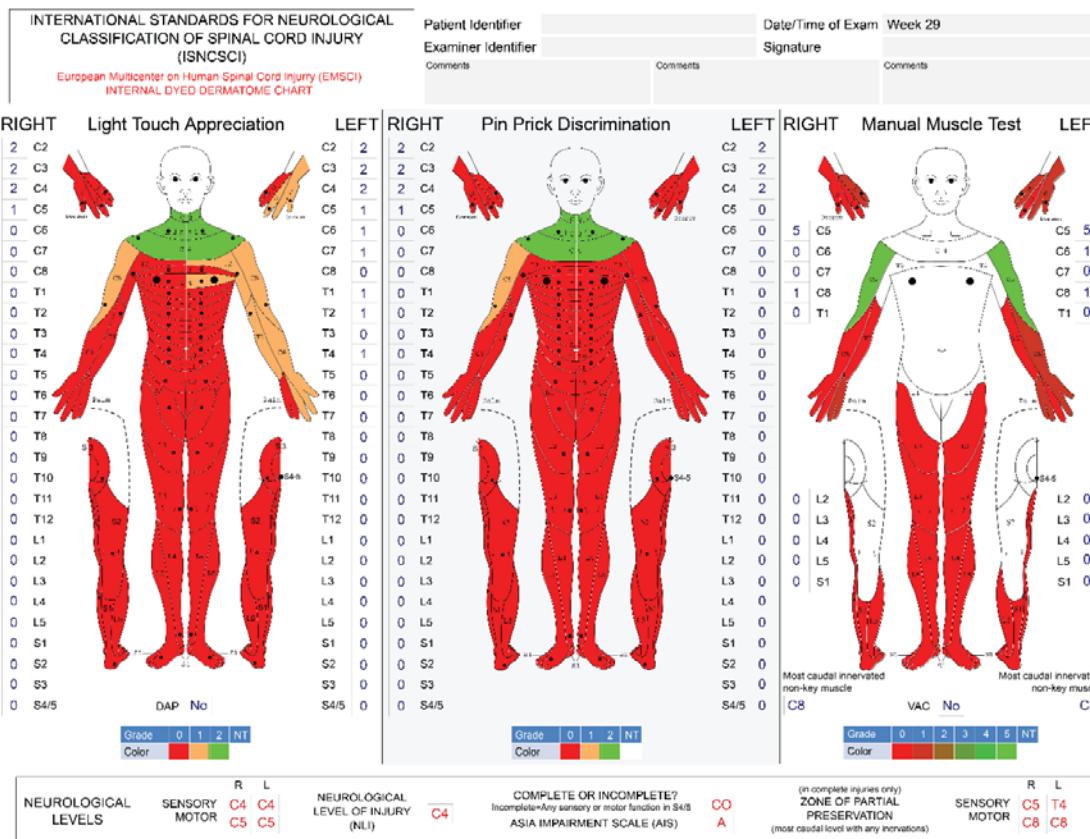
425 The subject underwent weekly interviews to assess for adverse events and was also surveyed
426 for changes in self-perceived functional independence. Changes in health status were assessed
427 with the MOS 36-item short form health survey (SF-36).¹² Perceived changes in functional
428 independence were assessed with the Spinal Cord Independence Measure (SCIM) version III¹³
429 which ranges from 0 to 100 and higher score indicate increased independence. Detailed
430 neurological evaluation for documentation of level and severity of SCI was conducted monthly
431 according to the ISNCSCI. ¹⁴

432 While there was no change in ISNCSCI ASIA impairment scale from a C5 motor level, there was
433 an unexpected slight increase in the motor zone of partial preservation (defined as the myotomes
434 below the level of injury with residual innervation) on the left from C6 to C8. Additionally, after
435 study week 23, the subject began to be able to extend his right thumb volitionally with motor
436 strength 2/5 in the absence of the FES orthosis. There was no change in the SCIM from a baseline
437 score of 26. The SF-36 indicated a 32.5% improvement in pain, a 5% increase in energy, and an
438 8% decrease in emotional well-being

439 Detailed neurological evaluation for documentation of level and severity of SCI was conducted
440 monthly according to the ISNCSCI. Figure S9 and S10 summarize the results of the ISNCSCI
441 obtained during the week 1 and week 29 visits. Diagrams generated using the European
442 Multicenter Study about Spinal Cord Injury (EMSC) ISNCSCI calculator.¹⁵



445 **FIGURE S9 ISNCSCI EXAM ON INITIAL VISIT – STUDY WEEK 1.** NOTE THE C5 MOTOR LEVEL AND C4 NEUROLOGICAL LEVEL OF INJURY (NLI) DUE TO DIMINISHED SENSATION IN THE C5 DISTRIBUTION. THE ZONE OF PARTIAL PRESERVATION FOR THE RIGHT/LEFT IS T2/T4 FOR SENSORY FUNCTION AND C8/C6 FOR MOTOR.



450

451 **FIGURE S10 ISNCSCI EXAM ON FINAL VISIT – WEEK 29.** NOTE THAT WHILE THE MOTOR LEVEL REMAINS C5 AND THE NLI
 452 C4, THERE IS A SLIGHT INCREASED ZONE OF PARTIAL PRESERVATION WITH IS NOW C8 BILATERALLY COMPARE TO C8 ON THE
 453 RIGHT AND C6 ON THE LEFT DURING WEEK ONE. ADDITIONALLY, THE SUBJECT GAINED THE ABILITY TO SLOWLY EXTEND HIS
 454 THUMB ON COMMAND ON THE RIGHT SIDE WHICH IS NOTED AS THE MOST CAUDAL INNERVATED NON-KEY MUSCLE AS C8 ON
 455 THE RIGHT PANEL.

456 Changes in health status were assessed with the MOS 36-item short form health survey (SF-36).¹²

457 Comparisons of SF-36 scores between initial and final study visit are summarized in Table S5.

458 Perceived changes in functional independence were assessed with the Spinal Cord
 459 Independence Measure (SCIM)¹³ version III which ranges from 0 to 100 and higher score indicate
 460 increased independence. Changes are in SCIM are summarized in Table S6.

461 There was an 8% decrease in emotional well-being in the SF36 changes in responses to the
 462 following questions:

463 1) “During the past 4 weeks, have you been a happy person?” changing from “all of the
 464 time” to “most of the time.”

465 2) "During the past 4 weeks, have you felt calm and peaceful?" changing from "all of the
466 time" to most of the time."

467 The 32.5% improvement in the pain score was driven by changes in responses to the following
468 questions:

469 1) "How much bodily pain have you had in the past 4 weeks?" changing from "mild" to
470 "very mild."

471 2) "During the past 4 weeks, how much did pain interfere with your normal work?" –
472 change from "moderately" to "a little bit."

473 The 5% improvement in energy/fatigue was driven by the response to the question "During the
474 last 4 weeks, did you feel worn out?" changing from "a little bit of the time" to "none of the time."

475

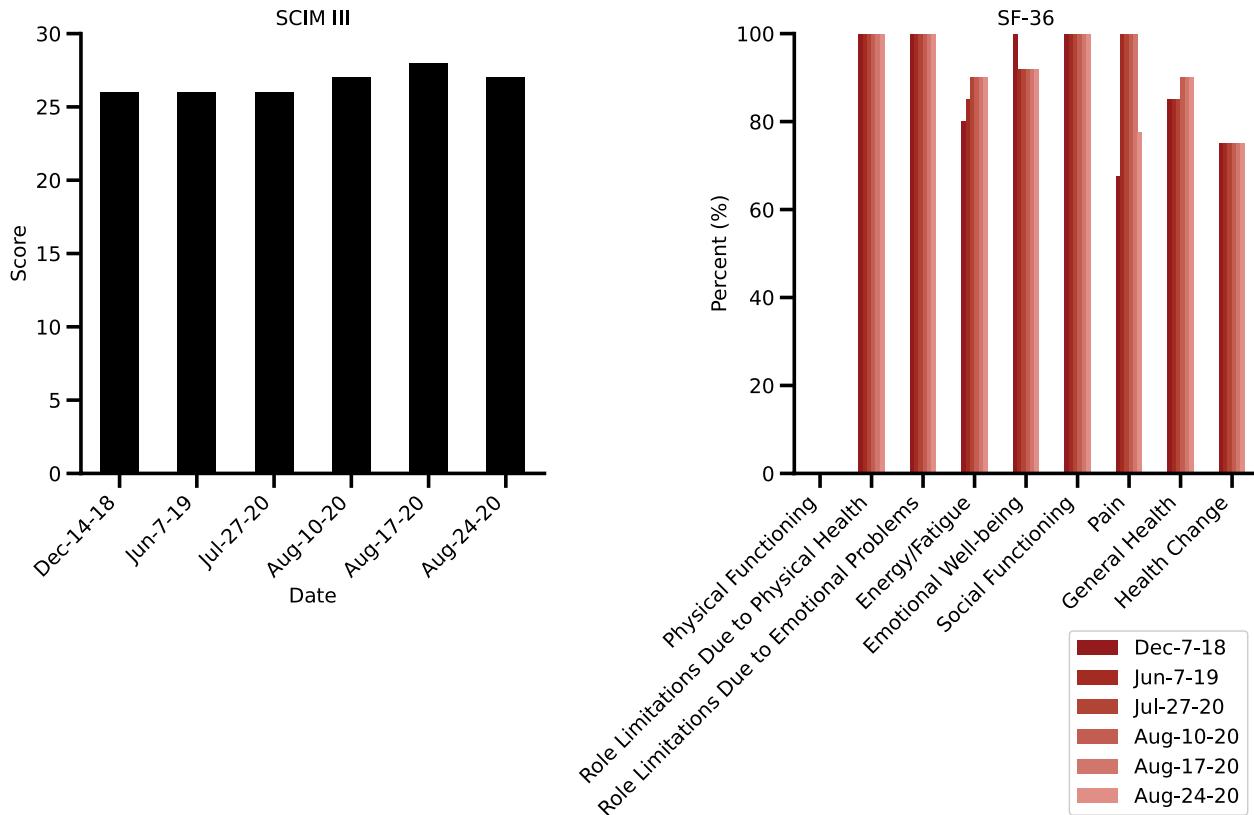
476 **TABLE S6 SF36 SCORES CHANGES. SCORES CALCULATED USING ^{12,16}**

Category	Laboratory Trials			Home Trials		
	Initial Visit	Final Visit	Change	Initial Visit	Final Visit	Change
Physical Functioning	0%	0%	0%	0%	0%	0%
Role Limitations Due to Physical Health	100%	100%	0%	100%	100%	0%
Role Limitations Due to Emotional Problems	100%	100%	0%	100%	100%	0%
Energy/Fatigue	80%	85%	5%	90%	90%	0%
Emotional Well-Being	100%	92%	-8%	92%	92%	0%
Social Functioning	100%	100%	0%	100%	100%	0%
Pain	67.5%	100%	32.5%	100%	77.5%	-22.5%
General Health	85%	85%	0%	85%	90%	5%
Health Change	75%	75%	0%	75%	75%	0%

477

478 **TABLE S7 SPINAL CORD INDEPENDENCE MEASURE.**

	Laboratory Trials			Home trials		
	Initial Visit	Final Visit	Change	Initial Visit	Final Visit	Change
Self-Care	2	2	0	2	3	1
Respiration and Sphincter Management	21	21	0	21	21	0
Mobility	3	3	0	3	3	0
Total	26	26	0	26	27	1



479
480 **FIGURE S11 SCIM III AND SF-36.** CHANGES IN SCORES FOR THE SCIM III (LEFT) AND SF-36 (RIGHT) OVER THE COURSE OF
481 THE STUDY PERIOD. THE FIRST TWO TIME POINTS WERE TAKEN BEFORE AND AFTER THE LABORATORY STUDY PERIOD. THE
482 FINAL 4 TIME POINTS WERE TAKEN THROUGHOUT THE STUDY AT HOME.

483 **References**

1. Gant K, Guerra S, Zimmerman L, Parks BA, Prins NW, Prasad A. EEG-controlled functional electrical stimulation for hand opening and closing in chronic complete cervical spinal cord injury. *Biomedical Physics & Engineering Express* 2018;4:065005.
2. Tshitoyan V. Simple Neural Network. 1.1 ed. GitHub: GitHub; 2019.
3. Gramfort A, Luessi M, Larson E, et al. MEG and EEG data analysis with MNE-Python. *Front Neurosci* 2013;7:267.
4. Babadi B, Brown EN. A review of multitaper spectral analysis. *IEEE Trans Biomed Eng* 2014;61:1555-64.
5. Thomson DJ. Spectrum estimation and harmonic analysis. *Proceedings of the IEEE* 1982;70:1055-96.
6. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
7. Rabiner LR. A Tutorial on Hidden Markov-Models and Selected Applications in Speech Recognition. *Proceedings of the Ieee* 1989;77:257-86.
8. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. *J Mach Learn Res* 2011;12:2825-30.
9. Tharwat A, Gaber T, Ibrahim A, Hassanien AE. Linear discriminant analysis: A detailed tutorial. *Ai Communications* 2017;30:169-90.

501 10. Carmena JM, Lebedev MA, Crist RE, et al. Learning to control a brain-machine interface for
502 reaching and grasping by primates. *PLoS Biol* 2003;1:E42.

503 11. Presacco A, Goodman R, Forrester L, Contreras-Vidal JL. Neural decoding of treadmill walking from
504 noninvasive electroencephalographic signals. *J Neurophysiol* 2011;106:1875-87.

505 12. Ware JE, Jr., Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual
506 framework and item selection. *Med Care* 1992;30:473-83.

507 13. Itzkovich M, Gelernter I, Biering-Sorensen F, et al. The Spinal Cord Independence Measure (SCIM)
508 version III: reliability and validity in a multi-center international study. *Disabil Rehabil* 2007;29:1926-33.

509 14. Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological
510 classification of spinal cord injury (revised 2011). *J Spinal Cord Med* 2011;34:535-46.

511 15. ISNCSCI Calculator. European Multicenter Study about Spinal Cord Injury, 2019. (Accessed
512 06/18/2019, 2019, at <http://ais.emsci.org/>.)

513 16. Free online SF-36 score calculator. OrthoToolKit, 2019. (Accessed 7/2/2019, 2019, at
514 <https://www.orthotoolkit.com/sf-36/>.)

515