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Pre-surgical Screening Protocol 31 
Briefly, individuals with C5 quadriplegia who called or visited The Miami Project to Cure Paralysis 32 

or who had registered with the research center with an interest to participate in research were 33 

offered the opportunity to participate in this screening study.  34 

Each participant underwent screening measurements and testing during a 1-3-month evaluation 35 

period (depending schedule and availability). A total of up to 16 sessions were required for 36 

subjects to be considered for the surgical protocol. During each session the ability of the subject 37 

to reliably trigger electrical stimulation of the hand using motor imagery was tested. A subset of 38 

the results comparing the performance of healthy volunteers and SCI subjects has been 39 

separately published1. Upon completing these tests, the subject underwent a brain fMRI study to 40 

characterize the ability of motor imagery related to hand movement to lead to changes in the 41 

BOLD signal.  42 

TABLE S1 SURGICAL PROTOCOL MAJOR INCLUSION CRITERIA 43 

Inclusion Criteria Measure Rationale 

Age > 22 Years of age Higher rates of 
neurological recovery in 
adults and better potential 
for rehabilitation 

Age < 50 Years of age Lower risk of complications 

AIS Grades A & B Neurological exam Standard neurologic 
assessment for spinal 
cord injury 

Level of injury 
C5 motor 
complete 

Neurological exam The appropriate injury 
level for measuring 
detectable restoration of 
both triceps and hand 
function 

Local 
community 
dwelling 

Proof of local 
community 
address 

Higher compliance to 
weekly follow-up visits 
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Stable chronic injury 1-15 years post injury Suitability for efficacy 
measurements while 
excluding complications 
that develop with 
excessive time post-injury 

Stable health status 
and upper 
extremities 

No significant 
joint contractures 
at the elbow, 
wrists, or hands 

Minimize interferences 
with the ability to perform 
outcome measure tests 
like transfer or pinch 

Participation in 
Clinical EEG 
Protocol  

Successful 
screening and 
assessments 
outlined in 
Clinical EEG 
Protocol 

Selection of candidates 
screened in Clinical EEG 
Protocol ensures 
participants possess 
ability to trigger orthosis 
with motor imagery 

 44 

TABLE S2 SURGICAL PROTOCOL MAJOR EXCLUSION CRITERIA 45 

Exclusion Criteria Measure Rationale 

Coagulopathy Lab test Higher risks of complications 

Anticoagulation Lab test Higher risks of surgical 
complications 

Pregnancy Urine or serum 
pregnancy test 

Risk to fetus 

 46 

Additional Exclusion Criteria 47 

1. Subjects with severe non-CNS injury or serious concurrent medical issues. 48 
2. Subjects with metal prosthetics. 49 
3. Subjects with tendon transfers. 50 
4. Subjects with a history of cardiac arrhythmia.  51 
5. Subjects with cognitive issues. During Screening, subjects will undergo a 52 

Neuropsychological testing and use the Mini-Mental Status has a guide to severity of 53 
dementia. A MMSE score of ≤ 15 will be an absolute exclusion. Anything above that 54 
score but still abnormal will be a relative contraindication requiring discussion amongst 55 
the research team. 56 

6. Subjects who have made a suicide attempt or are severely depressed. Severe 57 
depression should be defined based on a depression assessment scale.  58 

7. Subjects with peripheral nerve damage that will affect planned investigational testing will 59 
be excluded. 60 

8. Subjects with medical condition that requires regular post-implant MRIs. 61 
9. Subjects who suffer from claustrophobia (contraindication for fMRI). 62 
10. Subjects who have a life expectancy of less than 2 years. 63 
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11. Subjects diagnosed with peripheral polyneuropathy. 64 
12. Subjects with another implanted stimulator (e.g., pacemaker, defibrillator, cochlear 65 

implant, neurostimulator, etc.) 66 
13. Subjects who have been, or are currently, enrolled in another investigational study. 67 
14. Subjects who have skin ulcerations, a history of poor wound healing, an active infection, 68 

or significant pain in the lower extremity that is being treated. 69 
15. Subjects unable to give informed consent. 70 
16. Subjects who are prisoners or wards of the state. 71 
17. Subjects who are pregnant or planning to become pregnant. 72 
18. Subjects that speak languages without local site level expertise for translation and verbal 73 

communication. 74 
19. Screening Study Specific Exclusion 75 

a. fMRI does not show reproducible hand/arm activation 76 
b. External triceps stimulation does not produce consistent, adequate, and 77 

reproducible contraction 78 
c. EEG BCI studies do not lead to viable control 79 

Surgical Study Timeline 80 
The presented subject was enrolled in the study on November 2, 2018 and surgical implantation 81 

occurred on November 30, 2018. A timeline of the important study events is given Figure S1. 82 

 83 

FIGURE S1 STUDY TIMELINE. DAY 0 OF THE STUDY BEGINS ON THE DATE THE SUBJECT SIGNED INFORMED CONSENT TO BEGIN 84 
THE SCREENING PROTOCOL WITH EEG.   85 

Decoding upper extremity movement intent  86 
After surgical recovery, the subject came to the laboratory 2-3 times per week for 1-2 hours at a 87 

time. A timeline of the 29-week trial is included in the Supplementary methods (Figure S1). During 88 

the duration of the study, the subject participated in 121 upper extremity experimental sessions, 89 

with an average of 11 sessions per week (range 5-12). Each session consisted of 100 trials during 90 
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which the subject was asked to perform motor imagery of continuous movement of the dominant 91 

right hand. The 100 trials were completed in blocks of 20 trials with several minutes of rest in 92 

between so that subject does not become fatigued. During the motor imagery tasks, the subject 93 

was instructed to think of relaxing his hand for 3 seconds, followed by thinking continuously of 94 

moving the right hand for 3 seconds during which time the ECoG activity was recorded (Figure 95 

1C and D). During study weeks 6-8, “open-loop” experiments were run where the subject was 96 

asked to perform move or rest motor imagery, but FES was not applied to the hand. Offline 97 

analysis included calculating average band power within pre-defined frequency bins (see 98 

Supplementary methods) during the “rest” and “move” periods, that were used as features for 99 

training various classifiers (bagged trees, k-nearest neighbors, linear discriminant, logistic 100 

regression, linear support vector machine, and a neural network). The purpose of training and 101 

testing various classification algorithms was to use the one which gave highest decoding accuracy 102 

and consistency, to be used for online closed-loop experiments.  103 

In-Laboratory ECoG Power Analysis 104 
The Activa PC+S device was configured with the following montage such that the ECoG data 105 

from channels 1 and 3 (time channels) was sampled at 200Hz, whereas channels 2 and 4 (power 106 

channels) were configured for onboard computation of the average signal power between 4-36Hz 107 

and sampled at 5Hz (see Table S3). Data from the implanted device was transmitted via the 108 

antennae to an external laptop running Matlab 2015b. Data packets were received every 400ms. 109 

For each trial, all the packets from the “rest” or “move” phase were collected to yield 3 seconds 110 

of data for each phase. The power content of both time channels for each separate experiment 111 

phase was estimated using the pspectrum function in Matlab.  The frequencies were binned into 112 

8 pre-specified segments based on typical frequency ranges commonly used to describe 113 

EEG/ECoG as: 1-8Hz, 8-12Hz, 12-18Hz, 18-26Hz, 26-35Hz, 35-45Hz, 45-70Hz, and 70-100Hz. 114 

The average signal power within each bin was computed for each of the time channels and 115 
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together with the onboard -computed power channel values used to create an 18-dimensional 116 

feature vector for each experimental phase.   117 

TABLE S3 118 

Channel 
Number 

Electrode 
Configuration 

Sample Rate 
(Hz) 

Output Type 

1 E0-E3 200  Raw Channel 1 Signal 
2 E1-E2 5 Avg. Power in Channel 2 Signal between 4-

36Hz 
3 E8-E10 200 Raw Channel 3 Signal 
4 E9-E11 5 Avg. Power in Channel 4 Signal between 4-

36Hz 
 119 

For channels 1 and 3, the average power in 8 pre-defined frequency ranges were used as 120 

features, whereas for channels 2 and 4 the average power between 4Hz and 36Hz yielded two 121 

additional features (Figure S3). All 18 (8 features per channel x 2 channels + 1 feature per power 122 

channel x 2 power channels) values were used as a feature vector for classifier training. 123 

Additionally, during study weeks 6-8, all bipolar combinations of the surface contacts were tested 124 

with this paradigm to determine the montage that yielded the highest power difference between 125 

rest and move signals (Figure S2). The final electrode montage is summarized in Figure 1B. It 126 

was determined that the best performing classifier was the bagged tree classifier which was 127 

therefore chosen for online decoding for the remainder of in-laboratory experiments from weeks 128 

9-29. 129 

In-Laboratory Channel Montage Selection 130 
“Open-loop” tasks which consisted of the subject performing only motor imagery of either hand 131 

rest or movement were then run with each possible electrode montage configuration and the 132 

integrated absolute difference in signal power between the rest (𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and move (𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ) phases 133 

computed in each frequency bin of interest. These trials were used to determine the electrode 134 

montage that allowed for the best discrimination between the “rest” and “move” states. As shown 135 
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in Figure S2, the configuration E0-E3 for channel 1 and E8-10 for channel 3 resulted in the largest 136 

power differences between the “rest” and “move” states and were therefore used for the 137 

remainder of the experiments.  138 

 139 

FIGURE S2 CHANNEL MONTAGE COMPARISONS. THE POWER DIFFERENCES BETWEEN THE MOVE AND REST STATES WERE 140 
INTEGRATED WITHIN A SET OF FREQUENCY BANDS LISTED IN THE LEGEND. THE MONTAGE CONFIGURATIONS HIGHLIGHTED 141 
IN GRAY WERE CHOSEN DUE TO THE ABILITY TO CAPTURE THE HIGHEST DIFFERENCES IN THE BETA BAND (18-26HZ) AND 142 
LOW GAMMA (26-35HZ).  143 

From study weeks 9-19, “closed-loop” upper extremity experiments were conducted where the 144 

decoded motor imagery state from the online classifier was used to drive FES of the right upper 145 

extremity via an external orthosis (Bioness H200, Bioness, Valencia, CA). For these experiments, 146 

each session consisted of blocks of 20 trials. On session 1 of week 9, the first block was performed 147 

in “open loop” and used to train the online classifier for use in session 2. Subsequent sessions in 148 

closed loop were run with a classifier trained using the previous 1-5 blocks until maximum of 5 149 
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prior blocks were available for training; all subsequent blocks used the online classifier obtained 150 

from training with the prior 5 blocks of data.  Figure 1D shows average spectrograms for rest and 151 

move motor imagery across all closed-loop sessions with the final selected electrode montage 152 

which is shown in Figure 1B.  153 

In-Laboratory Feature Extraction and Supervised Learning 154 

Dataset Generation 155 
Figure S3 Panel A shows a sample ECoG channel, 𝐸𝐸(𝑡𝑡), during REST (R) and MOVE (M) states 156 

during trial 𝑗𝑗. For channels 1 and 3, the power spectrum of the signals is estimated based on 157 

approximately 3 seconds worth of data for each continuous time channel sampled at 200 Hz using 158 

the pspectrum function. The average power in each bin is computed yielding 8 features for each 159 

time channel, 𝑐𝑐ℎ = 1,3, and movement condition, 𝑐𝑐𝑗𝑗, and saved as the feature vectors 𝑓𝑓𝑐𝑐ℎ
𝑐𝑐𝑗𝑗 . For 160 

Channels 2 and 4, the average power in a frequency bin centered at 20 Hz with a bin width of 161 

16Hz (4-36Hz) is computed online within the PC+S and output from the device at a sample rate 162 

of 5Hz. The average power from Channels 2 and 4 for condition, 𝑐𝑐𝑗𝑗, (𝑓𝑓2
𝑐𝑐𝑗𝑗 and 𝑓𝑓4

𝑐𝑐𝑗𝑗 respectively) are 163 

then added as additional features to those computed from Channels 1 and 3 to produce a 18-164 

dimensional feature vector 𝑓𝑓𝑐𝑐𝑗𝑗 = �𝑓𝑓1
𝑐𝑐𝑗𝑗 ,𝑓𝑓2

𝑐𝑐𝑗𝑗 ,𝑓𝑓3
𝑐𝑐𝑗𝑗 ,𝑓𝑓4

𝑐𝑐𝑗𝑗�  Panel B shows how for each trial 𝑗𝑗  and 165 

condition, 𝑐𝑐𝑗𝑗, spectral features are extracted and used to construct a training set that could be 166 

used to select among different types of classifiers.  167 

 168 
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 169 

FIGURE S3 FEATURE EXTRACTION AND CLASSIFIER TRAINING DATASET. PANEL A SHOWS A SAMPLE ECOG CHANNEL, 𝑬𝑬(𝒕𝒕), 170 
DURING REST (R) AND MOVE (M) STATES DURING TRIAL 𝒋𝒋. FOR CHANNELS 1 AND 3, THE POWER SPECTRUM OF THE SIGNALS 171 
WAS ESTIMATED BASED ON APPROXIMATELY 3 SECONDS WORTH OF DATA FOR EACH CONTINUOUS TIME CHANNEL SAMPLED 172 
AT 200 HZ. THE AVERAGE POWER IN EACH BIN WAS COMPUTED YIELDING 8 FEATURES FOR EACH TIME CHANNEL, 𝒄𝒄𝒄𝒄 = 𝟏𝟏,𝟑𝟑, 173 
AND MOVEMENT CONDITION, 𝒄𝒄𝒋𝒋, AND SAVED AS THE FEATURE VECTORS 𝒇𝒇𝒄𝒄𝒄𝒄

𝒄𝒄𝒋𝒋 . FOR CHANNELS 2 AND 4, THE AVERAGE POWER 174 
IN A FREQUENCY BIN CENTERED AT 20 HZ WITH A BIN WIDTH OF 16HZ (4-36HZ) WAS COMPUTED ONLINE WITHIN THE PC+S 175 
AND OUTPUT FROM THE DEVICE AT A SAMPLE RATE OF 5HZ. THE AVERAGE POWER FROM CHANNELS 2 AND 4 FOR CONDITION, 176 
𝒄𝒄𝒋𝒋, (𝒇𝒇𝟐𝟐

𝒄𝒄𝒋𝒋  AND 𝒇𝒇𝟒𝟒
𝒄𝒄𝒋𝒋  RESPECTIVELY) WERE THEN ADDED AS ADDITIONAL FEATURES TO THOSE COMPUTED FROM CHANNELS 1 AND 177 

3 TO PRODUCE A 18-DIMENSIONAL FEATURE VECTOR 𝒇𝒇𝒄𝒄𝒋𝒋. PANEL B SHOWS HOW FOR EACH TRIAL AND CONDITION, SPECTRAL 178 
FEATURES WERE EXTRACTED AND USED TO CONSTRUCT A TRAINING SET THAT WAS USED TO SELECT AMONG DIFFERENT TYPES 179 
OF CLASSIFIERS.  180 

Specific Classifier Parameters 181 
All classifiers were trained in Matlab 2018b but online experiments were conducted in 2015a. 182 

Off-line classifiers were selected as outlined in Table S4 183 

Functional tasks 184 
From weeks 11-19, several tasks were performed alongside the upper extremity trials to quantify 185 

any improvements in upper extremity function. Starting on week 11, whenever a correct move 186 

state was decoded and the subject was receiving FES to open and close the hand, he was asked 187 

to pick up and move a small cup (or a checker introduced from week 13) from one side of the 188 

table to the other at the center of a target. The placement accuracy was measured as a function 189 

of the distance of the cup/checker to the target. Additionally, during weeks 8-29 a modified version 190 

of the Jebsen-Taylor Hand Function Test (JHFT)23 was performed once per week to quantify 191 

functional improvement. Passive and active range of motion was also measured each week. 192 
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Lower extremity closed-loop trials 193 
In order to assess the ability of this class of implant to be used to control other functional 194 

movements, we sought to test the ability to trigger stepping instead of upper extremity FES. 195 

Beginning on study week 14, the subject underwent tilt table training for 1 hour per week to assist 196 

with maintaining a standing posture without significant orthostatic hypotension. Beginning on 197 

study week 20, the subject began to participate in lower extremity tasks consisting of ambulating 198 

for one hour on a robotic-assisted weight supported treadmill training device (ReoAmbulator, 199 

Motorika, Mount Laurel, NJ) 1-3 times per week. During each session, the subject would try to 200 

participate in 50 trials (with 10 trials per block). Each session was structured similarly to the upper 201 

extremity session. For each trial, the robot was configured to walk at a speed of 0.6-1.7 km per 202 

hour for 4-6 gait cycles and then stop. As the robot was slowing down, a visual cue would prompt 203 

the subject to think about moving the dominant upper extremity. If a move state was correctly 204 

decoded, the robot would be triggered to resume stepping for an additional 4-6 gait cycles (Video 205 

S1). Closed-loop lower extremity trials were conducted from study weeks 21-29. 206 

In-Laboratory Classifiers 207 
Figure 2A summarizes decoding performance across all upper extremity sessions (open-loop and 208 

closed loop) for weeks 9-19 for different classifier types. For offline analysis of the closed loop 209 

experiments, a total of 80-240 trials were used with half of the data set used for training and the 210 

other half for testing.  The accuracies presented represent the average of 100 monte-carlo 211 

simulations. Mean online decoding accuracy per week was 89.0% (median 88.75%, range 78-212 

93.3%) which was not significantly different from offline performance across the 5 types of 213 

classifiers tested (Kruskall-Wallis test with Tukey-Kramer adjustment for multiple comparisons, 214 

p>0.06). Online decoding during weeks 9-19 remained relatively stable for upper extremity tasks 215 

across weeks as shown in Panel 2B. Figure S4C summarizes decoding performance across all 216 

lower extremity gait tasks for weeks 21-29 across different classifier types. Mean online decoding 217 

accuracy per week for the lower extremity tasks was 84.15% (median 85%, range 73.3-90%). 218 
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There was no significant difference between online decoding accuracies on upper versus lower 219 

extremity tasks (two-tailed t-test, p = 0.13). 220 

 221 

FIGURE S4 LOWER EXTREMITY DECODING PERFORMANCE. PANEL A SHOWS THE LOWER EXTREMITY AMBULATION TASK 222 
WHICH WAS PERFORMED ON A WEIGHT-SUPPORTED TREADMILL TRAINING DEVICE. WHEN A MOVE STATE WAS CORRECTLY 223 
DECODED, THE ROBOT WAS ENABLED TO CONTINUE WALKING FOR A FIXED NUMBER OF STEPS. PANEL B SHOWS THE DIFFERENT 224 
TYPES OF CLASSIFIERS TO DECODE REST/MOVE DURING THE GAIT TASK. PANEL C SHOWS THE ONLINE DECODING ACCURACY 225 
DURING THE GAIT TASK ACROSS STUDY WEEKS. ONLINE DECODING ACCURACY DURING LOWER EXTREMITY TASKS WAS SLIGHTLY 226 
MORE SENSITIVE TO SUBJECT’S ATTENTION AND THIS IS REFLECTED IN THE SLIGHTLY INCREASED VARIABILITY OF DECODING 227 
ACCURACY DURING THESE TASKS COMPARED TO THE UPPER EXTREMITY ONES.  228 

 229 

 230 
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 231 

 232 

 233 

TABLE S4 – CLASSIFIER PARAMETERS 234 

Classifier Name Matlab Function Parameters 
ensemble Bagged Trees fitcensemble MaxNumSplits=79; Method=’Bag’; 

NumLearningCycles=30; 
K nearest neighbor (kNN) fitcknn Distance=’Euclidean’, Exponent=[]; 

NumNeighbors=1; 
DistanceWeight=’Equal’; 
Standardize=’true’ 

linear discriminant analysis 
(LDA) 

fitcdiscr DiscrimType=’linear’; Gamma=0; 
FillCoeffs=’off’; 

support vector machine (SVM) fitcsvm KernelFunction =’linear’; PolynomialOrder 
= []; KernelScale=’auto’; BoxConstraint=1; 
‘Standardize’ = true 

fully connected artificial neural 
network (ANN) 

learnNN2 NumberHiddenLayers=3; 
ActivationFunction=tanh 

 235 

Home Decoder Development 236 

 237 

FIGURE S5 AT-HOME DECODER METHODS. PANEL A SHOWS THE RAW DATA RECORDED WITH THE DOTTED BOX REPRESENTING 238 
ONE WINDOW OF DATA. OVERLAPPING WINDOWS 𝒘𝒘𝟎𝟎,𝒘𝒘𝟏𝟏,𝒘𝒘𝟐𝟐  ARE SHOWN AT THE BOTTOM WHERE EACH WINDOW WAS 239 
𝒘𝒘 SECONDS LONG WITH A WINDOW STEP OF 0.4 SECONDS. MOTOR INSTRUCTION WAS USED AS LABELS FOR DECODER 240 
TRAINING. PANEL B SHOWS THE PREPROCESSING OF THE DATA. SPECTRAL FEATURES FROM ALL FOUR CHANNELS WERE 241 
COMPUTED AND CONCATENATED, RESULTING IN FEATURE VECTOR 𝐱𝐱𝐭𝐭−𝐥𝐥 FOR WINDOW 𝒘𝒘𝒕𝒕 WHERE 𝒕𝒕 IS THE TIME AT THE END 242 
OF THE WINDOW AND 𝒍𝒍 IS THE LAG HYPER-PARAMETER. MOTOR INSTRUCTION LABELS OVER THE WINDOW WERE AGGREGATED 243 
USING METHOD 𝒊𝒊. THE RESULTING FEATURE VECTOR 𝐱𝐱𝐭𝐭−𝐥𝐥  AND LABEL 𝒚𝒚𝒕𝒕

(𝒊𝒊) WERE COMPUTED FOR ALL WINDOWS 𝒘𝒘𝒕𝒕 IN THE 244 
TRAINING SET WERE USED TO TRAIN THE DECODING ALGORITHM. HYPER-PARAMETERS {𝒘𝒘, 𝒍𝒍, 𝒊𝒊,𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚} 245 
WERE SELECTED VIA CROSS-VALIDATION (TABLE S5). PANEL C SHOWS A FLOW DIAGRAM OF ONLINE DECODING OF MOTOR 246 
STATE AS APPLIED TO THE OPEN-LOOP AND CLOSED-LOOP AT-HOME DATA.  247 
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 248 

At-Home Feature Extraction 249 

Feature extraction and decoder development hyper-parameters were selected by leave-one-out 250 

cross-validation over the 33 trials in the at-home training data set. The first hyper-parameter was 251 

window size for the ECoG spectral estimate, 𝑤𝑤 ∈ {0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2}  measured in 252 

seconds. Overlapping windows, with a step of 0.4 seconds, resulted in 𝑁𝑁 windows per trial where 253 

𝑁𝑁  varied with window duration 𝑤𝑤 . As a result of windowing, motor instruction labels were 254 

aggregated from each sample in the window, where 1 indicates motor intent and 0 indicates rest. 255 

In order to build a decoding model robust to transitions from a move to rest state, windows with 256 

data collected during both move and rest states were not removed for training. Three possible 257 

methods for aggregating windows of labels were considered during cross-validation (Figure S6). 258 

For each window, vector 𝐲𝐲 = {𝑦𝑦(1),𝑦𝑦(2),𝑦𝑦(3)} of labels was computed where 259 

o 𝑦𝑦(1) ∈ {1,0}  is the last label of the window. 260 

o 𝑦𝑦(2) ∈ {1,0}  is the majority of labels in the window.  261 

o 𝑦𝑦(3) ∈ {1,0,𝑁𝑁𝑁𝑁𝑁𝑁}  is 1 or 0 if there is unanimous consensus within the window (all 262 

1 or all 0), or 𝑁𝑁𝑁𝑁𝑁𝑁 if there are both move and rest labels in the window. This 263 

aggregation is motivated by aiming to provide the decoder with the highest 264 

quality data. 𝑁𝑁𝑁𝑁𝑁𝑁-labelled windows were not used for supervised learning. 265 

For ECoG channels 1 and 3, the PSD of each window was computed using the multitaper method 266 

in the MNE python package3 with normalized half-bandwidth T = 3, and a bandwidth of 𝑏𝑏 = 2×T
0.4×w

 267 

4. 2T − 1 = 5 tapers were used and an adaptive weighting routine was used to combine estimates 268 

of different tapers5. Spectral power was estimated for a frequency range between 0-100Hz and 269 

was converted to decibels. Spectral estimation for channels 1 and 3 resulted in 𝑥𝑥(𝑐𝑐ℎ 1)  ∈ ℝ𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 270 
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and 𝑥𝑥(𝑐𝑐ℎ 3)  ∈ ℝ𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝, respectively and where 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 is the length of the PSD. For channels 2 and 4, 271 

median power 𝑥𝑥� ∈ ℝ+ for each window was calculated. Spectral estimates from all channels were 272 

aggregated into one spectral feature vector 𝐱𝐱 ∈ ℝ𝐹𝐹 for each window where 𝐹𝐹 = 2 ×  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 + 2 273 

At-Home Decoder Architecture 274 
Three decoding model architectures were considered during cross-validation. Each decoding 275 

model used a fixed window length and labeling method.  276 

Hidden Markov Model decoder 277 

In order to incorporate the temporal dynamics of switching between move and rest states, we 278 

used a Hidden Markov Model, a state-space model that has been used to describe time series 279 

data in a wide variety of fields6. It assumes an 𝑀𝑀-state system has {𝑞𝑞0,𝑞𝑞1, … , 𝑞𝑞𝑀𝑀−1} discrete latent 280 

states which evolve over time, driven by a first-order, ergodic Markov chain resulting in a 281 

sequence of 𝑁𝑁 states 𝑍𝑍 = (𝑧𝑧0, 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁−1) . Observations of the system (𝒙𝒙𝑛𝑛 ) are distributed 282 

according to state-specific Gaussian emission distributions 𝐁𝐁 = {𝐛𝐛𝒎𝒎} where 𝐛𝐛𝒎𝒎~ 𝒩𝒩(𝝁𝝁𝒎𝒎,𝚺𝚺𝒎𝒎)  for 283 

each state 𝑞𝑞𝑚𝑚 with mean 𝝁𝝁𝒎𝒎 and covariance 𝚺𝚺𝒎𝒎, which was constrained to be diagonal so that 284 

training would be more computationally tractable. The Markov chain transition matrix is 𝐴𝐴 = {𝑎𝑎𝑖𝑖𝑖𝑖} 285 

where 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃(𝑧𝑧𝑛𝑛+1 = 𝑞𝑞𝑗𝑗|𝑧𝑧𝑛𝑛 = 𝑞𝑞𝑖𝑖). The initial state of the system is drawn from the discrete initial 286 

state distribution 𝛑𝛑. The entire HMM is fully parameterized by  λ = (𝐴𝐴,𝐁𝐁,𝛑𝛑). In the model system, 287 

the state of the system at each discrete time 𝑛𝑛  is based on the Markov chain transition 288 

probabilities and an observed feature is generated according to current state 𝑧𝑧𝑛𝑛 resulting in a 289 

sequence of observations 𝐗𝐗 = (𝐱𝐱𝟎𝟎, 𝐱𝐱𝟏𝟏, … 𝐱𝐱𝐍𝐍−𝟏𝟏). 6,7 290 

Each HMM was trained with the Baum-Welch algorithm with random parameter initialization and 291 

a maximum of 10 iterations using the hmmlearn python package 8. For prediction of latent state, 292 

the forward algorithm was used in order to estimate the probability of being in each state at each 293 

time 𝑛𝑛. The normalized forward algorithm computes the probability of being in each latent state 294 
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𝑞𝑞𝑖𝑖, at time 𝑛𝑛, and is defined as  𝛼𝛼𝑛𝑛(𝑞𝑞𝑖𝑖) = 𝑃𝑃𝑃𝑃(𝑧𝑧𝑛𝑛 = 𝑞𝑞𝑖𝑖 | 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛,𝜆𝜆) =  𝑥𝑥�(𝑖𝑖) resulting in 𝐱𝐱�𝐧𝐧 ∈ [0,1]𝑀𝑀 295 

where 𝑀𝑀 is the number of HMM states and ∑ 𝑥𝑥�(𝑖𝑖)𝑀𝑀
𝑖𝑖=1 = 1. We let the number of states in the HMM 296 

vary with 𝑀𝑀 ∈ {3,5,7} because although our target was binary, a number of different states could 297 

be reflected in the neural signal related to different aspects hand grasp initiation and termination. 298 

𝑀𝑀 was selected in cross-validation (Figure S6, Table S5) 299 

Logistic regression (LR) is used to map HMM state probabilities 𝐱𝐱�𝐧𝐧 to binary move/rest targets. 300 

For each window beginning at time point 𝑛𝑛 that did not have a 𝑁𝑁𝑁𝑁𝑁𝑁 label, the feature vector is 301 

accompanied by a label 𝑦𝑦𝑛𝑛 ∈ {0,1} indicating whether the window corresponds with rest (0) or 302 

motor intent (1). 𝑁𝑁𝑁𝑁𝑁𝑁 labeled windows were dropped for fitting LR parameters. A LR model is 303 

parameterized by a vector 𝜷𝜷 ∈ ℝ𝑀𝑀+1 = [𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑀𝑀]𝑇𝑇. For a given parameterization 𝜷𝜷, the LR 304 

estimated likelihoods of motor intent for window starting at time point 𝑛𝑛 are given by: 305 

 𝑃𝑃𝑃𝑃(Motor Intent | 𝐱𝐱�𝑛𝑛;𝜷𝜷)  =
exp𝜷𝜷𝑇𝑇𝐱𝐱�𝑛𝑛

1 + exp𝜷𝜷𝑇𝑇𝐱𝐱�𝑛𝑛
   306 

𝑃𝑃𝑃𝑃(Rest | 𝐱𝐱�𝑛𝑛;𝜷𝜷)  =
1

1 + exp𝜷𝜷𝑇𝑇𝐱𝐱�𝑛𝑛
 307 

Where 𝐱𝐱�𝑛𝑛 = [1, 𝐱𝐱�𝒏𝒏]𝑇𝑇  is the HMM state probability vector with a one prepended, enabling 𝛽𝛽0  to 308 

serve as a constant offset. Thus, fitting an LR model entails finding the parameters that maximize 309 

the elastic net regularized log-likelihood of the labels corresponding to the training data: 310 

𝜷𝜷� =  argmin
𝜷𝜷

1 − 𝜌𝜌
2

‖𝜷𝜷‖22 + ‖𝜷𝜷‖𝟏𝟏 + �− log Pr (𝑦𝑦𝑛𝑛|𝐱𝐱𝑛𝑛;𝜷𝜷)
𝑁𝑁

𝑛𝑛=1

 311 

Where ‖𝜷𝜷‖22 = 𝜷𝜷𝑇𝑇𝜷𝜷 and 𝝆𝝆 = 𝟎𝟎.𝟓𝟓. The LR parameter vector 𝜷𝜷� was computed using scikit-learn 312 

with elasticnet regularization and the SAGA solver. 8 313 
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Linear Discriminant Analysis Decoder 314 

The second decoding model architecture was a Linear Discriminant Analysis (LDA) decoder. 315 

Since the observations to the HMM decoder were the derived spectral features, the latent states 316 

fitted by the HMM are not guaranteed to be related to motor intent. LDA is a supervised 317 

classification technique that separates groups of labelled data by maximizing the ratio of between-318 

class to within-class separability.9 This yields a linear discriminant vector which maximally 319 

separates the two classes.  320 

First, the training data 𝐗𝐗 ∈ ℝ𝐹𝐹×𝑁𝑁 were divided by motor intent label into the subset  𝐗𝐗(0) ∈ ℝ𝐹𝐹×𝑁𝑁0 321 

for data labelled as a rest state, 𝐗𝐗(1) ∈ ℝ𝐹𝐹×𝑁𝑁1  for data labeled as a move state, and 𝐗𝐗(𝑁𝑁𝑁𝑁𝑁𝑁) ∈322 

ℝ𝐹𝐹×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for data without a label (see Windowing). 𝐗𝐗(𝑁𝑁𝑁𝑁𝑁𝑁) was not used for parameter fitting as 323 

LDA is a supervised learning method which necessitates labelled data. For 𝑗𝑗 ∈  {0,1} and 𝑁𝑁∗ =324 

𝑁𝑁0 + 𝑁𝑁1, let 𝝁𝝁𝑗𝑗 be the sample mean of 𝐗𝐗(𝑗𝑗) and define the scatter matrix as the unnormalized 325 

sample covariance matrix 𝐌𝐌𝑗𝑗 = ∑ �(𝐱𝐱𝑛𝑛
(𝑗𝑗) − 𝝁𝝁𝑗𝑗) �𝐱𝐱𝑛𝑛

(𝑗𝑗) − 𝝁𝝁𝑗𝑗�
𝑇𝑇

 �𝑛𝑛∈𝑁𝑁∗ .   Within-class scatter matrix is 326 

defined as 𝐌𝐌𝑊𝑊 = 𝐌𝐌0 + 𝐌𝐌1  and the between-class scatter matrix was defined as 𝐌𝐌𝐵𝐵 =327 

(𝝁𝝁0 − 𝝁𝝁1)(𝝁𝝁0 − 𝝁𝝁1)𝑇𝑇. Thus, the linear discriminant 𝐯𝐯∗ ∈ ℝ𝐹𝐹 is found as the solution to: 328 

v∗ =  argmax
v

v𝑇𝑇M𝐵𝐵v 
v𝑇𝑇M𝑊𝑊v

 329 

Which maximizes the variance between classes while minimizing the variance within classes. 330 

LDA models were implemented using the scikit-learn Python package. 8 331 

LDA-HMM Decoder 332 

The third decoder architecture was a combination of the described LDA and HMM decoders. The 333 

LDA parameters were fitted as described above, but rather than using LDA directly for 334 

classification, the spectral feature vector 𝐱𝐱𝑛𝑛 was used to generate the LDA scores 𝐱𝐱𝑛𝑛∗ = 𝐱𝐱𝑛𝑛𝑇𝑇𝐯𝐯∗ for 335 
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every window 𝑛𝑛 . The sequence of LDA scores 𝐗𝐗∗ = �𝐱𝐱0,
∗  𝐱𝐱1∗ , … , 𝐱𝐱𝑁𝑁−1∗ �   was then used as the 336 

observations for a 2-state HMM decoder which generated prediction of motor state as described 337 

above.  338 

Lagged decoding 339 

Introducing a time lag in decoding between neural features and the label can contribute to 340 

increases in decoder performance in motor BCIs.10,11 Because packets of data are transmitted 341 

every 0.4 seconds from the recording device, the values considered for a lag were multiples of 342 

0.4 seconds. Parameter 𝑙𝑙 ∈ {0.8, 0.4, 0.0} is the number of seconds feature vector 𝐱𝐱 precedes the 343 

associated label 𝑦𝑦. 344 

Cross-validation345 

 346 

FIGURE S6 CROSS-VALIDATION OVERVIEW A) GRID SEARCH FOR LEAVE-ONE-TRIAL-OUT CROSS-VALIDATION DEPICTED FOR 33 347 
TRIALS OF MOTOR INSTRUCTION. SELECTED HYPER-PARAMETERS ARE SUMMARIZED IN TABLE S5. B) IMPACT OF EACH HYPER-348 
PARAMETER PLOTTED OVER ALL OTHER  HYPER-PARAMETERIZATIONS. WINDOW SIZE, LAG, AND DECODER ARCHITECTURE HAD 349 
LARGE IMPACTS ON PERFORMANCE, BUT LABEL AGGREGATION METHOD  HAD A SIMILAR DISTRIBUTION OF PERFORMANCE 350 
OVER ALL OTHER HYPER-PARAMETERIZATIONS. 351 

In order to select the optimal set of hyper-parameters, we used leave-one-out cross-validation 352 

over the 33 trials in the train dataset. The grid search for each parameter was  353 

• Window size: w ∈ {0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2} where 𝑤𝑤 is the duration in seconds of the 354 

window of neural data used for each prediction. 355 
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• Label Scheme: 𝑦𝑦(𝑖𝑖) ∈ 𝐲𝐲 where 𝑦𝑦 is one of the three labeling schemes defined above 356 

• Decoder Architecture: A total of 5 decoder architectures were considered. Three 357 

different HMM decodes were considered, one for each value of 𝑀𝑀 ∈ {3, 5, 7}. The above-358 

described LDA decoder and LDA-HMM decoder were also considered.  359 

• Lag: 𝑙𝑙 ∈ {0.8, 0.4, 0.0} where 𝑙𝑙 is seconds between feature vector 𝑥𝑥 and target label 𝑦𝑦  360 

We compared cross-validated models using median area under the receiver-operator 361 

characteristic curve (AUC) for each fold. In order to compute the AUC for each fold, we chose to 362 

use the non-ambiguous labeling scheme 𝑦𝑦(3)
R  to bias the hyperparameters for reliability in 363 

decoding. Impact of each hyperparameter on performance during cross-validation is summarized 364 

in Figure S6B and the set of hyperparameters that were selected can be found in Table S5. 365 

Hyperparameter Selected Value 

Window size, w (seconds) 3.2 

Label Scheme, 𝑦𝑦 𝑦𝑦(3) 

Decoder Architecture LDA-HMM 

Lag 𝑙𝑙 (seconds) 0.0 

TABLE S5 FINAL DECODER HYPER-PARAMETERS SELECTED VIA LEAVE-ONE-OUT CROSS-VALIDATION 366 

Threshold setting 367 
The decoded motor intent was calculated by thresholding the predicted probability of motor intent 368 

for the final trained model. The receiver-operator characteristic (ROC) curve was calculated using 369 

the training dataset to calculate Youden’s J score across different threshold. Youden’s J score 370 

balances the sensitivity and specificity of the decoder for a specific threshold. The optimal 371 

threshold was selected by maximizing Youden’s J score, resulting in a value of 0.969. 372 

Artifact Detection 373 
The Medtronic PC+S recording device included quality control protocols which resulted in periodic 374 

electrical artifacts occurring approximately every 10 minutes. When artifacts were detected, 375 
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decoding was paused for 0.8 seconds until the artifact passed, during which the previously 376 

decoded motor state was maintained.  377 

Functional Task Accuracy 378 

A relative distance score, 𝑟𝑟𝑖𝑖, was assigned to each target based on the distance of the object from 379 

the center of the target as shown in Figure 3A.  A placement score for the 𝑖𝑖th object placement 380 

was computed as  381 

𝑆𝑆𝑖𝑖 =
1

1 + 𝑟𝑟𝑖𝑖
 382 

so that a higher score corresponded to objects placed closer to the center of the target. The 383 

functional task was repeated a total of 20 times during each block leading to a maximum score 384 

𝑆𝑆𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 = 20 per block. The subject’s accuracy was determined then as the sum of all the individual 385 

trial scores, 𝑆𝑆𝑡𝑡, divided by maximum block score: 386 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀
=
∑ 𝑆𝑆𝑖𝑖20
𝑖𝑖=1
𝑆𝑆𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀

 387 

The subject showed improvement in the mean (± std. error) accuracy of placing a small cup, 388 

60.1% ± 7.8% at week 11 versus 82.8% ± 4.7% at week 19 (p=0.03) or a checker (64.5% ± 389 

7.3% at week 13 versus 88.8% ±  4.8% at week 19, p=0.03) at the center of a target as 390 

summarized in Figure 3A and 3B.  391 

Functional improvement was quantified as the reduction in the average time taken to perform 392 

specific components of the JHFT (Figure 3C). Significant improvements were observed in lifting 393 

small objects, lifting light cans, and lifting heavy cans through orthotic-assisted tasks. Along with 394 

a trend towards improvement in writing speed (32.3s to 26.4s, p=0.15), clarity of the handwriting 395 
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also improved throughout the course of the study (Figure 3D). Further, pinch force increased from 396 

1lb to 3lb within 10 weeks.  397 

Phone-based User Application Development 398 
A custom-made mobile application was designed allowing the subject to interact with and modify 399 

settings of the BCI. The home screen (Figure S7A) displays the currently connected and selected 400 

devices in use by the subject. The application was designed by generalizing devices that could 401 

connect to the system, thus providing a method to select from a list of connected input (Figure 402 

S7B) and output (Figure S7E) devices. These list views provided links to device-specific settings 403 

such as the decoder threshold linked to incoming data from the Activa PC+S (Figure S7C). The 404 

settings also allowed the subject to initiate data collection sessions to assess the accuracy of the 405 

current decoder (Figure S7D). 406 
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 407 

FIGURE S7 FLOW DIAGRAM OF THE MOBILE APPLICATION USED BY THE SUBJECT FOR AT-HOME INTERACTION AND 408 
ADJUSTMENT OF THE BCI 409 
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 410 

FIGURE S8 JEBSEN HAND FUNCTION TEST OVER THE STUDY COURSE. ERROR BARS REPRESENT STANDARD ERROR FROM THE 411 
MEAN. FIGURE 3C COMPARES THE FIRST AND LAST SESSIONS.  412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 
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Clinical Assessments 424 
The subject underwent weekly interviews to assess for adverse events and was also surveyed 425 

for changes in self-perceived functional independence.  Changes in health status were assessed 426 

with the MOS 36-item shot form health survey (SF-36).12 Perceived changes in functional 427 

independence were assessed with the Spinal Cord Independence Measure (SCIM) version III13 428 

which ranges from 0 to 100 and higher score indicate increased independence. Detailed 429 

neurological evaluation for documentation of level and severity of SCI was conducted monthly 430 

according to the ISNCSCI. 14 431 

While there was no change in ISNCSCI ASIA impairment scale from a C5 motor level, there was 432 

an unexpected slight increase in the motor zone of partial preservation (defined as the myotomes 433 

below the level of injury with residual innervation) on the left from C6 to C8. Additionally, after 434 

study week 23, the subject began to be able to extend his right thumb volitionally with motor 435 

strength 2/5 in the absence of the FES orthosis. There was no change in the SCIM from a baseline 436 

score of 26. The SF-36 indicated a 32.5% improvement in pain, a 5% increase in energy, and an 437 

8% decrease in emotional well-being 438 

Detailed neurological evaluation for documentation of level and severity of SCI was conducted 439 

monthly according to the ISNCSCI. Figure S9 and S10 summarize the results of the ISNCSCI 440 

obtained during the week 1 and week 29 visits. Diagrams generated using the European 441 

Multicenter Study about Spinal Cord Injury (EMSC) ISNCSCI calculator.15  442 



24 
 

 443 

 444 

FIGURE S9 ISNCSCI EXAM ON INITIAL VISIT – STUDY WEEK 1. NOTE THE C5 MOTOR LEVEL AND C4 NEUROLOGICAL LEVEL 445 
OF INJURY (NLI) DUE TO DIMINISHED SENSATION IN THE C5 DISTRIBUTION.  THE ZONE OF PARTIAL PRESERVATION FOR THE 446 
RIGHT/LEFT IS T2/T4 FOR SENSORY FUNCTION AND C8/C6 FOR MOTOR.  447 

 448 

 449 
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 450 

FIGURE S10 ISNCSCI EXAM ON FINAL VISIT – WEEK 29. NOTE THAT WHILE THE MOTOR LEVEL REMAINS C5 AND THE NLI 451 
C4, THERE IS A SLIGHT INCREASED ZONE OF PARTIAL PRESERVATION WITH IS NOW C8 BILATERALLY COMPARE TO C8 ON THE 452 
RIGHT AND C6 ON THE LEFT DURING WEEK ONE. ADDITIONALLY, THE SUBJECT GAINED THE ABILITY TO SLOWLY EXTEND HIS 453 
THUMB ON COMMAND ON THE RIGHT SIDE WHICH IS NOTED AS THE MOST CAUDAL INNERVATED NON-KEY MUSCLE AS C8 ON 454 
THE RIGHT PANEL. 455 

Changes in health status were assessed with the MOS 36-item shot form health survey (SF-36).12 456 

Comparisons of SF-36 scores between initial and final study visit are summarized in Table S5. 457 

Perceived changes in functional independence were assessed with the Spinal Cord 458 

Independence Measure (SCIM)13  version III which ranges from 0 to 100 and higher score indicate 459 

increased independence. Changes are in SCIM are summarized in Table S6. 460 

There was an 8% decrease in emotional well-being in the SF36 changes in responses to the 461 

following questions: 462 

1) “During the past 4 weeks, have you been a happy person?” changing from “all of the 463 

time” to “most of the time.” 464 
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2) “During the past 4 weeks, have you felt calm and peaceful?” changing from “all of the 465 

time” to most of the time.” 466 

The 32.5% improvement in the pain score was driven by changes in responses to the following 467 

questions:  468 

1) “How much bodily pain have you had in the past 4 weeks?” changing from “mild” to 469 

“very mild.” 470 

2) “During the past 4 weeks, how much did pain interfere with your normal work?” – 471 

change from “moderately” to “a little bit.” 472 

The 5% improvement is energy/fatigue was driven by the response to the question “During the 473 

last 4 weeks, did you feel worn out?” changing from “a little bit of the time” to “none of the time.”  474 

 475 

TABLE S6 SF36 SCORES CHANGES. SCORES CALCULATED USING 12,16  476 

 Laboratory Trials Home Trials 
Category Initial Visit Final Visit  Change Initial Visit Final Visit  Change 
Physical Functioning 0% 0%  0% 0% 0%  0% 
Role Limitations Due to 
Physical Health 100% 100%  0% 100% 100%  0% 

Role Limitations Due to 
Emotional Problems 100% 100%  0% 100% 100%  0% 

Energy/Fatigue 80% 85%  5% 90% 90%  0% 
Emotional Well-Being 100% 92%  -8% 92% 92%  0% 
Social Functioning 100% 100%  0% 100% 100%  0% 
Pain 67.5% 100%  32.5% 100% 77.5%  -22.5% 
General Health 85% 85%  0% 85% 90%  5% 
Health Change 75% 75%  0% 75% 75%  0% 

 477 

TABLE S7 SPINAL CORD INDEPENDENCE MEASURE.  478 

 Laboratory Trials Home trials 
 Initial Visit Final Visit Change Initial Visit Final Visit Change 
Self-Care 2 2 0 2 3 1 
Respiration and 
Sphincter Management 

21 21 0 21 21 0 

Mobility 3 3 0 3 3 0 
Total 26 26 0 26 27 1 
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 479 
FIGURE S11 SCIM III AND SF-36. CHANGES IN SCORES FOR THE SCIM III (LEFT) AND SF-36 (RIGHT) OVER THE COURSE OF 480 
THE STUDY PERIOD. THE FIRST TWO TIME POINTS WERE TAKEN BEFORE AND AFTER THE LABORATORY STUDY PERIOD. THE 481 
FINAL 4 TIME POINTS WERE TAKEN THROUGHOUT THE STUDY AT HOME. 482 
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