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Pre-surgical Screening Protocol
Briefly, individuals with C5 quadriplegia who called or visited The Miami Project to Cure Paralysis

or who had registered with the research center with an interest to participate in research were

offered the opportunity to participate in this screening study.

Each participant underwent screening measurements and testing during a 1-3-month evaluation
period (depending schedule and availability). A total of up to 16 sessions were required for
subjects to be considered for the surgical protocol. During each session the ability of the subject
to reliably trigger electrical stimulation of the hand using motor imagery was tested. A subset of
the results comparing the performance of healthy volunteers and SCI subjects has been
separately published. Upon completing these tests, the subject underwent a brain fMRI study to
characterize the ability of motor imagery related to hand movement to lead to changes in the

BOLD signal.

TABLE S1 SURGICAL PROTOCOL MAJOR INCLUSION CRITERIA

Inclusion Criteria Measure Rationale

Age > 22 Years of age Higher rates of
neurological recovery in
adults and better potential

for rehahilitation

Lower risk of complications

Age <50 Years of age

AlS Grades A & B Neurological exam Standard neurologic
assessment for spinal

cord injury

Level of injury Neurologicalexam The appropriate injury

C5 motor level for measuring

complete detectable restoration of
both triceps and hand
function

Local Proof of local Higher compliance to

community community weekly follow-up visits

dwellina address




44

45

46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Stable chronic injury

1-15 years post injury Suitability for efficacy

measurements while
excluding complications
that develop with
excessive time post-injury

Stable health status
and upper
extremities

No significant
joint contractures
at the elbow,
wrists, or hands

Minimize interferences
with the ability to perform
outcome measure tests
like transfer or pinch

Participation in Successful Selection of candidates

Clinical EEG screening and screened in Clinical EEG

Protocol assessments Protocol ensures
outlined in participants possess
Clinical EEG ability to trigger orthosis
Protocol with motor imagery

TABLE S2 SURGICAL PROTOCOL MAJOR EXCLUSION CRITERIA

Exclusion Criteria Measure Rationale
Coagulopathy Lab test Higher risks of complications
Anticoagulation Lab test Higher risks of surgical

complications

Urine or serum Risk to fetus

pregnancy test

Pregnancy

Additional Exclusion Criteria

arwDd

7.

8.

9.

Subjects with severe non-CNS injury or serious concurrent medical issues.

Subjects with metal prosthetics.

Subjects with tendon transfers.

Subjects with a history of cardiac arrhythmia.

Subjects with cognitive issues. During Screening, subjects will undergo a
Neuropsychological testing and use the Mini-Mental Status has a guide to severity of
dementia. A MMSE score of < 15 will be an absolute exclusion. Anything above that
score but still abnormal will be a relative contraindication requiring discussion amongst
the research team.

Subjects who have made a suicide attempt or are severely depressed. Severe
depression should be defined based on a depression assessment scale.

Subjects with peripheral nerve damage that will affect planned investigational testing will
be excluded.

Subjects with medical condition that requires regular post-implant MRIs.

Subjects who suffer from claustrophobia (contraindication for fMRI).

10. Subjects who have a life expectancy of less than 2 years.
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11.
12.

13.
14.

15.
16.
17.
18.

19.

Subjects diagnosed with peripheral polyneuropathy.
Subjects with another implanted stimulator (e.g., pacemaker, defibrillator, cochlear
implant, neurostimulator, etc.)
Subjects who have been, or are currently, enrolled in another investigational study.
Subjects who have skin ulcerations, a history of poor wound healing, an active infection,
or significant pain in the lower extremity that is being treated.
Subjects unable to give informed consent.
Subjects who are prisoners or wards of the state.
Subjects who are pregnant or planning to become pregnant.
Subijects that speak languages without local site level expertise for translation and verbal
communication.
Screening Study Specific Exclusion

a. fMRI does not show reproducible hand/arm activation

b. External triceps stimulation does not produce consistent, adequate, and

reproducible contraction
c. EEG BCI studies do not lead to viable control

Surgical Study Timeline

The presented subject was enrolled in the study on November 2, 2018 and surgical implantation

occurred on November 30, 2018. A timeline of the important study events is given Figure S1.
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FIGURE S1 STUDY TIMELINE. DAY O OF THE STUDY BEGINS ON THE DATE THE SUBJECT SIGNED INFORMED CONSENT TO BEGIN
THE SCREENING PROTOCOL WITH EEG.

Decoding upper extremity movement intent
After surgical recovery, the subject came to the laboratory 2-3 times per week for 1-2 hours at a

time. A timeline of the 29-week trial is included in the Supplementary methods (Figure S1). During

the duration of the study, the subject participated in 121 upper extremity experimental sessions,

with an average of 11 sessions per week (range 5-12). Each session consisted of 100 trials during
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which the subject was asked to perform motor imagery of continuous movement of the dominant
right hand. The 100 trials were completed in blocks of 20 trials with several minutes of rest in
between so that subject does not become fatigued. During the motor imagery tasks, the subject
was instructed to think of relaxing his hand for 3 seconds, followed by thinking continuously of
moving the right hand for 3 seconds during which time the ECoG activity was recorded (Figure
1C and D). During study weeks 6-8, “open-loop” experiments were run where the subject was
asked to perform move or rest motor imagery, but FES was not applied to the hand. Offline
analysis included calculating average band power within pre-defined frequency bins (see
Supplementary methods) during the “rest” and “move” periods, that were used as features for
training various classifiers (bagged trees, k-nearest neighbors, linear discriminant, logistic
regression, linear support vector machine, and a neural network). The purpose of training and
testing various classification algorithms was to use the one which gave highest decoding accuracy

and consistency, to be used for online closed-loop experiments.

In-Laboratory ECoG Power Analysis
The Activa PC+S device was configured with the following montage such that the ECoG data

from channels 1 and 3 (time channels) was sampled at 200Hz, whereas channels 2 and 4 (power
channels) were configured for onboard computation of the average signal power between 4-36Hz
and sampled at 5Hz (see Table S3). Data from the implanted device was transmitted via the
antennae to an external laptop running Matlab 2015b. Data packets were received every 400ms.
For each trial, all the packets from the “rest” or “move” phase were collected to yield 3 seconds
of data for each phase. The power content of both time channels for each separate experiment
phase was estimated using the pspectrum function in Matlab. The frequencies were binned into
8 pre-specified segments based on typical frequency ranges commonly used to describe
EEG/ECoG as: 1-8Hz, 8-12Hz, 12-18Hz, 18-26Hz, 26-35Hz, 35-45Hz, 45-70Hz, and 70-100Hz.

The average signal power within each bin was computed for each of the time channels and
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together with the onboard -computed power channel values used to create an 18-dimensional

feature vector for each experimental phase.

TABLE S3
Channel Electrode Sample Rate Output Type
Number Configuration (Hz2)
1 EO-E3 200 Raw Channel 1 Signal
2 E1-E2 5 Avg. Power in Channel 2 Signal between 4-
36Hz
3 E8-E10 200 Raw Channel 3 Signal
4 E9-E11 5 Avg. Power in Channel 4 Signal between 4-
36Hz

For channels 1 and 3, the average power in 8 pre-defined frequency ranges were used as
features, whereas for channels 2 and 4 the average power between 4Hz and 36Hz yielded two
additional features (Figure S3). All 18 (8 features per channel x 2 channels + 1 feature per power
channel x 2 power channels) values were used as a feature vector for classifier training.
Additionally, during study weeks 6-8, all bipolar combinations of the surface contacts were tested
with this paradigm to determine the montage that yielded the highest power difference between
rest and move signals (Figure S2). The final electrode montage is summarized in Figure 1B. It
was determined that the best performing classifier was the bagged tree classifier which was
therefore chosen for online decoding for the remainder of in-laboratory experiments from weeks

9-29.

In-Laboratory Channel Montage Selection
“Open-loop” tasks which consisted of the subject performing only motor imagery of either hand

rest or movement were then run with each possible electrode montage configuration and the
integrated absolute difference in signal power between the rest (Pg.s; and move (Py,,. ) phases
computed in each frequency bin of interest. These trials were used to determine the electrode

montage that allowed for the best discrimination between the “rest” and “move” states. As shown



136  in Figure S2, the configuration EO-E3 for channel 1 and E8-10 for channel 3 resulted in the largest
137  power differences between the “rest” and “move” states and were therefore used for the

138 remainder of the experiments.
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139 Montage

140  FIGURE S2 CHANNEL MONTAGE COMPARISONS. THE POWER DIFFERENCES BETWEEN THE MOVE AND REST STATES WERE
141  INTEGRATED WITHIN A SET OF FREQUENCY BANDS LISTED IN THE LEGEND. THE MONTAGE CONFIGURATIONS HIGHLIGHTED
142 IN GRAY WERE CHOSEN DUE TO THE ABILITY TO CAPTURE THE HIGHEST DIFFERENCES IN THE BETA BAND (18-26Hz) AND
143  LOW GAMMA (26-35Hz).

144  From study weeks 9-19, “closed-loop” upper extremity experiments were conducted where the
145  decoded motor imagery state from the online classifier was used to drive FES of the right upper
146 extremity via an external orthosis (Bioness H200, Bioness, Valencia, CA). For these experiments,
147 each session consisted of blocks of 20 trials. On session 1 of week 9, the first block was performed
148  in “open loop” and used to train the online classifier for use in session 2. Subsequent sessions in
149  closed loop were run with a classifier trained using the previous 1-5 blocks until maximum of 5
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prior blocks were available for training; all subsequent blocks used the online classifier obtained
from training with the prior 5 blocks of data. Figure 1D shows average spectrograms for rest and
move motor imagery across all closed-loop sessions with the final selected electrode montage

which is shown in Figure 1B.

In-Laboratory Feature Extraction and Supervised Learning

Dataset Generation
Figure S3 Panel A shows a sample ECoG channel, E(t), during REST (R) and MOVE (M) states

during trial j. For channels 1 and 3, the power spectrum of the signals is estimated based on
approximately 3 seconds worth of data for each continuous time channel sampled at 200 Hz using

the pspectrum function. The average power in each bin is computed yielding 8 features for each
time channel, ch = 1,3, and movement condition, (o and saved as the feature vectors f;{ . For

Channels 2 and 4, the average power in a frequency bin centered at 20 Hz with a bin width of

16Hz (4-36Hz) is computed online within the PC+S and output from the device at a sample rate
of 5Hz. The average power from Channels 2 and 4 for condition, ¢;, (fzcj and f:j respectively) are
then added as additional features to those computed from Channels 1 and 3 to produce a 18-
dimensional feature vector < = [f,”7,£,”,f,7,f,’] Panel B shows how for each trial j and
condition, o spectral features are extracted and used to construct a training set that could be

used to select among different types of classifiers.
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FIGURE S3 FEATURE EXTRACTION AND CLASSIFIER TRAINING DATASET. PANEL A SHOWS A SAMPLE ECOG CHANNEL, E(t),
DURING REST (R) AND MOVE (M) STATES DURING TRIAL j. FOR CHANNELS 1 AND 3, THE POWER SPECTRUM OF THE SIGNALS
WAS ESTIMATED BASED ON APPROXIMATELY 3 SECONDS WORTH OF DATA FOR EACH CONTINUOUS TIME CHANNEL SAMPLED
AT 200 Hz. THE AVERAGE POWER IN EACH BIN WAS COMPUTED YIELDING 8 FEATURES FOR EACH TIME CHANNEL, ch = 1, 3,

Ci
AND MOVEMENT CONDITION, Cj, AND SAVED AS THE FEATURE VECTORS fc]h FOR CHANNELS 2 AND 4, THE AVERAGE POWER
IN A FREQUENCY BIN CENTERED AT 20 HzZ WITH A BIN WIDTH OF 16Hz (4-36Hz) WAS COMPUTED ONLINE WITHIN THE PC+S
AND OUTPUT FROM THE DEVICE AT A SAMPLE RATE OF 5Hz. THE AVERAGE POWER FROM CHANNELS 2 AND 4 FOR CONDITION,

Cj Ccj
Cj, (le AND f4] RESPECTIVELY) WERE THEN ADDED AS ADDITIONAL FEATURES TO THOSE COMPUTED FROM CHANNELS 1 AND
3 TO PRODUCE A 18-DIMENSIONAL FEATURE VECTOR fcf. PANEL B SHOWS HOW FOR EACH TRIAL AND CONDITION, SPECTRAL
FEATURES WERE EXTRACTED AND USED TO CONSTRUCT A TRAINING SET THAT WAS USED TO SELECT AMONG DIFFERENT TYPES
OF CLASSIFIERS.

Specific Classifier Parameters
All classifiers were trained in Matlab 2018b but online experiments were conducted in 2015a.

Off-line classifiers were selected as outlined in Table S4

Functional tasks

From weeks 11-19, several tasks were performed alongside the upper extremity trials to quantify
any improvements in upper extremity function. Starting on week 11, whenever a correct move
state was decoded and the subject was receiving FES to open and close the hand, he was asked
to pick up and move a small cup (or a checker introduced from week 13) from one side of the
table to the other at the center of a target. The placement accuracy was measured as a function
of the distance of the cup/checker to the target. Additionally, during weeks 8-29 a modified version
of the Jebsen-Taylor Hand Function Test (JHFT)?® was performed once per week to quantify

functional improvement. Passive and active range of motion was also measured each week.
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Lower extremity closed-loop trials
In order to assess the ability of this class of implant to be used to control other functional

movements, we sought to test the ability to trigger stepping instead of upper extremity FES.
Beginning on study week 14, the subject underwent tilt table training for 1 hour per week to assist
with maintaining a standing posture without significant orthostatic hypotension. Beginning on
study week 20, the subject began to participate in lower extremity tasks consisting of ambulating
for one hour on a robotic-assisted weight supported treadmill training device (ReoAmbulator,
Motorika, Mount Laurel, NJ) 1-3 times per week. During each session, the subject would try to
participate in 50 trials (with 10 trials per block). Each session was structured similarly to the upper
extremity session. For each trial, the robot was configured to walk at a speed of 0.6-1.7 km per
hour for 4-6 gait cycles and then stop. As the robot was slowing down, a visual cue would prompt
the subject to think about moving the dominant upper extremity. If a move state was correctly
decoded, the robot would be triggered to resume stepping for an additional 4-6 gait cycles (Video
S1). Closed-loop lower extremity trials were conducted from study weeks 21-29.
In-Laboratory Classifiers

Figure 2A summarizes decoding performance across all upper extremity sessions (open-loop and
closed loop) for weeks 9-19 for different classifier types. For offline analysis of the closed loop
experiments, a total of 80-240 trials were used with half of the data set used for training and the
other half for testing. The accuracies presented represent the average of 100 monte-carlo
simulations. Mean online decoding accuracy per week was 89.0% (median 88.75%, range 78-
93.3%) which was not significantly different from offline performance across the 5 types of
classifiers tested (Kruskall-Wallis test with Tukey-Kramer adjustment for multiple comparisons,
p>0.06). Online decoding during weeks 9-19 remained relatively stable for upper extremity tasks
across weeks as shown in Panel 2B. Figure S4C summarizes decoding performance across all
lower extremity gait tasks for weeks 21-29 across different classifier types. Mean online decoding

accuracy per week for the lower extremity tasks was 84.15% (median 85%, range 73.3-90%).

10
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There was no significant difference between online decoding accuracies on upper versus lower

extremity tasks (two-tailed t-test, p = 0.13).

100 S

90

B0 e

60

Gait Task
Decoding Accuracy [%]
t
i
(L1
T
T H
(N}

Online Bagged k-Nearest Linear Linear Artificial
(Bagged Trees Neighbors Discriminant Support Neural
Trees) (fine) Vector Network
Machine

100 ; T
— - -
s
=1 1 H -
05 nE
c 0 |
— =
T, ]
o] 3 i
= o
i =
= D 70 = S
:':-.g : :
® 9 ;
S 60 - 5 -
[+}) ]
(] 5 Overall : -
T Median : -
40 | 1 . 1

20 21 22 23 24 25 26 27 28 29
Week Number

FIGURE S4 LOWER EXTREMITY DECODING PERFORMANCE. PANEL A SHOWS THE LOWER EXTREMITY AMBULATION TASK
WHICH WAS PERFORMED ON A WEIGHT-SUPPORTED TREADMILL TRAINING DEVICE. WHEN A MOVE STATE WAS CORRECTLY
DECODED, THE ROBOT WAS ENABLED TO CONTINUE WALKING FOR A FIXED NUMBER OF STEPS. PANEL B SHOWS THE DIFFERENT
TYPES OF CLASSIFIERS TO DECODE REST/MOVE DURING THE GAIT TASK. PANEL C SHOWS THE ONLINE DECODING ACCURACY
DURING THE GAIT TASK ACROSS STUDY WEEKS. ONLINE DECODING ACCURACY DURING LOWER EXTREMITY TASKS WAS SLIGHTLY
MORE SENSITIVE TO SUBJECT’S ATTENTION AND THIS IS REFLECTED IN THE SLIGHTLY INCREASED VARIABILITY OF DECODING
ACCURACY DURING THESE TASKS COMPARED TO THE UPPER EXTREMITY ONES.
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TABLE S4 — CLASSIFIER PARAMETERS

Classifier Name Matlab Function Parameters

ensemble Bagged Trees fitcensemble MaxNumSplits=79; Method="Bag’;
NumLearningCycles=30;

K nearest neighbor (kNN) fitcknn Distance="Euclidean’, Exponent=[J;
NumNeighbors=1;
DistanceWeight="Equal’;
Standardize="true’

linear discriminant analysis fitcdiscr DiscrimType='linear’; Gamma=0;

(LDA) FillCoeffs="off’;

support vector machine (SVM) | fitcsvm KernelFunction =’linear’; PolynomialOrder
=[]; KernelScale="auto’; BoxConstraint=1;
‘Standardize’ = true

fully connected artificial neural | learnNN? NumberHiddenLayers=3;

network (ANN) ActivationFunction=tanh
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FIGURE S5 AT-HOME DECODER METHODS. PANEL A SHOWS THE RAW DATA RECORDED WITH THE DOTTED BOX REPRESENTING
ONE WINDOW OF DATA. OVERLAPPING WINDOWS W, W1, W5 ARE SHOWN AT THE BOTTOM WHERE EACH WINDOW WAS
W SECONDS LONG WITH A WINDOW STEP OF 0.4 SECONDS. MOTOR INSTRUCTION WAS USED AS LABELS FOR DECODER
TRAINING. PANEL B SHOWS THE PREPROCESSING OF THE DATA. SPECTRAL FEATURES FROM ALL FOUR CHANNELS WERE
COMPUTED AND CONCATENATED, RESULTING IN FEATURE VECTOR X¢_1 FOR WINDOW W WHERE t IS THE TIME AT THE END
OF THE WINDOW AND 1 IS THE LAG HYPER-PARAMETER. MOTOR INSTRUCTION LABELS OVER THE WINDOW WERE AGGREGATED
USING METHOD i. THE RESULTING FEATURE VECTOR X;_] AND LABEL ygi) WERE COMPUTED FOR ALL WINDOWS W IN THE
TRAINING SET WERE USED TO TRAIN THE DECODING ALGORITHM. HYPER-PARAMETERS {w, [, i, decoding algorithm}
WERE SELECTED VIA CROSS-VALIDATION (TABLE S5). PANEL C SHOWS A FLOW DIAGRAM OF ONLINE DECODING OF MOTOR

STATE AS APPLIED TO THE OPEN-LOOP AND CLOSED-LOOP AT-HOME DATA.
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At-Home Feature Extraction

Feature extraction and decoder development hyper-parameters were selected by leave-one-out
cross-validation over the 33 trials in the at-home training data set. The first hyper-parameter was
window size for the ECoG spectral estimate, w € {0.8,1.2,1.6,2.0,2.4,2.8,3.2} measured in
seconds. Overlapping windows, with a step of 0.4 seconds, resulted in N windows per trial where
N varied with window duration w. As a result of windowing, motor instruction labels were
aggregated from each sample in the window, where 1 indicates motor intent and O indicates rest.
In order to build a decoding model robust to transitions from a move to rest state, windows with
data collected during both move and rest states were not removed for training. Three possible
methods for aggregating windows of labels were considered during cross-validation (Figure S6).

For each window, vector y = {y(, (@ y(3)} of labels was computed where

o y® €{1,0} is the last label of the window.

o y® €{1,0} is the majority of labels in the window.

o y® €{1,0,NaN} is 1 or O if there is unanimous consensus within the window (all
1 or all 0), or NaN if there are both move and rest labels in the window. This
aggregation is motivated by aiming to provide the decoder with the highest

guality data. NaN-labelled windows were not used for supervised learning.

For ECoG channels 1 and 3, the PSD of each window was computed using the multitaper method

2XT
0.4XwW

in the MNE python package® with normalized half-bandwidth T = 3, and a bandwidth of b =

4, 2T — 1 = 5 tapers were used and an adaptive weighting routine was used to combine estimates
of different tapers®. Spectral power was estimated for a frequency range between 0-100Hz and

was converted to decibels. Spectral estimation for channels 1 and 3 resulted in ("1 € RFpsd
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and x(¢"3) € RFpsa, respectively and where Fysq is the length of the PSD. For channels 2 and 4,
median power X¥ € R, for each window was calculated. Spectral estimates from all channels were

aggregated into one spectral feature vector x € RF for each window where F = 2 x Fpsaq + 2

At-Home Decoder Architecture
Three decoding model architectures were considered during cross-validation. Each decoding

model used a fixed window length and labeling method.
Hidden Markov Model decoder

In order to incorporate the temporal dynamics of switching between move and rest states, we
used a Hidden Markov Model, a state-space model that has been used to describe time series
data in a wide variety of fields®. It assumes an M-state system has {q,, q1, ..., qu—1} discrete latent
states which evolve over time, driven by a first-order, ergodic Markov chain resulting in a
sequence of N states Z = (z,,z4, ..., Zy—1). Observations of the system (x,) are distributed
according to state-specific Gaussian emission distributions B = {b,,} where b,,~ N (i, Z,5,) for
each state g, with mean u,, and covariance %,,, which was constrained to be diagonal so that
training would be more computationally tractable. The Markov chain transition matrix is A = {a;;}
where a;; = Pr(zn41 = qj12, = q;). The initial state of the system is drawn from the discrete initial
state distribution . The entire HMM is fully parameterized by A = (4, B, ). In the model system,
the state of the system at each discrete time n is based on the Markov chain transition
probabilities and an observed feature is generated according to current state z, resulting in a

sequence of observations X = (Xg, Xy, ... Xy—1)- &’

Each HMM was trained with the Baum-Welch algorithm with random parameter initialization and
a maximum of 10 iterations using the hmmlearn python package 8. For prediction of latent state,
the forward algorithm was used in order to estimate the probability of being in each state at each

time n. The normalized forward algorithm computes the probability of being in each latent state
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q;, at time n, and is defined as a,(q;) = Pr(z, = q; | xg, ... ,xp, ) = 2@ resulting in &, € [0,1]
where M is the number of HMM states and ¥, 2® = 1. We let the number of states in the HMM
vary with M € {3,5,7} because although our target was binary, a number of different states could
be reflected in the neural signal related to different aspects hand grasp initiation and termination.

M was selected in cross-validation (Figure S6, Table S5)

Logistic regression (LR) is used to map HMM state probabilities X,, to binary move/rest targets.
For each window beginning at time point n that did not have a NaN label, the feature vector is
accompanied by a label y,, € {0,1} indicating whether the window corresponds with rest (0) or
motor intent (1). NaN labeled windows were dropped for fitting LR parameters. A LR model is
parameterized by a vector g € RM*! = [B,, B4, ..., By]". For a given parameterization g, the LR

estimated likelihoods of motor intent for window starting at time point n are given by:

o expf’ %y,

Pr(Motor Intent ; =

r(Motor Intent | X,,; B) T+ expfis,
Pr(Rest | &p; B) = —————
r(Rest| Xn; B) 1+ expBT%,

Where %, = [1,%,]7 is the HMM state probability vector with a one prepended, enabling 8, to
serve as a constant offset. Thus, fitting an LR model entails finding the parameters that maximize
the elastic net regularized log-likelihood of the labels corresponding to the training data:

—~ 1-p
B = argmin
B 2

N
113+ 11811y + >~ logPr (vl )
n=1

Where ||B]I3 = BTB and p = 0.5. The LR parameter vector B was computed using scikit-learn

with elasticnet regularization and the SAGA solver. 8
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Linear Discriminant Analysis Decoder

The second decoding model architecture was a Linear Discriminant Analysis (LDA) decoder.
Since the observations to the HMM decoder were the derived spectral features, the latent states
fitted by the HMM are not guaranteed to be related to motor intent. LDA is a supervised
classification technique that separates groups of labelled data by maximizing the ratio of between-
class to within-class separability.® This yields a linear discriminant vector which maximally

separates the two classes.

First, the training data X € R"*N were divided by motor intent label into the subset X(© € RF*No
for data labelled as a rest state, X' € RF*¥1 for data labeled as a move state, and X(VeM) ¢
RF*Nnan for data without a label (see Windowing). X?N¥) was not used for parameter fitting as
LDA is a supervised learning method which necessitates labelled data. For j € {0,1}and N* =

Ny + Ny, let u; be the sample mean of XU and define the scatter matrix as the unnormalized
. . ) 0 T I -
sample covariance matrix M; = Y, ey ((xn’ - U (xn’ - uj) ) Within-class scatter matrix is

defined as M, = My + M; and the between-class scatter matrix was defined as My =

(o — uy)(uo — uy)T. Thus, the linear discriminant v* € RF is found as the solution to:

T
. v Mpv

v* = argmax
gv v My, v

Which maximizes the variance between classes while minimizing the variance within classes.

LDA models were implemented using the scikit-learn Python package. 8

LDA-HMM Decoder

The third decoder architecture was a combination of the described LDA and HMM decoders. The
LDA parameters were fitted as described above, but rather than using LDA directly for

classification, the spectral feature vector x,, was used to generate the LDA scores x;, = x;v* for
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every window n. The sequence of LDA scores X* = (xa x},...,x;*v_l) was then used as the

observations for a 2-state HMM decoder which generated prediction of motor state as described

above.
Lagged decoding

Introducing a time lag in decoding between neural features and the label can contribute to
increases in decoder performance in motor BCls.1>!! Because packets of data are transmitted
every 0.4 seconds from the recording device, the values considered for a lag were multiples of
0.4 seconds. Parameter [ € {0.8,0.4, 0.0} is the number of seconds feature vector x precedes the

associated label y.

Cross-validation

A Leave-one-out Cross-validation B 100 —r

hyper-parameter grid search ZZ:

33 Trials of B 0%

i " =}
motor instruction = 0.80
075
0.70
+
0.65 + . ' ] A
! L

0.75

.70
Cross-validataed 0.65 '
Decoding Algorithm 0.60 ! v

Final Majority Non- ambwsunus HUMM HMM HMM LDA  LDA*HMM
) only (3states) (5 slates) (7 stales)
Label Aggregation Method Decoder Architecture

) . Label . 0.60 + k
Window size W|  Lag! Aggregation Decoding 08 12 18 20 24 28 32 0 400 800
(seconds) {miliseconds) 0 Architecture Window size (s) Lag (ms)
08 0 Final label 3 state HMM 1.00
12 400 Majority 5 stata HMM #
16 800 Non-ambiguous orly 7 state HMM 33folds 095
20 LDA
24 LDA+HMM N o 0.90
28
2 Qoss
2
T 0.80

FIGURE S6 CROSS-VALIDATION OVERVIEW A) GRID SEARCH FOR LEAVE-ONE-TRIAL-OUT CROSS-VALIDATION DEPICTED FOR 33
TRIALS OF MOTOR INSTRUCTION. SELECTED HYPER-PARAMETERS ARE SUMMARIZED IN TABLE S5. B) IMPACT OF EACH HYPER-
PARAMETER PLOTTED OVER ALL OTHER HYPER-PARAMETERIZATIONS. WINDOW SIZE, LAG, AND DECODER ARCHITECTURE HAD
LARGE IMPACTS ON PERFORMANCE, BUT LABEL AGGREGATION METHOD HAD A SIMILAR DISTRIBUTION OF PERFORMANCE
OVER ALL OTHER HYPER-PARAMETERIZATIONS.

In order to select the optimal set of hyper-parameters, we used leave-one-out cross-validation

over the 33 trials in the train dataset. The grid search for each parameter was

e Window size: w € {0.8,1.2,1.6,2.0,2.4,2.8,3.2} where w is the duration in seconds of the

window of neural data used for each prediction.
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e Label Scheme: y® € y where y is one of the three labeling schemes defined above

e Decoder Architecture: A total of 5 decoder architectures were considered. Three
different HMM decodes were considered, one for each value of M € {3,5, 7}. The above-
described LDA decoder and LDA-HMM decoder were also considered.

e Lag: !l €{0.8,0.4,0.0} where [ is seconds between feature vector x and target label y

We compared cross-validated models using median area under the receiver-operator
characteristic curve (AUC) for each fold. In order to compute the AUC for each fold, we chose to
use the non-ambiguous labeling scheme y®) to bias the hyperparameters for reliability in
decoding. Impact of each hyperparameter on performance during cross-validation is summarized

in Figure S6B and the set of hyperparameters that were selected can be found in Table S5.

Hyperparameter Selected Value
Window size, w (seconds) 3.2
Label Scheme, y y®
Decoder Architecture LDA-HMM
Lag [ (seconds) 0.0

TABLE S5 FINAL DECODER HYPER-PARAMETERS SELECTED VIA LEAVE-ONE-OUT CROSS-VALIDATION

Threshold setting

The decoded motor intent was calculated by thresholding the predicted probability of motor intent
for the final trained model. The receiver-operator characteristic (ROC) curve was calculated using
the training dataset to calculate Youden'’s J score across different threshold. Youden’s J score
balances the sensitivity and specificity of the decoder for a specific threshold. The optimal
threshold was selected by maximizing Youden’s J score, resulting in a value of 0.969.
Artifact Detection

The Medtronic PC+S recording device included quality control protocols which resulted in periodic

electrical artifacts occurring approximately every 10 minutes. When artifacts were detected,
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decoding was paused for 0.8 seconds until the artifact passed, during which the previously

decoded motor state was maintained.

Functional Task Accuracy

A relative distance score, r;, was assigned to each target based on the distance of the object from
the center of the target as shown in Figure 3A. A placement score for the ith object placement

was computed as

1
1+Ti

Si=

so that a higher score corresponded to objects placed closer to the center of the target. The
functional task was repeated a total of 20 times during each block leading to a maximum score
= 20 per block. The subject’s accuracy was determined then as the sum of all the individual

S tMmax

trial scores, S;, divided by maximum block score:

20
St Li=1Si

accuracy = 5 =7
tMAX tMAX

The subject showed improvement in the mean (% std. error) accuracy of placing a small cup,
60.1% + 7.8% at week 11 versus 82.8% + 4.7% at week 19 (p=0.03) or a checker (64.5% +
7.3% at week 13 versus 88.8% + 4.8% at week 19, p=0.03) at the center of a target as

summarized in Figure 3A and 3B.

Functional improvement was quantified as the reduction in the average time taken to perform
specific components of the JHFT (Figure 3C). Significant improvements were observed in lifting
small objects, lifting light cans, and lifting heavy cans through orthotic-assisted tasks. Along with

a trend towards improvement in writing speed (32.3s to 26.4s, p=0.15), clarity of the handwriting
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396 alsoimproved throughout the course of the study (Figure 3D). Further, pinch force increased from

397 1lb to 3lb within 10 weeks.

398 Phone-based User Application Development
399 A custom-made mobile application was designed allowing the subject to interact with and modify

400  settings of the BCI. The home screen (Figure S7A) displays the currently connected and selected
401  devices in use by the subject. The application was designed by generalizing devices that could
402  connect to the system, thus providing a method to select from a list of connected input (Figure
403  S7B) and output (Figure S7E) devices. These list views provided links to device-specific settings
404  such as the decoder threshold linked to incoming data from the Activa PC+S (Figure S7C). The
405  settings also allowed the subject to initiate data collection sessions to assess the accuracy of the

406  current decoder (Figure S7D).
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FIGURE S7 FLOW DIAGRAM OF THE MOBILE APPLICATION USED BY THE SUBJECT FOR AT-HOME INTERACTION AND
ADJUSTMENT OF THE BClI
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—Page Turning (n=5)
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FIGURE S8 JEBSEN HAND FUNCTION TEST OVER THE STUDY COURSE. ERROR BARS REPRESENT STANDARD ERROR FROM THE

MEAN. FIGURE 3C COMPARES THE FIRST AND LAST SESSIONS.
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Clinical Assessments
The subject underwent weekly interviews to assess for adverse events and was also surveyed

for changes in self-perceived functional independence. Changes in health status were assessed
with the MOS 36-item shot form health survey (SF-36).!? Perceived changes in functional
independence were assessed with the Spinal Cord Independence Measure (SCIM) version 1133
which ranges from 0 to 100 and higher score indicate increased independence. Detailed
neurological evaluation for documentation of level and severity of SCI was conducted monthly

according to the ISNCSCI. 1

While there was no change in ISNCSCI ASIA impairment scale from a C5 motor level, there was
an unexpected slight increase in the motor zone of partial preservation (defined as the myotomes
below the level of injury with residual innervation) on the left from C6 to C8. Additionally, after
study week 23, the subject began to be able to extend his right thumb volitionally with motor
strength 2/5 in the absence of the FES orthosis. There was no change in the SCIM from a baseline
score of 26. The SF-36 indicated a 32.5% improvement in pain, a 5% increase in energy, and an

8% decrease in emotional well-being

Detailed neurological evaluation for documentation of level and severity of SCI was conducted
monthly according to the ISNCSCI. Figure S9 and S10 summarize the results of the ISNCSCI
obtained during the week 1 and week 29 visits. Diagrams generated using the European

Multicenter Study about Spinal Cord Injury (EMSC) ISNCSCI calculator.®®
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445  FIGURE S9 ISNCSCI EXAM ON INITIAL VISIT — STUDY WEEK 1. NOTE THE C5 MOTOR LEVEL AND C4 NEUROLOGICAL LEVEL
446  OF INJURY (NLI) DUE TO DIMINISHED SENSATION IN THE C5 DISTRIBUTION. THE ZONE OF PARTIAL PRESERVATION FOR THE
447  RIGHT/LEFT IS T2/T4 FOR SENSORY FUNCTION AND C8/C6 FOR MOTOR.
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INTERNATIONAL STANDARDS FOR NEUROLOGICAL Patienl Identihier Date/Tirme of Exam Week 20
CLASSIFICATION OF SPINAL CORD INJURY

{ISNCSCI) E.xaminer Identifier — Signature S—
Eurgpean Multicenter on Human Spinal Cord Injurry (EMSCI)
INTERMAL DYED DERMATOME CHART
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FIGURE S10 ISNCSCI EXAM ON FINAL VISIT — WEEK 29. NOTE THAT WHILE THE MOTOR LEVEL REMAINS C5 AND THE NLI
C4, THERE IS A SLIGHT INCREASED ZONE OF PARTIAL PRESERVATION WITH IS NOW C8 BILATERALLY COMPARE TO C8 ON THE
RIGHT AND C6 ON THE LEFT DURING WEEK ONE. ADDITIONALLY, THE SUBJECT GAINED THE ABILITY TO SLOWLY EXTEND HIS
THUMB ON COMMAND ON THE RIGHT SIDE WHICH IS NOTED AS THE MOST CAUDAL INNERVATED NON-KEY MUSCLE AS C8 ON
THE RIGHT PANEL.

Changes in health status were assessed with the MOS 36-item shot form health survey (SF-36).12
Comparisons of SF-36 scores between initial and final study visit are summarized in Table S5.
Perceived changes in functional independence were assessed with the Spinal Cord
Independence Measure (SCIM)*? version Il which ranges from 0 to 100 and higher score indicate

increased independence. Changes are in SCIM are summarized in Table S6.

There was an 8% decrease in emotional well-being in the SF36 changes in responses to the

following questions:

1) “During the past 4 weeks, have you been a happy person?” changing from “all of the
time” to “most of the time.”
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465 2) “During the past 4 weeks, have you felt calm and peaceful?” changing from “all of the
466 time” to most of the time.”
467  The 32.5% improvement in the pain score was driven by changes in responses to the following
468  questions:
469 1) “How much bodily pain have you had in the past 4 weeks?” changing from “mild” to
470 “very mild.”
471 2) “During the past 4 weeks, how much did pain interfere with your normal work?” —
472 change from “moderately” to “a little bit.”
473  The 5% improvement is energy/fatigue was driven by the response to the question “During the
474  last 4 weeks, did you feel worn out?” changing from “a little bit of the time” to “none of the time.”
475
476  TABLE S6 SF36 SCORES CHANGES. SCORES CALCULATED USING 216
Laboratory Trials Home Trials
Category Initial Visit Final Visit Change Initial Visit Final Visit Change
Physical Functioning 0% 0% 0% 0% 0% 0%
Role Limitations Due to 100% 100% 0% 100% 100% 0%
Physical Health
Role Limitations Due to 100% 100% 0% 100% 100% 0%
Emotional Problems
Energy/Fatigue 80% 85% 5% 90% 90% 0%
Emotional Well-Being 100% 92% -8% 92% 92% 0%
Social Functioning 100% 100% 0% 100% 100% 0%
Pain 67.5% 100% 32.5% 100% 77.5% -22.5%
General Health 85% 85% 0% 85% 90% 5%
Health Change 75% 75% 0% 75% 75% 0%
477
478  TABLE S7 SPINAL CORD INDEPENDENCE MEASURE.
Laboratory Trials Home trials
Initial Visit  Final Visit Change Initial Visit Final Visit Change
Self-Care 2 2 0 2 3 1
Respiration and 21 21 0 21 21 0
Sphincter Management
Mobility 3 3 0 3 3 0
Total 26 26 0 26 27 1
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FIGURE S11 SCIM Il AND SF-36. CHANGES IN SCORES FOR THE SCIM Il (LEFT) AND SF-36 (RIGHT) OVER THE COURSE OF
THE STUDY PERIOD. THE FIRST TWO TIME POINTS WERE TAKEN BEFORE AND AFTER THE LABORATORY STUDY PERIOD. THE
FINAL 4 TIME POINTS WERE TAKEN THROUGHOUT THE STUDY AT HOME.
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