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Supplementary Note 1. Eigenmode analysis of ZIM with objects

In simulation: Full-wave simulations were carried out by using software COMSOL Multiphysics to
study the eigenfrequency and eigenmode profiles. In Fig. 2, the working frequency is 15 GHz , and the
linewidth vanishes at ¢=0 and &, =4.82. For eigenmode analysis, we studied a case of a ZIM
background containing two same objects of &, =4.82 instead. The infinite ZIM is replaced by a large
ZIM area with r=10R,. We obtain two eigenfrequency and corresponding field pattern as shown in
Fig. 3b. For the case of two cylinders with &, =4.82, R, =R, =8 mm embedded in ZIM environment,
the system supports a bright mode and a dark mode (i.e., BIC mode, at about 15 GHz). The small
deviation is mainly due to inaccurate data selection and accuracy of grid division in simulations. Similar
procedures were applied to the case of three cylinders with ¢, =4.82 and R =R,=R,=8mm
embedded in ZIM environment. Based on numerical calculations, we can easily get the eigenfrequency

of each eigenmode and its corresponding field patterns, as shown in Fig. 4b.

Theoretical analysis: It is evident from Eq. (1) that the eigenfrequency of studied system also can be

strictly calculated by setting the denominator term of the Eq. (1) to be zero, that is
H N . . . . .
1—|(ﬁ/w)zi:1RiJ1( & kR, )/ &4 JO( &4 koRi)=0 . By solving this equation with considered
geometric parameters, a complex eigenfrequency @ =@, —iy can be obtained analytically, and the O
factor of the corresponding eigenmode is calculated by Q=@,/2y . Based on this method,

Supplementary Fig. 1a analytically shows the calculated eigenfrequency that decreases with the increase

of « . In particular, at « =0, the eigenfrequency is 15 GHz, which is marked with black star in plot.



In Supplementary Fig. 1b, the O factor turns to infinite at o =0, where means such mode is BIC mode.
These analytical results are consistent with those based on numerical simulations. Similarly, the cases of
N=3 and N=5 are also analyzed, with the obtained results shown in Supplementary Fig. 2a. It is found
that Q still trends to infinite at o« =0 for N=3 or N=5, and for the same « # 0, the Q factor of quasi-
BIC is larger for a larger N. In addition, the results also indicates that the Q factor is inversely proportional
to the square of o (see Supplementary Fig. 2b). These results further confirm the existence of higher-

order BICs.



Supplementary Note 2. Analytical derivation of Q factor of quasi-BIC resonances
To calculate the Q factor in Fig. 3, we define it as Q=n_, /An (nzafsd ), where n_. is the

refractive index corresponding to transmission peak and An is the full width half maximum bandwidth
(FWHM). The relative permittivity of all cylinders are the same, i.e. ¢,, and the wave vector in cylinders

is k. According to Eq. (1) and Eq. (2) in the main text, the transmission coefficient
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As mentioned in the main text and shown in Supplementary Fig. 7, if all cylinders have different radii

(82)

(e,i#],a#a i), N cylinders will lead to N-1 EIT windows and N-1 different Q factors. It is difficult

to get the expression of each Q factor in a general case. Here in order to explore the relationship between
N and Q factor, we consider a simple case: N-1 cylinders with radius R, and only a cylinder with radius
R, . In this case, the system supports (N-2)-fold degenerate BICs, then only one EIT in transmission

spectrum is left. Next, we will derive the O factor of this EIT. In this case, Eq. (S2) can be written as
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Further, we set X =, fgd (refractive index), then K,R,, =Xk;R,, . Firstly, we find the permittivity of
the transmission valleys, which corresponds to the solution of J, (SV) =0. In this work, the considered

parameters lead to S,=5.52, which means x, =S,/k,R, and x, =s,/k;R,. Because there are only
two different sizes of all cylinders in the system, the asymmetry parameter is defined by
a=(R,—-R,)/R, . For «€(0.99,1.01), the value of |x,—x,| is very small, then Taylor series of the
Bessel functions around x, and x, are used:

Jo(XkoR, ) = 3o (X.KoR, ) = KoRo 1 (X, KoR, ) (X=X, ),

(84)
Jo (XkoRy ) = Jo (XkoRy ) = KoRyJ; (XkoRy ) (X =X, ).

Substituting Eq. (S4) to Eq. (S3) and using  J,(Xk,R, )~ J; (X.ksR, ), we get
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When |T| =1/2 , combining Eq. (S1) and (S5) leads to the following equation,

(S6)
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In Eq. (S6), the right-hand side of the equation is approximately equal to 3wk, (X, +X,)/ 27 . For

easy analysis, we set
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With g, and g,, the solutions of Eq. (S6) are calculated as,
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Because the value of |X, —X,| is very small, X, can take an approximation,
X ~ % . (S8)
Finally, the Q factor is defined by Q=x__ / |X(2)
Q- 2N (S9)
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where X, =s,/(kR,) and x,=s,/(k,R,). Further, substituting x, and x; into the Eq. (S9) produces

the following formula,
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Using Eq. (S10), we can obtain the solid curve in the Fig. 4c in the main text.



Supplementary Note 3. Effective permittivity and permeability of waveguide junction.
The permittivity is modeled with waveguide dispersion of TE o [1],
¢ =& —A'[AH?, (S11)

e

where &, is the relative permittivity of the medium filling the waveguide, H is height of waveguide,

and A is the working wavelength in free space. Eq. (S11) is similar to the Drude model. The red curve

in Supplementary Fig. 8 shows the relationship between &, and frequency. &, changes slowly with

frequency so that the ENZ window is a broadband. After doping a silicon rod into the waveguide junction,

the effective permeability of the waveguide junction can be written as [2],
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where A, =7zR} is cross-sectional area of siliconrod, A=L?—-3x16x 7T’ is the total cross-sectional

area of air region, r, is the radius of metallic wires, k&' = ‘fg;ﬁ ®/c is the wave vector in silicon,
and &' =g, —A%/4H? is the effective permittivity of silicon for TE ;o mode. Using Eq. (S12), we can
obtain the relationship between gy, and frequency, as shown in Supplementary Fig. 8. As showed by

the blue curve, g, changes quickly with frequency, leading to the ZIM window that has an extremely

narrowband response. One may broaden ZIM window by changing the material and shape of the dopant.



Supplementary Note 4. Geometry symmetry-free BIC induced by ENZ medium.

In ENZ medium, Eq. (1) in the main text can be generalized to [3],

T 1 : (S13)
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where S=Ixw and S, isthe sum of areas of embedded objects. Likewise, we consider two cylinder

objects for illustration and comparison. Supplementary Fig. 9a shows the calculated transmission vs both
&y and o, from which a BIC can be seen at about ¢, =4.82 and « =0, as indicated by the dashed
circle. Supplementary Fig. 9b shows the transmission for o =-0.01 case, and for comparison,
numerical simulations were carried out using COMSOL with the geometry parameters that are same
to that in Fig. 2. The obtained simulated results of two different location distribution cases are shown
by the color balls. Both theoretical results and simulation results agrees well with each other. Similar
EIT-like behavior is seen regardless of the locations of the two dielectric rods, and the total transmission
indicated by the P corresponds to the quasi-BIC. The two valleys stem from monopole mode resonances

that occur in either the left object (see the left pattern in Fig. 9c or d) or the right object one (see the right

pattern in Fig. 9c or d). For the quasi-BIC, due to the term of 7 =ik,z4 (S -S4 )/ZW, the magnetic flux
induced by two object are not exactly out of phase at all ((see the middle pattern in Fig. 9c or d)); the
ENZ leads a modified condition: T+Z(Di =0 and []®, <0 for quasi-BIC. Note that the total
transmission at about &, =5.0 is not BIC mode, which results from in phase resonances of EM wave

inside two objects, corresponding the condition: 7+ Z:CDi =0 and [I®, >0.As o —0,the induced
flux @, becomes very large, so |<Di| > 7. When a=0, the term of 7= iko,ul(S -5, )/ZW can be

negligible compared with @, , so that the ideal BIC happens at ZCDi=O and @, =0, which

coincides to the results revealed in the main text that the BIC mode is physically related to the

nontrivial zeros of total magnetic flux in all embedded objects.
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Supplementary Figure 1. Eigenfrequency of studied system for case of N=2. a Eigenfrequency as a
function of asymmetry parameter. The eigenfrequency is about 15 GHz for « € (—0.0ZL 0.01) . The
eigenmode turns to BIC mode at o =0. b Q factor vs asymmetry parameter o =0. The Q factor is
infinite at o =0. Here in analysis, the related parameters are R =8mm, « =(R2 - Rl)/ R,

& =482 and w=44mm.
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Supplementary Figure 2. The Q factor for the case of N objects that include (V-1) identical objects with

a fixed radius of R,, and one object with a variable radius of R, . a O factor of quasi-BICs vs
asymmetry parameter o =0 for N=2 (red), N=3 (green) and N=5 (blue). Related parameters are

R,=8mm, « :(Rb -R, )/Ra , & =4.82 and w=44mm. b Log scale of a. N-dependent Q factor

of linear shape can be observed. The vary trend of Q factor is consistent with Fig. 4c in the main text.
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Supplementary Figure 3. Two square shape case. a A two-dimensional (2D) waveguide structure with

two square dielectric embedded in ZIM. The side lengths of the two squares are @, and a,, respectively.
The asymmetry parameter is defined as o = (v’:\2 - ai) / a, . b Eigenmode analysis with @, =a, =16 mm

and &, =4.82. A symmetry mode and an antisymmetric mode were found around the frequency of 6.05
GHz. ¢ Transmission vs ¢, for different « . For « — 0, the transmission peak becomes sharper. In
the case of « =0, the EIT window is invisible in transmission spectrum. This is typical signature of a
BIC mode manifested by a resonance with zero linewidth. In the simulation of transmission, we fix

a, =16 mm and the working frequency is 6.05 GHz.
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Supplementary Figure 4. Two isosceles-right triangular shape case. a A two-dimensional (2D)
waveguide structure with two isosceles-right triangular embedded in ZIM. The right angle sides of
triangles are @, and a,, respectively. The asymmetry parameter is defined as o =(<’:12 —ai)/ a.b

Eigenmode analysis with a =a, =16 mm and &, =4.82. A symmetry mode and an antisymmetric
mode were found around the frequency of 9.56 GHz. ¢ Transmission vs ¢, for different « . In the

simulation of transmission, we fix & =16 mm and the working frequency is 9.56 GHz.
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Supplementary Figure 5. Arbitrary shape case. a Two similar dielectric of arbitrary shape embedded

in ZIM. The areas of dielectric are S, and S,, respectively. The asymmetry parameter is defined as
a=(S,-5,)/S, . b Eigenmode analysis with S, =S, =251mm” and &, =4.82. A symmetry mode
and an antisymmetric mode were found around the frequency of 6.46 GHz. ¢ Transmission vs ¢, for

different « . In the simulation of transmission, we fix S, =251mm’ and the working frequency is 6.46

GHz.
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Supplementary Figure 6. The case of a square shape and a circular shape. a A square and a circular
dielectric embedded in ZIM. The side length of the square is @ and the radius of circle is R. b Eigenmode
analysis with a=16 mm, R=8.65 mm, and &, =4.82. There is no symmetry between the two objects but
we still find a symmetry mode and an antisymmetric mode (BIC) around the frequency of 6.04 GHz. ¢
Transmission changes as ¢&,. In the simulation of transmission, we fix =16 mm and the working
frequency is 6.04 GHz. A zero line width of transmission is found at R=8.66 mm and &, =4.82, which

means a BIC here.
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Supplementary Figure 7. Transmission spectrum for the case of N=3. The blue solid curve and red
circles represent analytical and simulated results, respectively. Right panels are simulated out-of-plane
magnetic field distribution at transmission peak A and peak B, respectively. In calculations, the working

frequency is 15 GHz, R =8mm , R,=792mm and R,=808mm , which means

a,=(R,~R)/R,=-0.01 and &,=(R,—R,)/R, =0.01.
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Supplementary Figure 8. Analytical prediction of the dispersion of effective permittivity and

permeability of waveguide junction. The red curve and blue curve represent &, and g, . Although

&g changes slowly with frequency, g changes quickly with frequency lead to an extremely narrow

ZIM window. Considering the problem of accuracy in simulation, we set Ry=14.0848 mm in theoretical

calculations.
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Supplementary Figure 9. BIC illustrations in ENZ-based host. a Analytical 2D map of transmission
as a function of &, and asymmetry parameter « . The relevant parameters are as follows: R1=8 mm, w
=44 mm, | = 60 mm and the working frequency is 15 GHz. b Transmission spectrum for « =-0.01.
The blue solid curve represents the analytical results. The red balls and green balls represent the simulated
results for the two different distributions. Simulated magnetic field distribution patterns of distribution 1
and distribution 2 are shown in ¢ and d, respectively. M, N and P corresponding to two transmission

valleys and the peak, respectively. In simulations, the incident magnetic field is 1 A/m and ENZ is set as

£ =10" and g, =1.
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