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Supplementary Note 1．Eigenmode analysis of ZIM with objects 

In simulation: Full-wave simulations were carried out by using software COMSOL Multiphysics to 

study the eigenfrequency and eigenmode profiles. In Fig. 2, the working frequency is 15 GHz , and the 

linewidth vanishes at 0    and 4.82d   . For eigenmode analysis, we studied a case of a ZIM 

background containing two same objects of 4.82d   instead. The infinite ZIM is replaced by a large 

ZIM area with 110r R . We obtain two eigenfrequency and corresponding field pattern as shown in 

Fig. 3b. For the case of two cylinders with 1 24.82, 8d R R mm     embedded in ZIM environment, 

the system supports a bright mode and a dark mode (i.e., BIC mode, at about 15 GHz). The small 

deviation is mainly due to inaccurate data selection and accuracy of grid division in simulations. Similar 

procedures were applied to the case of three cylinders with 4.82d    and 1 2 3 8R R R mm    

embedded in ZIM environment. Based on numerical calculations, we can easily get the eigenfrequency 

of each eigenmode and its corresponding field patterns, as shown in Fig. 4b.  

Theoretical analysis: It is evident from Eq. (1) that the eigenfrequency of studied system also can be 

strictly calculated by setting the denominator term of the Eq. (1) to be zero, that is 
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geometric parameters, a complex eigenfrequency 0 i     can be obtained analytically, and the Q 

factor of the corresponding eigenmode is calculated by 0 2Q    . Based on this method, 

Supplementary Fig. 1a analytically shows the calculated eigenfrequency that decreases with the increase 

of  . In particular, at 0  , the eigenfrequency is 15 GHz, which is marked with black star in plot. 



In Supplementary Fig. 1b, the Q factor turns to infinite at 0  , where means such mode is BIC mode. 

These analytical results are consistent with those based on numerical simulations. Similarly, the cases of 

N=3 and N=5 are also analyzed, with the obtained results shown in Supplementary Fig. 2a. It is found 

that Q still trends to infinite at 0   for N=3 or N=5, and for the same 0  , the Q factor of quasi-

BIC is larger for a larger N. In addition, the results also indicates that the Q factor is inversely proportional 

to the square of   (see Supplementary Fig. 2b). These results further confirm the existence of higher-

order BICs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 2. Analytical derivation of Q factor of quasi-BIC resonances 

To calculate the Q factor in Fig. 3, we define it as max /Q n n    ( dn   ), where 
maxn   is the 

refractive index corresponding to transmission peak and n  is the full width half maximum bandwidth 

(FWHM). The relative permittivity of all cylinders are the same, i.e. d , and the wave vector in cylinders 

is dk . According to Eq. (1) and Eq. (2) in the main text, the transmission coefficient 
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As mentioned in the main text and shown in Supplementary Fig. 7, if all cylinders have different radii 

(i.e., , i ji j    ), N cylinders will lead to N-1 EIT windows and N-1 different Q factors. It is difficult 

to get the expression of each Q factor in a general case. Here in order to explore the relationship between 

N and Q factor, we consider a simple case: N-1 cylinders with radius aR  and only a cylinder with radius 

bR . In this case, the system supports (N-2)-fold degenerate BICs, then only one EIT in transmission 

spectrum is left. Next, we will derive the Q factor of this EIT. In this case, Eq. (S2) can be written as  
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Further, we set 
dx   (refractive index), then ( ) 0 ( )d a b a bk R xk R . Firstly, we find the permittivity of 

the transmission valleys, which corresponds to the solution of  0 0vJ s  . In this work, the considered 

parameters lead to 2s =5.52, which means 0/a v ax s k R  and 0/b v bx s k R . Because there are only 

two different sizes of all cylinders in the system, the asymmetry parameter is defined by 

 b a aR R R    . For  0.99,1.01  , the value of a bx x   is very small, then Taylor series of the 

Bessel functions around xa and xb are used:  
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Substituting Eq. (S4) to Eq. (S3) and using    1 0 1 0a a aJ xk R J x k R , we get  
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When 1/ 2T  , combining Eq. (S1) and (S5) leads to the following equation,  
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In Eq. (S6), the right-hand side of the equation is approximately equal to  03 / 2a bwk x x   . For 

easy analysis, we set  
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With g1 and g2, the solutions of Eq. (S6) are calculated as,  
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Because the value of a bx x  is very small, maxx  can take an approximation, 
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Finally, the Q factor is defined by (2) (1)

max 2 2/Q x x x  , and after some simplifications, we have  
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where  0/a v ax s k R  and  b 0/v bx s k R . Further, substituting xa and xb into the Eq. (S9) produces 

the following formula,  
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Using Eq. (S10), we can obtain the solid curve in the Fig. 4c in the main text. 

 

 

 

 



Supplementary Note 3. Effective permittivity and permeability of waveguide junction. 

The permittivity is modeled with waveguide dispersion of TE10 [1], 
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where b  is the relative permittivity of the medium filling the waveguide, H is height of waveguide, 

and   is the working wavelength in free space. Eq. (S11) is similar to the Drude model. The red curve 

in Supplementary Fig. 8 shows the relationship between 
eff  and frequency. 

eff  changes slowly with 

frequency so that the ENZ window is a broadband. After doping a silicon rod into the waveguide junction, 

the effective permeability of the waveguide junction can be written as [2], 
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where 
2

0 0A R  is cross-sectional area of silicon rod, 
2 23 16 wA L r     is the total cross-sectional 

area of air region, wr  is the radius of metallic wires, 
eff eff

Si Sik c   is the wave vector in silicon, 

and 
2 24eff

Si Si H     is the effective permittivity of silicon for TE10 mode. Using Eq. (S12), we can 

obtain the relationship between eff  and frequency, as shown in Supplementary Fig. 8. As showed by 

the blue curve, eff  changes quickly with frequency, leading to the ZIM window that has an extremely 

narrowband response. One may broaden ZIM window by changing the material and shape of the dopant.  

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Note 4. Geometry symmetry-free BIC induced by ENZ medium. 

In ENZ medium, Eq. (1) in the main text can be generalized to [3], 
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where S l w   and dS  is the sum of areas of embedded objects. Likewise, we consider two cylinder 

objects for illustration and comparison. Supplementary Fig. 9a shows the calculated transmission vs both 

d  and  , from which a BIC can be seen at about 4.82d   and 0  , as indicated by the dashed 

circle. Supplementary Fig. 9b shows the transmission for 0.01     case, and for comparison, 

numerical simulations were carried out using COMSOL with the geometry parameters that are same 

to that in Fig. 2. The obtained simulated results of two different location distribution cases are shown 

by the color balls. Both theoretical results and simulation results agrees well with each other. Similar 

EIT-like behavior is seen regardless of the locations of the two dielectric rods, and the total transmission 

indicated by the P corresponds to the quasi-BIC. The two valleys stem from monopole mode resonances 

that occur in either the left object (see the left pattern in Fig. 9c or d) or the right object one (see the right 

pattern in Fig. 9c or d). For the quasi-BIC, due to the term of  0 1 2dik S S w   , the magnetic flux 

induced by two object are not exactly out of phase at all ((see the middle pattern in Fig. 9c or d)); the 

ENZ leads a modified condition: =0i     and 0i    for quasi-BIC. Note that the total 

transmission at about 5.0d   is not BIC mode, which results from in phase resonances of EM wave 

inside two objects, corresponding the condition: =0i    and 0i  . As 0  , the induced 

flux i  becomes very large, so i  . When 0  , the term of  0 1 2dik S S w    can be 

negligible compared with i  , so that the ideal BIC happens at =0i   and 0i   , which 

coincides to the results revealed in the main text that the BIC mode is physically related to the 

nontrivial zeros of total magnetic flux in all embedded objects. 

 

 

 

 



 

 

Supplementary Figure 1. Eigenfrequency of studied system for case of N=2. a Eigenfrequency as a 

function of asymmetry parameter. The eigenfrequency is about 15 GHz for  0.01, 0.01   . The 

eigenmode turns to BIC mode at 0  . b Q factor vs asymmetry parameter 0  . The Q factor is 

infinite at 0   . Here in analysis, the related parameters are 
1 8R mm  ,  2 1 1R R R    , 

4.82d   and 44w mm . 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 2. The Q factor for the case of N objects that include (N-1) identical objects with 

a fixed radius of aR  , and one object with a variable radius of bR  . a Q factor of quasi-BICs vs 

asymmetry parameter 0   for N=2 (red), N=3 (green) and N=5 (blue). Related parameters are 

8aR mm ,  b a aR R R   , 4.82d   and 44w mm . b Log scale of a. N-dependent Q factor 

of linear shape can be observed. The vary trend of Q factor is consistent with Fig. 4c in the main text. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 3. Two square shape case. a A two-dimensional (2D) waveguide structure with 

two square dielectric embedded in ZIM. The side lengths of the two squares are 1a  and 2a , respectively. 

The asymmetry parameter is defined as  2 1 1a a a   . b Eigenmode analysis with 1 2 16a a mm   

and 4.82d  . A symmetry mode and an antisymmetric mode were found around the frequency of 6.05 

GHz. c Transmission vs d  for different  . For 0  , the transmission peak becomes sharper. In 

the case of 0  , the EIT window is invisible in transmission spectrum. This is typical signature of a 

BIC mode manifested by a resonance with zero linewidth. In the simulation of transmission, we fix 

1 16a mm  and the working frequency is 6.05 GHz.  

 

 

 

 



 

Supplementary Figure 4. Two isosceles-right triangular shape case. a A two-dimensional (2D) 

waveguide structure with two isosceles-right triangular embedded in ZIM. The right angle sides of 

triangles are 1a   and 2a  , respectively. The asymmetry parameter is defined as  2 1 1a a a    . b 

Eigenmode analysis with 1 2 16a a mm   and 4.82d  . A symmetry mode and an antisymmetric 

mode were found around the frequency of 9.56 GHz. c Transmission vs d  for different  . In the 

simulation of transmission, we fix 1 16a mm  and the working frequency is 9.56 GHz. 

 

 

 

 

 



 

Supplementary Figure 5. Arbitrary shape case. a Two similar dielectric of arbitrary shape embedded 

in ZIM. The areas of dielectric are 1S  and 2S , respectively. The asymmetry parameter is defined as 

 2 1 1S S S   . b Eigenmode analysis with 
2

1 2 251S S mm   and 4.82d  . A symmetry mode 

and an antisymmetric mode were found around the frequency of 6.46 GHz. c Transmission vs d  for 

different  . In the simulation of transmission, we fix 
2

1 251S mm  and the working frequency is 6.46 

GHz. 

 

 

 

 



 

Supplementary Figure 6. The case of a square shape and a circular shape. a A square and a circular 

dielectric embedded in ZIM. The side length of the square is a and the radius of circle is R. b Eigenmode 

analysis with a=16 mm, R=8.65 mm, and 4.82d  . There is no symmetry between the two objects but 

we still find a symmetry mode and an antisymmetric mode (BIC) around the frequency of 6.04 GHz. c 

Transmission changes as d  . In the simulation of transmission, we fix a=16 mm and the working 

frequency is 6.04 GHz. A zero line width of transmission is found at R=8.66 mm and 4.82d  , which 

means a BIC here.   

 

 

 

 

 



 

Supplementary Figure 7. Transmission spectrum for the case of N=3. The blue solid curve and red 

circles represent analytical and simulated results, respectively. Right panels are simulated out-of-plane 

magnetic field distribution at transmission peak A and peak B, respectively. In calculations, the working 

frequency is 15 GHz, 1 8R mm  , 2 7.92R mm  and 3 8.08R mm  , which means 

 2 2 1 1 0.01R R R      and  3 3 1 1= 0.01R R R   . 

 

 

 

 

 

 

 

 



 

Supplementary Figure 8. Analytical prediction of the dispersion of effective permittivity and 

permeability of waveguide junction. The red curve and blue curve represent eff  and eff . Although 

eff  changes slowly with frequency, eff  changes quickly with frequency lead to an extremely narrow 

ZIM window. Considering the problem of accuracy in simulation, we set R0=14.0848 mm in theoretical 

calculations. 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 9. BIC illustrations in ENZ-based host. a Analytical 2D map of transmission 

as a function of d  and asymmetry parameter  . The relevant parameters are as follows: R1=8 mm, w 

= 44 mm, l = 60 mm and the working frequency is 15 GHz. b Transmission spectrum for 0.01   . 

The blue solid curve represents the analytical results. The red balls and green balls represent the simulated 

results for the two different distributions. Simulated magnetic field distribution patterns of distribution 1 

and distribution 2 are shown in c and d, respectively. M, N and P corresponding to two transmission 

valleys and the peak, respectively. In simulations, the incident magnetic field is 1 A/m and ENZ is set as 

4

1 10   and 1 1  . 
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