

1 **METHODS**

2 **A549^{ACE2} cells**

3 ACE expressing A549 cells were generated as previously described¹. A549-ACE cells
4 were grown in RPMI1640 media with 10% FBS and 1% Pen/Strep and maintained free of
5 mycoplasma. Cells were infected at an MOI of 1 and fixed or lysed at 48 hours after infection.

6 **SARS-CoV-2 infections**

7 SARS-CoV-2 (USA-WA1/2020 strain) was obtained from BEI and propagated in Vero-E6
8 cells. The genome RNA was sequenced and found to be identical to GenBank: MN985325.1.
9 Cells were infected with SARS-CoV-2 at MOI=1PFU/cell (A549^{ACE2} and iCM) or MOI=5PFU/cell
10 (iAT2). Virus was added to cells for one hour at 37C, virus removed and replaced with medium.
11 Cells were lysed at 48 hours post infection and RNA isolated. All infections and virus
12 manipulations were conducted in a biosafety level 3 (BSL3) laboratory using appropriate
13 protective equipment and protocols.

14 **HEK cells**

15 HEK293T cells were cultured in DMEM (with 4.5 g/L glucose, L-glutamine and sodium
16 pyruvate), 10% fetal bovine serum (Sigma Aldrich F2442-500ML), and 1% Penicillin-Streptomycin
17 (Gibco 15140122) and maintained free of mycoplasma. Calcium phosphate transfection was used
18 to introduce GFP, Orf8, and Orf8 mutant plasmid DNA to HEK293T cells. Cells were washed 24
19 hours post-transfection with culture medium and fixed or pelleted and flash frozen 48 hours post-
20 transfection. Cells were fixed using 4% PFA in PBS for 8 minutes. To pellet, cells were detached
21 from the culture plate using TrypLE Express (Gibco 12605010) dissociation reagent, spun down
22 for 5 minutes at 180xg, and flash frozen in liquid nitrogen.

23 **Orf8 constructs**

24 The Orf8 expression plasmid was obtained from Addgene, pLVX-EF1alpha-SARS-CoV-
25 2-orf8-2xStrep-IRES-Puro (Addgene plasmid #141390). Orf8 deletion constructs were produced
26 on the Orf8 backbone using Pfu Turbo HotStart DNA polymerase (Agilent 600322-51) and primers
27 were created using the DNA-based primer design feature of the online PrimerX tool. Constructs
28 were verified by Sanger sequencing.

29 **iCM cells**

30 The induced Pluripotent Stem Cell (iPSC) line Penn-123i-SV20 was generated using
31 sendai virus vectors (Cytotune 2.0, Life technologies) in erythroblasts derived from patient-
32 specific peripheral blood mononuclear cells (PBMCs) as previously described (Yang et. al 2012,
33 2015). This cell line has been deposited at WiCell Research Institute as part of a larger collection
34 of iPSCs from the University of Pennsylvania (<https://www.wicell.org/home/stem-cells/catalog-of-stem-cell-lines/collections/nhlbi-next-gen-rader.cmsx>). iPSCs were maintained in StemMACS iPS
35 Brew-XF (Miltenyi Biotec) on Geltrex (Life Technologies) coated plates between passages 33 and
36 45. For cardiac differentiation (LaFlamme et. al 2007; Burridge et. al 2015; Palpant et. al 2017),
37 iPSCs were dissociated into single cells using Accutase (Innovative Cell Technologies) and plated
38 at a density of 10⁵ cells/cm² in iPS Brew with 2uM ROCK inhibitor Thiazovivin (Cayman Chemical).
39 The following day, media was changed to iPS Brew supplemented with 1uM CHIR99021
40 (Cayman) for 24hr. Media was then switched to RPMI 1640 + B-27 supplement [minus insulin]

52 (both from Life Technologies) supplemented with 100ng/mL Activin-A (StemCell Technologies) for
53 18hr. Cells were then switched to RPMI/ B-27 [minus] with 5ng/mL BMP-4 (Peprotech) and 1uM
54 CHIR99021 for 48hrs. Wnt Inhibition was then induced by exchanging media to RPMI/ B-27
55 [minus] media with 1uM Xav939 (Millipore) for 48hr. Cells were then cultured for 72hr in RPMI/ B-
56 27 [minus] to produce beating cardiomyocytes. Once beating cells were observed, the media was
57 changed to RPMI/B-27 (Life Technologies) and cells were fed every 48hr. Once beating
58 stabilized, cells were metabolically selected using RPMI (minus glucose) / B-27 supplement
59 media for 72hr to enrich for cardiomyocytes. Cells were then re-plated onto 0.1% gelatin
60 (Millipore) coated plates, subjected to another round of metabolic selection, and maintained in
61 RPMI/B-27 media until being re-plated for experiments.

62

63 **iAT2 cells**

64

65 Generation of human-derived induced alveolar epithelial type II-like cells (iAT2) was
66 performed as described². To maintain a stable and pure culture of the iAT2 cell line, SFTPC^{tdTomato+}
67 cells were sorted and serially passage every 14 days. Cells were grown as an organoid format
68 using 90% Matrigel with a cell density of 400 cells/ μ l. Cells were fed using CK+DCI medium +
69 Rock inhibitor for the first 48h after splitting and then change to K+DCI medium for 5 days followed
70 by CK+DCI medium for 7 days. Every 14 days alveolosphere organoids were passaged,
71 organoids were released from Matrigel using 2mg/ml dispase for 1h at 37°C, then the generation
72 of single cells was reached using 0.05% Trypsin for 15min at 37°C. Cell quantification and viability
73 were assessed using Trypan blue, finally, cells were passaged to new Matrigel drops let them
74 polymerized for 30min at 37°C on a 5% CO₂ incubator, after Matrigel solidified cells were fed
75 according to plate format.

76 For the generation of 2D alveolar cells for virus infection, when alveolospheres organoids
77 were passaged, cells were plated on pre-coated 1/30 matrigel plates at a cell density of 125000
78 cells/cm² using CK+DCI medium + Rock inhibitor for the first 48h, and then the medium was
79 changed to CK+DCI medium. 72 hours after cell plating, cells were infected using the SARS-
80 CoV2 virus using MOI:5 for 48h.

81

82 **Chromatin sequential salt extraction**

83

84 Salt extractions were performed as described³. Briefly, a 2X RIPA solution was made (100
85 mM Tris pH 8.0, 2% NP-40, and 0.5% sodium deoxycholate) and mixed with varying
86 concentrations of a 5 M NaCl solution to generate RIPA containing 0, 100, 200, 300, 400, and
87 500 mM NaCl. pelleted cells were resuspended in buffer A with protease inhibitors (0.3 M
88 sucrose, 60 mM KCl, 60 mM Tris pH 8.0, 2 mM EDTA, and 0.5% NP-40) and rotated at 4 degrees
89 C for 10 minutes. Nuclei were pelleted by centrifugation at 6000xG for 5 minutes at 4 degrees C.
90 Supernatant was removed and saved and 200uL of RIPA with 0mM NaCl and protease inhibitors
91 was added to the sample. Samples were mixed by pipetting 15 times and incubated on ice for 3
92 minutes before centrifuging for 3 minutes at 6500 xG at 4 degrees C. Supernatant was saved and
93 RIPA steps were repeated for all NaCl concentrations. Samples were boiled and sonicated before
94 analyzing by western blot.

95

96 **Cell fractionation**

97

98 Pelleted cells were briefly thawed on ice. Buffer 1 (15mM Tris-HCl (pH 7.5), 60 mM KCl,
99 15 mM NaCl, 5 mM MgCl₂, 1 mM CaCl₂, 0.25 M Sucrose with 1 mM PMSF, 1 mM DTT, and
100 Complete Protease Inhibitor cocktail tablet added immediately before use) was added to the pellet
101 at roughly 5 times the volume of the pellet and gently pipetted up and down to dissociate pellet.
102 Samples were incubated on ice for 5 minutes and then an equal volume of buffer 1 with 0.4% NP-

103 40 was added to the sample. Samples were then mixed by inversion for 5 minutes at 4 degrees
104 C. Samples were spun at 200xG for 10 minutes in a prechilled centrifuge to pellet nuclei. The
105 supernatant (cytoplasmic fraction) was transferred to a new tube. Pellets were resuspended
106 gently in 0.5mL buffer 1 to wash nuclei, then pelleted again and supernatant was discarded.
107 Nuclear pellet solubilization buffer (150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% NP-40, 5 mM
108 MgCl₂, with 1 mM PMSF, 1 mM DTT, and Benzonase enzyme at 250U/uL added shortly before
109 use) was added to the pellet at half the volume of buffer 1 used. Samples were then incubated at
110 room temperature in a thermoshaker until the pellet was fully dissolved. Benzonase enzyme was
111 doubled in samples with undissolved material left after 20 minutes. Samples were then
112 centrifuged at 13,000 RPM for 20 minutes at 4 degrees C. Supernatent (nuclei fraction) was
113 collected. Sample concentrations were determined by BCA assay and samples were boiled in a
114 western loading buffer for 10 minutes before analysis by western blot.
115

116 **ATAC-sequencing**

117
118 HEK cells were stained and sorted to isolate transfected cells using the same as described
119 below. Sorted cells were resuspended in cold Lysis Buffer (10 uL per 10,000 cells; 10 mM Tris-Cl
120 pH 7.5, 10 mM NaCl, 3 mM MgCl₂, 0.1% v/v NP-40, 0.1% v/v Tween-20, 0.01% v/v Digitonin),
121 washed in Wash Buffer (10 mM Tris-Cl, pH 7.5, 10 mM NaCl, 3 mM MgCl₂, 0.1% v/v Tween-20),
122 and Transposition was performed with Tagment DNA TDE1 (Illumina 15027865). Transposition
123 reactions were cleaned with AMPure XP beads (Beckman A63880), and libraries were generated
124 by PCR with NEBNext High Fidelity 2X PCR Master Mix (NEB M0541). Library size was confirmed
125 on a BioAnalyzer prior to sequencing on the NextSeq 550 (40bp read length, paired end).

126 For ATAC-sequencing analysis, alignments were performed with Bowtie2 (2.1.0)⁴ using the
127 Hg38 genome using a ChIP-seq pipeline (https://github.com/shenlab-sinai/chip-seq_preprocess).
128 Reads were mapped using NGS plot.

129 130 **ChIP-sequencing**

131
132 For Orf8 ChIP-sequencing, 2 days after transfection, cells were fixed for 5 minutes with
133 1% PFA in PBS and then the reaction was quenched with 2.5M glycine. Cells were then washed
134 twice and collected in PBS with protease and phosphatase inhibitors and then pelleted at 1200
135 rpm for 5 minutes. Cells were then rotated in lysis buffer 1 (50mM HEPES-KOH pH 7.5, 140mM
136 NaCl, 1mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton x-100) for 10 minutes at 4°C and
137 spun at 1350g for 5 minutes at 4°C to isolate nuclei. Supernatant was discarded and cells were
138 resuspended in lysis buffer 2 (10mM Tris-HCl pH 8, 200mM NaCl, 1mM EDTA, 0.5mM EGTA) to
139 lyse nuclei. Cells were rotated for 10 minutes at room temperature and were spun again at 1,350g
140 for 5 minutes at 4°C. The supernatant was discarded and the pellet was resuspended in lysis
141 buffer 3 (10mM Tris-HCl pH 8, 100mM NaCl, 1mM EDTA, 0.5mM EGTA 0.1% EDTA, 0.5% N-
142 lauroylsarcosine). Lysates were sonicated on a Covaris sonicator for 40 minutes (200
143 cycles/burst). Triton was added to reach a final concentration of 1% and lysates were spun for 10
144 minutes at 20,000g at 4°C. Streptactin magnetic beads (MagStrep type 3 XT beads, iba #2-4090-
145 002) were added to the lysates overnight rotating at 4°C. Beads were then washed with a low salt
146 buffer (0.1%SDS, 1% triton, 2mM EDTA, 20mM TRIS pH 8, 150mM NaCl), a high salt buffer
147 (0.1%SDS, 1% triton, 2mM EDTA, 20mM TRIS pH 8, 500mM NaCl), a Lithium Chloride was buffer
148 (150mM LiCl, 1% NP-40, 1% NaDOC, 1mM EDTA, 10mM TRIS pH 8) and then TE with 50mM
149 NaCl. Chromatin was eluted from beads for 30 minutes shaking at room temperature 55uL BXT
150 elution buffer (iba 2-1042-025) followed by the addition of 150uL elution buffer (50mM Tris-HCl
151 pH8.0, 10mM EDTA, 1% SDS) for 30 minutes at 65°C. Samples were removed from beads and
152 crosslinking was reversed by further incubating chromatin overnight at 65°C. RNA was digested
153 with RNAase for 1 hour at 37°C and protein was digested with proteinase K for 30 minutes at

55°C. DNA was then purified with the Zymo PCR purification kit. The Illumina TruSeq ChIP purification kit was used to prepare samples for sequencing on an Illumina NextSeq 500 instrument (42bp read length, paired end).

For Orf8 ChIP-sequencing analysis, alignments were performed with Bowtie2 (2.1.0)⁴ using the Hg38 genome using a ChIP-seq pipeline (https://github.com/shenlab-sinai/chip-seq_preprocess). Orf8 reads were mapped using NGS plot.

For histone PTM ChIP-sequencing, 4-10M cells were resuspended in 1mL of lysis buffer 1 (50mM HEPES-KOH pH 7.5, 140mM NaCl, 1mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100) and rotated at 4C for 10min, followed by centrifugation removal of supernatant. Cells were then re-suspended in 1mL lysis buffer 2 (10mM Tris-HCl pH 8.0, 200mM NaCl, 1mM EDTA, 0.5mM EGTA), rotated for 10min at 4C, followed by centrifugation removal of supernatant. Cells were then resuspended in 1mL of lysis buffer 3 (10mM Tris-HCl pH 8.0, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine) and rotated again for 10min at 4C. This was followed by sonication with a Covaris S220 sonicator for 35 minutes (peak incident power: 140; duty factor: 5 %; cycles/burst: 200). This was followed by addition of 110uL Triton X-100, and centrifugation for 15minutes at maximum speed (20kg) at 4C to clear lysate. Lysate chromatin concentration was then equalized according to DNA content (as measured with a qubit fluorometer). Following this, 5% of equivalently-treated chromatin from *C. florianus* pupae were added to all samples according to chromatin concentration, and 50uL of lysate saved as input shearing control. 250uL of equalized lysate were then added to washed, antibody-conjugated protein A/G Dynabeads (2ug antibody conjugated to 15uL/15uL A/G dynabeads, resuspended in 50uL per IP) and IPs were rotated overnight at 4C in a final volume of 300uL. The following day, IPs were washed 5x in RIPA wash buffer (50mM HEPES-KOH pH 7.5, 500mM LiCl, 1mM EDTA, 1% NP-40, 0.7% Na-Deoxycholate) and once in TE pH 8.0. Washes were followed by two elutions into 75 μ l of elution buffer (50 mM Tris-HCl pH 8.0; 10 mM EDTA; 1% SDS) at 65°C for 45 min with shaking (1,100 RPM). DNA was purified via phenol:chloroform:isoamyl alcohol (25:24:1) followed by ethanol precipitation. Pelleted DNA was resuspended in 25 μ l TE. Libraries for sequencing were prepared using the NEBNEXT® Ultra™ II DNA Library Prep Kit for Illumina® (NEB E7645), as described by the manufacturer but using half volumes of all reagents and starting material. For PCR amplification optimal number of PCR cycles was determined using a qPCR side-reaction using 10% of adapter-ligated, size-selected DNA. 7-10 cycles of PCR were used for hPTM libraries and 5 cycles were used for Input controls.

For analysis of histone PTM ChIP-sequencing, reads were demultiplexed using bcl2fastq2 (Illumina) with the options “--mask-short-adapter-reads 20 --minimum-trimmed-read-length 20 --no-lane-splitting --barcode-mismatches 0”. Reads were trimmed using TRIMOMATIC (Bolger et al., 2014) with the options “ILLUMINACLIP:[adapter.fa]:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:15”, and aligned to a hybrid hg38+*C. florianus* (v7.5, RefSeq) genome assembly using bowtie2 v2.2.6⁴ with the option “--sensitive-local”. Alignments with a mapping quality below 5 (using samtools) and duplicated reads were removed peaks were called using macs2⁵ v2.1.1.20160309 with the options “--call-summits --nomodel --B”. Differential ChIP peaks were called using DiffBind⁶ using the options “bFullLibrarySize=FALSE, bSubControl=TRUE, bTagwise=FALSE” for dba.analyze(). For DiffBind testing the DESeq2 algorithm with blocking was used, and ChIP replicate was used as the blocking factor while testing for differences between Mock and infected samples. For ChIP signal tracks individual replicate tracks were produced for RPM and fold-enrichment over input control, merged, and averaged.

In order to account for potential global differences in hPTM abundance that would otherwise be missed by more standard quantile normalization-type approaches, high-quality deduplicated read counts were produced for both human-mapping and *C. florianus*-mapping reads, resulting in proportions of reads mapping to exogenous genome for each hPTM. Input controls were also treated in this way to account for potential differences in initial spike-in addition between samples. For each hPTM, the proportion of spike-in reads were normalized by the appropriate

205 input-control value. Because spike-ins should be inversely proportional to target chromatin
206 concentration, a ratio of CoV/Mock values was produced for each hPTM X replicate, and for CoV2
207 samples resulting signal values were divided by this ratio. This resulted in per-bp signal values
208 adjusted by the degree of global difference in a given hPTM's level between sample types.

209 ChIP results were confirmed by qPCR using the following primers sets:

210 Heterochromatin:

211 Ch3 forward: AAATGCTAAGAGGGTGTGGG

212 Ch3 reverse: GAGAGTTGCCAGGAACAGAG

213 Euchromatin

214 Nanog enhancer forward: TGTTGAACCATATTCCTGAT

215 Nanog enhancer reverse: TCTACCAGTCTCACCAAG

216

217 RNA-sequencing

218

219 RNA was extracted using a Qiagen RNA purification kit. Samples were prepared for
220 sequencing using the Illumina TruSeq purification kit and sequenced on an Illumina NextSeq 500
221 instrument (75bp read length, single read). For RNA sequencing analysis, alignments were
222 performed using Salmon 0.12.0. DESeq2 was used to calculate differential gene expression.
223 DAVID was used to find enriched GO terms compared to a background list of all genes expressed
224 over a basemean of 5. To compare differentially expressed genes with interferon response genes,
225 interferome.org (v2.01) was used to generate a list of all A549 interferon response genes. Library
226 size was confirmed on a BioAnalyzer prior to sequencing on the NextSeq 550 using single-end,
227 75 cycles).

228

229 Immunoprecipitation

230

231 Anti-Strep tag affinity purification for Lamin complex proteins: Protein and binding partners
232 were purified with affinity strep tag purification. For Orf8 PTM analysis and mass spec binding
233 partner analysis, whole cell lysates were prepared as described below. Frozen cell pellets were
234 thawed briefly and suspended in lysis buffer [immunoprecipitation (IP) buffer (50 mM tris-HCl, pH
235 7.5 at 4°C; 150 mM NaCl, 1 mM EDTA, 10mM sodium butyrate) supplemented with 0.5% Nonidet
236 P 40 Substitute (NP-40; Fluka Analytical) and cOmplete mini EDTA-free protease and PhosSTOP
237 phosphatase inhibitor cocktails (Roche)]. Samples were incubated on a tube rotator for 30 min at
238 4°C. Debris was pelleted by centrifugation at 13,000 × g, at 4°C for 15 min. Lysates were then
239 incubated with streptactin magnetic beads (40ul; MagStrep type 3 XT beads, iba #2-4090-002)
240 for 2 hours rotating at 4°C. Beads were washed three times with 1 ml wash buffer (IP buffer
241 supplemented with 0.05% NP-40) and then once with 1 ml IP buffer. Strep-tagged Orf8
242 complexes were eluted from beads in Buffer BXT (IBA Lifesciences; Cat. # 2-1042-025) shaking
243 at 1100 rpm for 30 min.

243

244 Anti-Strep tag affinity purification for binding partner confirmation (SP2): Cells were
245 then rotated in lysis buffer 1 (50mM HEPES-KOH pH 7.5, 140mM NaCl, 10mM sodium butyrate,
246 1mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton x-10) supplemented with 0.5% Nonidet P
247 40 Substitute (NP-40; Fluka Analytical) and cOmplete mini EDTA-free protease and PhosSTOP
248 phosphatase inhibitor cocktails (Roche) for 10 minutes at 4°C and spun at 1350g for 5 minutes
249 at 4°C to isolate nuclei. Supernatant was discarded and cells were resuspended in lysis buffer 2
250 (10mM Tris-HCl pH 8, 200mM NaCl, 10mM sodium butyrate, 1mM EDTA, 0.5mM EGTA) to lyse
251 nuclei. Cells were rotated for 10 minutes at room temperature and were spun again at 1,350g for
252 5 minutes at 4°C. The supernatant was discarded and chromatin pellet was resuspended in lysis
253 buffer 3 (10mM Tris-HCl pH 8, 100mM NaCl, 10mM sodium butyrate, 1mM EDTA, 0.5mM EGTA
0.1% EDTA, 0.5% N-lauroylsarcosine). Lysates were sonicated using a tip sonicator with 3, 5

254 second bursts, at 70% power with chilling on ice between bursts. After sonication, lysates were
255 brought to concentration of 1% Triton X-10 to disrupt lamina protein interactions. Debris was
256 pelleted by centrifugation at 16000 x g, at 4°C and supernatant was incubated with streptactin
257 magnetic beads (40ul; MagStrep type 3 XT beads, iba #2-4090-002) for 2 hours rotating at 4°C.
258 Beads were washed three times with 1 ml wash buffer (IP buffer supplemented with 0.05% NP-
259 40) and then once with 1 ml IP buffer. Strep-tagged Orf8 complexes were eluted from beads in
260 Buffer BXT (IBA Lifesciences; Cat. # 2-1042-025) shaking at 1100 rpm for 30 min.

261 *Reverse Immunoprecipitation:* Chromatin pellet lysate was yielded as described above for
262 Lamin complex protein immunoprecipitation. Lysates were combined with antibody conjugated
263 protein A Dynabeads (15 ug antibody conjugated to 100ul Dynabeads) and rotated overnight at
264 4°C. The following day, beads were washed three times with 1 ml wash buffer (IP buffer
265 supplemented with 0.05% NP-40) and then once with 1 ml IP buffer. Chromatin protein
266 complexes were eluted from beads in elution buffer (50mM Tris-HCl pH8.0, 10mM EDTA, 1%
267 SDS) for 30 minutes shaking at 65°C.

268

269 Immunocytochemistry

270 *Fluorescent Immunocytochemistry of HEK cells and A549-ACE2 cells:* Cells were fixed in
271 4% paraformaldehyde for 10 minutes, washed with PBS. Fixed cells were permeabilized using
272 0.5% Triton-X in PBS for 20 minutes. The cells were blocked in blocking solution (PBS, 3% BSA,
273 2% serum, 0.1% Triton-X) for at least 1 hour and stained with designated primary antibody
274 overnight at 4°C. The following day cells coverslips were washed with PBS incubated with
275 secondary antibodies for 1 hour at room temperature. For detection of strep-tagged Orf8,
276 streptactin DY-488 (IBA Lifesciences; Cat. # 2-1562-050; 1:500) was added to secondary
277 antibody solution. Nuclei were stained with DAPI (1:1000 in PBS) for 10 minutes and washed in
278 PBS. Coverslips were mounted onto microscope slides using ProLong Gold antifade reagent
279 (ThermoFisher).

280 *Immunohistological staining of patient lung tissue:* Formalin-fixed paraffin-embedded
281 slides were obtained from Penn's Pathology Clinical Service Center. Slides were deparaffinized
282 and rehydrated as follows: 10 min. Xylene x2, 10 min. 100% Ethanol x2, 5 min. 95% Ethanol, 5
283 min. 70% Ethanol, 5 min. 50% Ethanol, then running distilled water. Then, slides were processed
284 using heat-induced epitope retrieval (HIER). Slides were incubated in hot sodium citrate buffer
285 (10mM Sodium Citrate, 0.05% Tween-20, pH 6.0), placed in a pressure cooker, and heated in a
286 water bath for 25 minutes with high pressure settings. Slides were cooled at room temperature
287 and washed in TBS x2. Membranes were permeabilized TBS 0.4% Triton-X 100 for 20 min. Slides
288 incubated in blocking solution (TBS; 10% goat serum; 1% BSA; 0.025% Triton-X 100) for 2 hours.
289 Slides were incubated in mouse primary antibody solution of anti SARS-CoV-2 nucleocapsid and
290 rabbit anti-H3K9me3 antibody solution overnight at 4°C. The following day, slides were washed
291 with TBS and incubated in secondary antibody solution. Nuclei were stained with DAPI (5ug/ml)
292 in TBS for 10 min and washed with TBS. Coverslips were mounted with ProLong Gold antifade
293 reagent (ThermoFisher).

294

295 Microscopy

296 Cells were imaged on an upright Leica DM 6000, TCS SP8 laser scanning confocal
297 microscope with 405 nm, 488, 552, and 638 nm lasers. The microscope uses 2 HyD detectors
298 and 3 PMT detectors. Objectives used were a 63x HC PL APO CS2 oil objective with a NA of
299 1.40. Type F immersion liquid (Leica) was used for oil objectives. Images were 175.91 x 171.91
300 microns, 1024 by 1024 pixels, and 16-bits per pixel. For PTM quantification, HEK cells and
301 human lung tissue were imaged at a single z-plane and A549 cells were imaged with a z-stack
302 through the nucleus.

303
304
305

Image analysis

306
307
308
309
310
311
312
313
314
315

Images were analyzed using Image J software. Single z-plane images of HEK cells and human lung tissue, and summed z-stacks through A549 nuclei were used for PTM quantification. ROI of in-focus nuclei were semi-automatically defined using the DAPI channel and the analyze particles functionality with manual corrections. HEK histone PTMs were quantified in transfected and non-transfected neighboring cells using mean gray values. Strep-tagged Orf8 constructs (Streptactin-488) and GFP signal were used to define transfected cell and HEK histone PTMs levels of transfected cells were relativized to histone PTM levels in non-transfected neighbors. Histone PTMs were quantified in A549 and human lung tissue using integrated density values. dsRNA and SARS-CoV-2 nucleocapsid signal were used to define infected A549s and human lung cells, respectively.

316
317

Protein alignment

318
319
320
321
322
323

To identify potential histone mimicry SARS-CoV-2 protein sequences were aligned to human histone protein sequences (H2A, H2B, H3.1, H3.2, H4, H2A.X, H2A.Z, macroH2A, and H3.3) using Multiple Sequence Comparison by Log-Expectation (MUSCLE) with default settings. SARS-CoV2 protein sequences were obtained from protein sequences published from the first Wuhan isolate.⁷

324
325

Fluorescence activated cell sorting

326
327
328
329
330
331
332

Frozen cell pellets were gently resuspended in 1 mL FACS buffer (Ca²⁺/Mg²⁺-free PBS, 2% BSA), pelleted at 500 x g at 4°C for 5 minutes, and supernatant was removed. The cells were then gently resuspended in 1 mL FACS buffer with a 1:500 dilution of anti-streptactin antibody and rotated at 4°C for 1 hour, protected from light. Cells were then washed twice in 1 mL FACS buffer, resuspended in 1 mL FACS buffer, and filtered through a 35 uM mesh into FACS tubes. An Aria cells sorter was used to sort positive cells.

333
334

Histone extraction

335
336
337
338
339
340
341
342
343

Transfected cells were isolated by FACS as described above. Sorted cells were pelleted, resuspended in 1 mL cold H₂SO₄, and rotated overnight at 4°C. Following the overnight incubation, cells were pelleted at max speed and the supernatant was transferred to a fresh tube. TCA was added to 25% by volume and the cells were left on ice at 4°C overnight. Cells were again pelleted at max speed and the supernatant was discarded. Pre-chilled acetone was then used to gently wash the pellet twice. Following the second wash, the tubes were left to air dry before being resuspending in water. Samples were then broken up by alternating 10 minutes of sonication and 30 minutes shaking at 50°C until pellets were fully dissolved.

344
345

Mass spectrometry

346
347
348
349
350
351
352

Histone PTM analysis by quantitative mass spectrometry:

Purification of histones was validated by SDS-PAGE followed by Coomassie staining demonstrating sufficient enrichment. A BCA (Thermo Fisher) was performed for protein estimation using the manufacturer's instructions and 20μg of histone were used for chemical derivatization and digestion as described before⁸. Briefly, unmodified lysines were derivatized twice with a 1:3 ratio of acetonitrile and propionic anhydride. Histones were then digested with trypsin in a 1:20

353 enzyme:protein ratio at 37°C overnight. Digested histones with newly formed N-termini were
354 derivatized twice as done before. Finally, histones were desalted as described above.

355 Dried histone peptides were reconstituted in 0.1% formic acid. A synthetic library of 93
356 heavy labeled and derivatized peptides containing commonly measured histone PTMs [5] was
357 spiked into the endogenous samples to a final concentration of approximately 100ng/μl of
358 endogenous peptides and 10fm/μl of each heavy labeled synthetic analyte. For each analysis,
359 1μl of sample was injected on column for data-independent analysis (DIA) analyzed on a Q-
360 Exactive HF (Thermo Scientific) attached to an UltiMate 3000 nano UPLC system and Nanospray
361 Flex Ion Source (Thermo Scientific). Using the same column and buffer conditions as described
362 above, peptides were separated on a 63-minute gradient at 400nL/min starting at 4% buffer B
363 and increasing to 32% buffer B over 58 minutes, and then increasing to 98% buffer B over 5
364 minutes. The column was then washed at 98% buffer B over 5 minutes and equilibrated to 3%
365 buffer B. Data independent acquisition was performed with the following settings. A full MS1 scan
366 from 300 to 950 m/z was acquired with a resolution of 60,000, ACG target of 3e6, and maximum
367 injection time of 55ms. Then a series of 25 MS2 scans were acquired across the same mass
368 range with sequential isolation windows of 24 m/z with a collision energy of 28, a resolution of
369 30,000, AGC target of 1e6, and maximum injection time of 55ms. Data analysis and manual
370 inspection using the synthetic library as a reference was performed with Skyline (MacCoss Lab).
371 Ratios were generated using R Studio and statistics carried out in excel.

372
373 *Trypsin & chymotrypsin digestion of Orf8 for identification of Orf8 modifications:*

374 The gel band containing Orf8 was destained with 50 mM Ammonium bicarbonate with
375 50% acetonitrile (ACN). The band was then reduced in 10 mM dithiothreitol in 50 mM ammonium
376 bicarbonate for 30 min at 55°C. Next, the band was alkylated with 100 mM iodoacetamide in
377 50 mM ammonium bicarbonate at RT for 30 min in the dark. The protein was then digested by
378 incubation with chymotrypsin or trypsin in approximately 1:20 enzyme:protein ratio at 37°C
379 overnight. Following digestion, the supernatant was collected. To extract additional peptides from
380 the gel, 150 μL of 50% ACN and 1% trifluoroacetic acid (TFA) was added and incubated with
381 constant shaking for 30min. The supernatant was collected and 100 μL of ACN was added and
382 incubated with constant shaking for 10min. The final supernatant was collected. All three
383 supernatants were combined and dried. The dried samples were reconstituted by 0.1% TFA and
384 desalted with the C18 micro spin column (Harvard Apparatus). The column was prepared with
385 200 μL of 100% ACN and equilibrated with 200 μL of loading buffer 0.1% TFA. Peptides were
386 loaded onto the column, washed with a loading buffer, and eluted with 200 μL of 70% acetonitrile
387 in 0.1% formic acid (FA). All steps for loading, washing, and elution were carried out with benchtop
388 centrifugation (300 x g for 2 min). The eluted peptides were dried in a centrifugal vacuum
389 concentrator.

390
391 *Orf8 vs control IP for identification of binding partners:*

392 Orf8 immunoprecipitation elutants were reduced and alkylated as described above.
393 Proteins were then digested and desalted with mini S-Trap (Protifi LLC) using the manufacturer's
394 instructions. Briefly, 25 μL of elutant was combined with 25 μL of 10% sodium dodecyl sulfate
395 (SDS) to a final SDS concentration of 5% SDS after alkylation. Samples were then acidified with
396 phosphoric acid and precipitated by adding 90% methanol (MeOH) in 100 mM triethylammonium
397 bicarbonate (TEAB) in a 6:1 (volume:volume) ratio. Protein was then added to the trap with
398 benchtop centrifugation (4,000 x g for 1 min), washed, and digested with trypsin in a 1:10
399 enzyme:protein ratio at 37°C overnight. Following digestion, peptides were eluted from the trap
400 with 40 μL of 100 mM TEAB, 40 μL of 0.2% FA, and 40 μL of 50% ACN in 0.2% FA. Combined
401 elutant volumes were then dried.

402
403 *Chymotrypsin LC-MS/MS and LC-PRM/MS analysis:*

404 Dried peptides were reconstituted with 0.1% FA, and 2 μ g of each sample was injected.
405 Chymotrypsin digested Orf8 samples were analyzed on a Q-Exactive (Thermo Scientific) coupled
406 to an Easy nLC 1000 UHPLC system and Nanospray Flex Ion Source (Thermo Scientific). The
407 LC was equipped with a 75 μ m x 20 cm column packed in house using ReproSil-Pur C18 AQ (2.4
408 μ m; Dr. Maisch GmbH, Germany). Using aqueous solution of 0.1% FA as buffer A and organic
409 solution of 80% ACN 0.1% FA as buffer B, peptides were separated on a 85 minute gradient at
410 400nL/min starting at 3% buffer B and increasing to 32% buffer B over 79 minutes, then increasing
411 to 50% buffer B over 5 minutes, and finally increasing to 90% buffer B over 1 minute. The column
412 was then washed at 90% buffer B over 5 minutes and equilibrated to 3% buffer B. Data dependent
413 acquisition was performed with dynamic exclusion of 40 seconds. A full MS1 scan from 350 to
414 1200 m/z was acquired with a resolution of 70,000, ACG target of 1e6, and maximum injection
415 time of 50ms. Then, a series of MS2 scans were acquired for the top 15 precursors with a charge
416 state of 2-7, a collision energy of 28, and an isolation window of 2.0 m/z. Each MS2 scan was
417 acquired with a resolution of 17,500, AGC target of 2e5, and maximum injection time of 50ms. A
418 database search was performed using the human SwisProt sequence and Orf8 sequence with
419 Proteome Discoverer 2.4 (Thermo Scientific) with the following search criteria:
420 carboxyamidomethylation at cysteine residues as a fixed modification; oxidation at methionine,
421 acetylation at lysine, mono-, di-, and tri-methylation at lysine residues as variable modifications;
422 two maximum allowed missed cleavage; 10 ppm precursor MS tolerance; a 0.2 Da MS/MS. An
423 unscheduled parallel reaction monitoring method⁹ was developed to identify 45 possible modified
424 and unmodified peptide targets of Orf8. Peptides were separated with the same LC gradient
425 conditions. A full MS1 scan from 300 to 900 m/z was acquired with a resolution of 70,000, ACG
426 target of 1e6, and maximum injection time of 50ms. Then, a series of MS2 scans were acquired
427 with a loop count of 23 precursors, a collision energy of 28, and an isolation window of 1.2 m/z.
428 Each MS2 scan was acquired with a resolution of 17,500, AGC target of 1e6, and maximum
429 injection time of 100ms. Data analysis and manual inspection was performed with Skyline¹⁰
430 (MacCoss Lab) and IPSA¹¹.
431

432 *Trypsin Orf8 LC-MS/MS and LC-PRM/MS analysis and IP LC-MS/MS analysis:*

433 Dried peptides were reconstituted with 0.1% FA, and 2 μ g of each sample was injected.
434 Data dependent acquisition runs were analyzed on a Q-Exactive HF or HF-X (Thermo Scientific)
435 attached to an UltiMate 3000 nano UPLC system and Nanospray Flex Ion Source (Thermo
436 Scientific). Using the same column and buffer conditions as described above, peptides were
437 separated on a 112 minute gradient at 400nL/min starting at 5% buffer B, increasing to 35% buffer
438 B over 104 minutes, and then increasing to 60% buffer B over 8 minutes. The column was then
439 washed at 95% buffer B for 5 minutes and equilibrated to 5% buffer B. Data dependent acquisition
440 was performed with dynamic exclusion of 45 seconds. A full MS1 scan from 380 to 1200 m/z was
441 acquired with a resolution of 120,000, ACG target of 3e6, and maximum injection time of 32ms.
442 Then, a series of MS2 scans were acquired for the top 20 precursors with a charge state of 2-5,
443 a collision energy of 28, and an isolation window of 1.2 m/z. Each MS2 scan was acquired with a
444 resolution of 30,000, AGC target of 1e6, and maximum injection time of 32ms (HF) or 55ms (HF-
445 X). A database search was performed using the human SwisProt sequence and Orf8 sequence
446 with Proteome Discoverer 2.3 (Thermo Scientific) with the following search criteria:
447 carboxyamidomethylation at cysteine residues as a fixed modification; oxidation at methionine,
448 acetylation, mono-, di-, and tri-methylation at lysine residues as variable modifications; two
449 maximum allowed missed cleavage; 10 ppm precursor MS1 tolerance; a 0.2 Da MS2 tolerance.
450 An unscheduled parallel reaction monitoring method⁹ was developed to identify 16 possible
451 modified and unmodified peptide targets of Orf8. Peptides were separated with the same LC
452 gradient conditions. A full MS1 scan from 350 to 950 m/z was acquired with a resolution of
453 120,000, ACG target of 3e6, and maximum injection time of 100ms. Then, a series of MS2 scans
454 were acquired with a loop count of 16 precursors, a collision energy of 28, and an isolation window

455 of 1.2 m/z. Each MS2 scan was acquired with a resolution of 30,000, AGC target of 1e6, and
456 maximum injection time of 100ms. Data analysis and manual inspection was performed with
457 Skyline¹⁰ (MacCoss Lab) and IPSA¹¹.

458
459
460

Antibodies

Target	Species	Source	Cat #	Dilution	Assay used
H3K9me3	Rb	Active Motif	39161	500	HEK/A549 ICC, IHC
H3K9ac	Ms	Active Motif	61251	500	HEK ICC
H3K27me3	Rb	Active Motif	39155	500	HEK/A549 ICC
H3K27ac	Ms	Active Motif	39134	500	HEK ICC
Lamin-B1	Rb	Abcam	Ab16048	500	HEK ICC, IP, WB
Lamin A/C	Ms	Santa Cruz	sc-376248	200	HEK ICC
H3K9ac	Rb	Active Motif	39917	500	A549 ICC
Orf8_ab1	Rb	Bioworld	NCP0036	250	A549 ICC
Orf8_ab2	Rb	Bioworld	NCP0010	250	A549 ICC
dsRNA	Ms	Jena Bioscience	RNT-SCI-10010200	200	A549 ICC
HP1alpha	Rb	Abcam	Ab109028	5000	IP, WB
H3	Rb	Abcam	Ab1791	10,000	IP, WB
SP2	Rb	ThermoFisher	PA5-35984	1000	WB
Streptactin DY-488	NA	IBA Lifesciences	2-1562-050	500	HEK, A549 ICC, FACS
Streptactin HRP	NA	IBA Lifesciences	2-1502-001	5000	WB
SARS-CoV-2 nucleocapsid	Rb	ThermoFisher	MA1-7403	15	IHC
Anti-mouse AF488	Gt	ThermoFisher	A-11001	500	ICC, IHC
Anti-rabbit AF647	Gt	ThermoFisher	A-21244	500	ICC, IHC
Anti-mouse AF647	Dk	ThermoFisher	A-21235	500	HEK ICC
Anti-rabbit AF568	Gt	ThermoFisher	A10042	500	HEK/A549 ICC

461

462 ICC = immunocytochemistry, WB = Western blot, IHC = immunohistochemistry

463

Data analysis and availability

464

465 Box and whisker plots show center line median, box limits for upper and lower quartiles,
466 whiskers for 1.5x interquartile range, and points are outliers. ANOVA testing and plots were
467 generated with R. Bonferroni corrections were applied for multiple comparisons. Fiji was used for
468 image analysis. Imaging and analysis were performed with experimenter blinded to experimental
469 condition where ever possible. For some instances, such as for patient tissue imaging, analysis
470 required targeted selection, imaging, and analysis of infected cells compared to uninfected cells.
471 This required the experimenter was aware of cell infection status while imaging. However, in these
472 cases, the measurement of interest (such as a histone modification stain) was not viewed prior to
473

474 choosing fields to avoid biasing selection. All genome-wide sequencing data is available under
475 accession numbers: GSE163664, GSE163670, GSE163676, and GSE163774.

476
477 **References**

479 1. Li, Y. *et al.* SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses
480 in respiratory epithelial derived cells and cardiomyocytes. *BioRxiv*.

481 2. Jacob, A. *et al.* Derivation of self-renewing lung alveolar epithelial type II cells from human
482 pluripotent stem cells. *Nat. Protoc.* **14**, 3303–3332 (2019).

483 3. Porter, E. G., Connelly, K. E. & Dykhuizen, E. C. Sequential Salt Extractions for the Analysis
484 of Bulk Chromatin Binding Properties of Chromatin Modifying Complexes. *J. Vis. Exp. JoVE*
485 (2017) doi:10.3791/55369.

486 4. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**,
487 357–359 (2012).

488 5. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* **9**, R137 (2008).

489 6. Rory Stark<Rory.Stark@Cruk.Cam.Ac.Uk>, G. B. C. *DiffBind*. (Bioconductor, 2017).
490 doi:10.18129/B9. BIOC. DIFFBIND.

491 7. Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China. *Nature*
492 **579**, 265–269 (2020).

493 8. Sidoli, S., Bhanu, N. V., Karch, K. R., Wang, X. & Garcia, B. A. Complete Workflow for
494 Analysis of Histone Post-translational Modifications Using Bottom-up Mass Spectrometry:
495 From Histone Extraction to Data Analysis. *J. Vis. Exp. JoVE* (2016) doi:10.3791/54112.

496 9. Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction
497 monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. *Mol.*
498 *Cell. Proteomics MCP* **11**, 1475–1488 (2012).

499 10. MacLean, B. *et al.* Skyline: an open source document editor for creating and analyzing
500 targeted proteomics experiments. *Bioinforma. Oxf. Engl.* **26**, 966–968 (2010).

501 11. Brademan, D. R., Riley, N. M., Kwiecien, N. W. & Coon, J. J. Interactive Peptide
502 Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications. *Mol. Cell.*
503 *Proteomics MCP* **18**, S193–S201 (2019).

504
505