
Supplementary Methods

Supplementary Methods 1 Data collection and processing

The National Health and Nutrition Examination Survey (NHANES) from the National Center for Health

Statistics (NCHS)1 conducts interviews and physical examinations to assess the health and nutrition data

for all ages in the United States. The interviews include demographic, socioeconomic, dietary, and health-

related questions. The examinations include medical, dental, physiological measurements, and laboratory

tests administered by highly trained medical personnel. Since 1999, data were collected and released at 2-

year intervals. Each year NHANES examines a nationally representative sample of roughly 5,000 individuals

across the Unites States. In this study, we include NHANES data sampled between 1999 and 2014. All-cause

mortality is ascertained by a linked NHANES mortality file that provides follow-up mortality data from the

date of survey participation through December 31, 2015.

Our study includes samples with known mortality status who participated in NHANES 1999-2014 (n =

47, 261). We include all demographic, laboratory, examination, and questionnaire features that could be

automatically matched across di↵erent NHANES cycles. We exclude variables that are missing for more

than 50% of the participants and highly correlated features with correlations greater than 0.98; after filtering

and one-hot encoding, 151 features remain (Supplementary appendix 2). We impute missing data using

MissForest [5], a nonparametric random forest-based multiple imputation method for mixed-type data, with

seven iterations. We predict all-cause mortality for two broad categories: (1) follow-up times of 1-year,

3-year, and 5-year and (2) age groups of <40, 40-65, 65-80, and �80 years old. For di↵erent follow-up times,

we remove samples with unconfirmed mortality status. For di↵erent age groups, we predict 5-year mortality.

The demographic characteristics and sample size of the data for di↵erent tasks are shown in Supplementary

Table 1.

We use UK Biobank samples as an external validation dataset. Participants were enrolled in the UK

Biobank from April, 2007, to July, 2010, from 21 assessment centres across England, Wales, and Scotland

using standardised procedures. When participants agreed to take part in UK Biobank, they visited their

closest assessment centre to provide baseline information, physical measures, and biological samples. We

include the 51 features that are overlapping between NHANES and UK Biobank dataset (Supplementary

appendix 2). We exclude samples with missing values. All-cause mortality included all deaths occurring

before May, 2021. We include 384,762 samples aged 37-72 years with confirmed 5-year mortality status. Of

these samples, 6,336 died after 5 years. The histograms of age, gender and body mass index of UK Biobank

samples are shown in Supplementary Figure 2.

Supplementary Methods 2 Predictive modeling

To model mortality, we use gradient boosted trees (GBTs). GBTs are nonparametric methods composed

of iteratively trained decision trees. The final ensemble of trees captures non-linearity and interactions

between predictors. The dataset is randomly divided into training (80%) and testing (20%) sets. We use the

implementation XGBoost [1]2 with a learning rate set to 0.002 , subsample ratio set to 0.5 and 10,000 trees of

max depth 3. For comparison, we also train logistic regression models and deep neural networks. For logistic

1
http://www.cdc.gov/nchs/nhanes.htm

2
https://xgboost.readthedocs.io/en/latest/python/index.html
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regression, we use L2 regularization. The L2 regularization weight was set to 100. For neural networks,

we use a single layer with 1,000 nodes, and max iteration set to 1,000. The hyperparameters specified

above are chosen by GridSearch and 5-fold cross validation. Other hyperparameter values are left at their

default values. Models’ performance is measured with the area under the receiver operator characteristic

curve (AUROC). We bootstrap the test set to assess the statistical significance of the di↵erence in AUC for

pairs of models. Specifically, we resample with replacement from the test set 1,000 times and compare the

models’ performance on resampled test sets. We report a p-value which is the percentage of time that logistic

regression or the neural network’s performance is better than or equal to gradient boosted trees, divided by

the number of resampled test sets. All models are built using the Scikit-learn package in Python 3.7.

Supplementary Methods 3 Model interpretation

To explain the GBT models, we utilize TreeExplainer [4], which provides a local explanation of the impact

of input features on individual predictions. Specifically, TreeExplainer calculates exact SHAP [3] (SHapley

Additive exPlanations) values for tree-based models. When explaining the mortality prediction models, we

randomly select 10,000 background samples from the training set and 5,000 foreground samples from the

test set.

Supplementary Methods 3.1 SHAP (SHapley Additive exPlanation) values

SHAP (SHapley Additive exPlanation) values attribute to each feature the change in the expected model

prediction when conditioning on that feature. The change of the model’s prediction when the feature is

masked is recorded across all possible subsets of features, yielding an average change in prediction resulting

from the inclusion of a feature in the model:
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where �i is the feature attribution (SHAP value) of feature i in model f for data point x, R is the set of

all feature permutations, PR
i is the set of all features before i in the ordering R, M is the number of input

features, and fx is an estimate of the conditional expectation of the model’s prediction: fx(S) ⇡ E[f(x) | xS]
where xS is the set of observed features.

SHAP values which guarantee a set of desirable theoretical properties, including additivity and consis-

tency. Additivity states that when approximating the original model f for a specific input x, the SHAP

values sum up to the output f(x):

f(x) = �0(f) +
MX

i=1

�i(f, x), (2)

The sum of feature attributions (SHAP values) matches the original model output f(x), where �0(f) =

E[f(z)] = fx(;). Consistency states that if a model changes so that some feature’s contribution increases or

stays the same regardless of the other inputs, that input’s attribution should not decrease. Therefore, SHAP

values are consistent and accurate calculations of each feature’s contribution to the model’s prediction.
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Supplementary Methods 3.2 SHAP interaction values and main e↵ects

The SHAP interaction e↵ects is based on the Shapley interaction index from game theory. While standard

feature attribution results in a vector of values, one for each feature, attributions based on the Shapley

interaction index result in a matrix of feature attributions. The main e↵ects are on the diagonal and the

interaction e↵ects on the o↵-diagonal. The SHAP interaction values are defined as:
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when i 6= j, and

rij(f, x, S) = fx(S [ {i, j})� fx(S [ {i})� fx(S [ {j}) + fx(S). (4)

where M is the set of all M input features. In Equation 3 the SHAP interaction value between feature i

and feature j is split equally between each feature so �i,f (f, x) = �j,i(f, x) and the total interaction e↵ect

is �i,f (f, x) + �j,i(f, x).

The main e↵ects for a prediction can then be defined as the di↵erence between the SHAP values and

the o↵-diagonal SHAP interaction values for a feature:

�i,i(f, x) = �i(f, x)�
X

j 6=i

�i,j(f, x). (5)

Supplementary Methods 3.3 Partial dependence plots and additional perspec-

tive to reference interval

We use partial dependence plots to show the change in mortality risk for all values of a laboratory feature.

Partial dependence plots show the marginal e↵ect one feature has on the predicted outcome of a machine

learning model. The relative mortality risk is defined as the average value of the model predicted probability

when we fix a specific feature to a given value divided by the average value of the model predicted probability.

The relative risk percentage is the maximum relative risk for the values within the reference interval divided

by the maximum relative risk for all values of a laboratory feature. High relative risk percentage indicates

that the values within the reference interval have a relatively high mortality risk. The partial dependence

plots of selected laboratory feature values on 1-, 3-, and 10-year mortality risk are shown in Supplementary

Figure 7.

Supplementary Methods 4 Model interpretation plots

In this section we describe a number of plotting types for model explanation visualization.

SHAP value, SHAP main e↵ect value and SHAP interaction value plots In SHAP value/SHAP

main e↵ect value/SHAP interaction value plots, every point corresponds to a single sample where the x-axis

is the value of the feature and the y-axis is the SHAP value/SHAP main e↵ect value/SHAP interaction

value. The coloring of the points often denotes the value of a separate feature.

Summary plot Summary plots show the feature attributions (SHAP values) for many samples and multi-

ple features in order of global feature importance (the mean absolute SHAP values). Summary plots stack
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multiple subplots for each feature. For the feature plots, every point corresponds to a single sample where

the x-axis is the feature attribution value and the y-axis is vertical dispersion representing the frequency of

samples with a particular feature attribution value. Finally, the color of each point represents the normalized

feature value, with red representing a high value and blue representing a low one. Intermediary feature values

are interpolations between red and blue.

Individualized explanation plot Individualized explanation plots show the feature attributions (SHAP

values) for an individual in terms of how they drive the model’s prediction for the individual away from the

average model prediction across the baseline distribution. The width of the bars indicate the SHAP value

with red indicating a positive a↵ect and blue indicating a negative one. The features corresponding to the

largest bars are below with their actual values for the individual.

Supplementary Methods 5 Supervised distance

Supplementary Methods 5.1 Supervised distance and hierarchical clustering

Supervised distance can accurately measure feature redundancy based on a specific prediction task. As

Supplementary Figure 4 shows, to calculate the supervised distance between feature i and feature j, we

first train a uni-variate GBT model to predict the label (e.g. 5-year mortality in our study) using feature

i. Then, we can obtain the Predictioni which is the output of the fitted uni-variate GBT. Next, we fit

another uni-variate GBT to predict Predictioni using feature j. We define the output of the new GBT as

Predictionj
i . All hyperparameter values of the uni-variate GBTs are set to their default values. Following

the same above steps, we can obtain Predictioni
j . The supervised distance between feature i and feature j

(supervised distance(i,j)) is defined as:

supervisedR2(i, j) = max(0, 1�mean(
(Predictioni � Predictionj

i )
2

var(Predictioni)
)) (6)

supervised distance(i, j) = max(1� supervisedR2(i, j), 1� supervisedR2(j, i)) (7)

where var(x) is the variance of the vector x, mean(x) is the average of the vector x. Supervised distance is

scaled roughly between 0 and 1, where 0 distance means the features perfectly redundant and 1 means they

are completely independent.

To explore the redundant feature groups, we hierarchically cluster all features according to the supervised

distance. Specifically, we use complete linkage hierarchical clustering which merges in each step the two

clusters whose merger has the smallest diameter. The hierarchical clustering tree is shown in Supplementary

Figure 5.

Supplementary Methods 5.2 Redundant feature groups experiments training

details

Reducing redundancy model To identify the most representative feature in a redundant feature group,

we train GBTs using one feature in the redundancy group and all features outside the group for 5-year

mortality prediction. Then we compare the feature importance ranking of the redundant features by calcu-

lating the mean absolute SHAP values using TreeExplainer. The hyperparameters of the GBTs are chosen
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by GridSearch and 5-fold cross validation. The max depth is selected from {1, 3, 5, 7, 9} and the subsample

ratio is selected from {0.2, 0.5, 0.8, 1.0}. Other hyperparameter values are left at their default values.

Single feature model We further analyze the predictive power of the redundant features by fitting 5-

year mortality prediction GBTs using one feature in the redundant feature group. Specifically, we use one

feature in the redundant feature group and two important confounders, age and gender, to train a GBTs

for 5-year mortality prediction. All hyperparameter values are set to their default values. We compare the

AUCs of the models. We bootstrap the test set for 1,000 times and compare the models’ performance on

resampled test sets. The averages of the AUCs are reported.

Supplementary Methods 5.3 Supervised distance-based feature selection

,—We propose a supervised distance-based feature selection method to select predictive and less-redundant

feature sets. The workflow of our feature selection method is shown in Supplementary Figure 4. The dataset

is randomly divided into training (80%) and testing (20%) sets. Firstly, we fit a GBT for 5-year mortality

prediction on all features using the training set and rank the features by mean absolute SHAP values from

TreeExplainer. The hyperparameters of the GBTs are chosen by GridSearch and 5-fold cross validation.

The max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected from {0.2, 0.5, 0.8, 1.0}. The
max number of trees is set to 1000. We use 20% of the training samples as validation set for early stopping.

The number of early stopping rounds is set to 100. Since age and gender are important confounders, we

would like to keep them in the selected feature set. Therefore, we cluster features except age and gender

into a specific number of groups using supervised distances-based hierarchical clustering and select the most

important feature in each cluster. Then, we add age and gender to the selected feature set and re-fit the

model. Next, we rerun the clustering using the new feature set except age and gender. This process is

repeated until all remaining features cluster to a single group. In every iteration, we remove 5 features. The

models are evaluated on the testing set with bootstrapping for 1,000 times. We report the average of the

AUCs and the minimum supervised distance within the selected feature sets. The selected features in each

iteration are listed in Supplementary Appendix 1.

Supplementary Methods 6 5-year mortality risk scores

Supplementary Methods 6.1 Mortality risk scores training details

IMPACT mortality risk scores are defined to be the prediction of the 5-year mortality prediction models.

For comparison, we train linear3 and gradient boosted tree-based Cox proportional hazard models4. We do

a temporal validation of the risk scores by assessing their performances in the samples collected in 2009-

2014 (N = 7, 034). Specifically, the samples collected in 1999-2008 (N = 28, 820) are randomly divided

into training (80%) and testing (20%) sets. To compare with Intermountain gender-specific risk scores, we

evaluate the models on di↵erent gender groups. The models are trained on the whole training set and evaluate

on di↵erent gender groups in the testing set. Furthermore, considering the di↵erent feature collection cost

for the general public and medical professionals, we build the risk scores starting from di↵erent feature sets.

For the general public, the models are trained on all demographics, questionnaire features and examination

3
https://scikit-survival.readthedocs.io/en/latest/api/generated/sksurv.linear model.CoxPHSurvivalAnalysis.html

4
https://scikit-survival.readthedocs.io/en/latest/api/generated/sksurv.ensemble.GradientBoostingSurvivalAnalysis.html
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features that are accessible at home for general public, For medical professionals, the models are trained on

all demographics and laboratory features. All trained models are evaluated on di↵erent gender groups of the

samples collected in 2009-2014 for temporal validation.

The hyperparameters are chosen by GridSearch and 5-fold cross validation. For XGBoost 5-year mortality

prediction models, the max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected from

{0.2, 0.5, 0.8, 1.0}. The max number of trees is set to 1000. We use 20% of the training samples as validation

set for early stopping. The number of early stopping rounds is set to 100. For linear Cox proportional

hazard models, the regularization parameter ↵ is selected from {0.01, 0.1, 1, 10, 100}. For tree-based Cox

proportional hazard models, the max depth is selected from {1, 3, 5, 7, 9} and the subsample ratio is selected

from {0.2, 0.5, 0.8, 1.0}. Other hyperparameter values are left at their default values.

We explain the mortality prediction model in terms of its probability predictions. Specifically, we rescale

the SHAP values (in the log-odds space) to be in the probability space directly. The rescaled SHAP values

now sum to the probability output of the model.

To compare with the popular mortality risk scores and biological ages, we repeat the same process for

1-year and 10-year mortality prediction. For 1-year mortality prediction, we do a temporal validation in the

samples collected in 2013-2014 (N = 6, 082). For 10-year mortality prediction, we do a temporal validation

in the samples collected in 2005-2014 (N = 4, 945).

Supplementary Methods 6.2 Recursive feature elimination

Recursive feature elimination works by searching for a subset of features by starting with all features in the

training dataset and successively removing features until the desired number of features remains. Firstly,

we train a model on the full dataset with all features. Then we rank features by importance (mean absolute

SHAP values) and remove the least important features. Another model is trained on the resulting feature

set, and the process iterates until only the desired number of features are left. Starting from 151 features,

we remove 6 features at the first iteration. Then, We remove 5 features in each iteration until only one

feature is left. We bootstrap the test set and assess the predictive performance. Specifically, we resample

with replacement from the test set 1,000 times and report the average and the 95% confidence interval of

the AUCs. The selected features in each iteration are listed in Supplementary appendix 2.

Supplementary Methods 6.3 Intermountain mortality risk scores and exhaus-

tive feature selection

Intermountain mortality risk scores [2] are built using complete blood count and basic metabolic profile.

Specifically, 13 laboratory features are used to predict 30 days, 1-year and 5-year mortality. Logistic regres-

sion was used to model the risk prediction equations with adjustment for age and sex. Dummy variables

modeled each category, with the referent defined as the lowest risk group (except for age categories: 18-29,

30-39, 40-49 [referent], 50-59, 60-69, 70-79, and �80 years). A scalar score value was derived for each variable

category by multiplying its �-coe�cient by 3 and rounding to the nearest integer (referent value = zero).

Each individual’s risk score became the sum of the score values based on his or her individual data.

We implement exhaustive search to select features of Intermountain risk scores. The number of features

ranges from 1 to 14 (including age). Given the number of features, we search all possible feature combinations.

The risk score becomes the sum of the score values of the selected features. The 5-year mortality risk scores

are evaluated on the training set. We select the feature combination that achieve the highest AUC on the
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training set. Then, the risk scores of the selected feature combinations are evaluated on the testing set with

bootstrapping for 1,000 times.
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