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Supplementary methods

Surface area measurement. The surface areas of the samples were measured by the
Brunauer-Emmett-Teller (BET) method using a BELSORP-MAX (BEL. JAPAN. INC)
at —196 °C. The horizontal axis was normalized with the vapor pressure of nitrogen (Po)
at —196 °C (=0.101 MPa). The samples were heated at 120 °C under vacuum for 24 h
before the measurements.

Evaluation of energy diagram by density functional theory. For the hydrogen

evolution reaction (HER), the hydrogen adsorption energy (AEn+) was calculated as:
1 1
AEy, = n (Etot — Esup) — EEHz’ (1)

where E;,; was the total energy of the substrate with #» hydrogen atoms adsorbed on the
surface, Esub was the total energy of the substrate, and Eyy, was the energy of a hydrogen
molecule in the gas phase (about -6.7eV was employed in this work). The Gibbs free

energy for the hydrogen absorption was corrected as:
AGun = AEu* + AEzpe — TASH, (2)

where AEzpe was the difference in zero point energy between the adsorbed hydrogen and
hydrogen in the gas phase and ASu was the entropy difference between the adsorbed state
and the gas phase. As the contribution from the vibrational entropy of H* in the adsorbed
state was negligibly small, the entropy of hydrogen adsorption was ASu* = -4y, where
Sy, was the entropy of Hz in the gas phase. Then the Gibbs free energy with the overall
corrections can be calculated as AGux =AEu+ + 0.24 eV. We computed AGu* for 1796
sites.

For the oxygen evolution reaction (OER), we considered the four elementary steps:

H2Oq) + * — OH* + H'/e” (3)
OH* — O* + H'/e- &)
O* + H20g) — OOH* + H'/e" (5)

OOH* — Oa(g) + * + H'/e 6)



where * represented a surface site and OH*, O*, and OOH* were intermediates adsorbed
on an active site on the catalyst surface. The free energy of each intermediate was
calculated at 0 V vs standard hydrogen electrode (SHE) by referencing liquid water and

hydrogen gas at standard conditions:

1 ~

AGow. = EQET — EP" — ERTT + 2 ERI™ + Gog ™

AGo, = EQiT — EPFT —ERTS + ERFT + Go (8)
3 PN

AGoon. = ESSY, — EPFT —2ERF 4 2ERF 4 Goyy (9)

where EPFT, EDET EDFT and EDSL, were the ground state energy of the surface and the
surface with OH*, O*, and OOH* intermediates, respectively. Ep.g and ER' ' were the
energies of H2O and H: molecules, respectively, in the gas phase. G included
contributions from vibration energy and entropy of the intermediate at 300 K. We
employed typical values of 0.35 eV, 0.05 eV, and 0.40 eV for OH*, O*, and OOH*,

respectively.'? The standard free energy change of each elementary step can be calculated:

AGY = AGoy. (10)
AG3 = AGp. — AGop (11)
AGS = AGoon. — AGo. (12)
AGy = AGSZ(g) — AGoons- (13)
AGSZ(g) =492eV (14)

The theoretical overpotential is given by:

n = max{AG?, AGS, AGS, AG?} — 1.23 (15)

For HER, we added one H atom on top of the surface atoms defined as |z| > 4.3 A,
where the center of mass of the slab was set to z=0 and the x and y are surface parallel
directions. To evaluate the energy diagram of OER, we firstly added OOH on top of the
surface atoms defined as |z| > 5.4 A. The OOH species were decomposed into O and OH



on most of the surface sites, because AGg, and AGgoy, were generally large for non-noble
metals. When the OOH* intermediate survived, we computed AG, by removing the O
and H atoms from OOH?*, and then computed AGgy,. by adding H on O* to complete the
energy diagram. We tried 2677 sites for the OOH* adsorption and completed energy
diagram for 270 sites, where the OOH* intermediate survived. OER energy diagram was
further investigated by oxidized surfaces. We added O atoms on all the surface atoms of
one surface model and then computed the energy diagram of OER. AGq. was

significantly reduced because the site was already oxidized, enhancing the OER activity.



Supplementary discussions

Machine learning force field. Development of machine learning force fields (MLFF)
has been a rapidly growing research field® in recent years. MLFF is a classical force field
consisting of highly flexible functions, which are designed to fit any complex data and
are not based on physical pictures. The parameters of MLFF are obtained by fitting a large
amount of first-principles results. Because of the flexibility of MLFF, it can describe, for
example, structures before and after a phase transition*, which is highly difficult for
conventional classical force fields that are designed to describe specific chemical bonds.
Although MLFF has begun to be applied to various materials, construction of MLFF for
materials containing a large number of atoms (more than four) is highly challenging.

In this work, we employed the Gaussian approximation potential (GAP)®> model,
which is one of the kernel regression type MLFF. First, we constructed GAP potential
using 300 snapshots of structure, energy and atomic forces from 30 ps density functional
theory molecular dynamics (DFT-MD) trajectory at 3000 K. We included two-body,
three-body and smooth overlap of atomic potentials (SOAP)° kernels and their cutoff radii
were set to 5 A. When we compared GAP and DFT, the root mean square errors (RMSEs)
of the energies and forces are 5 meV/atom and 0.4 eV/A, respectively. This force RMSE
is a bit larger than the typical criterion, 0.1 eV/A, reflecting the difficulty of generating
MLFF for alloys containing as many as nine elements. Nevertheless, the radial
distribution function obtained from the MLFF-MD simulations well reproduced that of
DFT-MD (Figure S24), which motivated us to employ the GAP potential to accelerate
the high temperature MD to efficiently sampling the configurations of 9eHEA.

After collecting snapshots from 5 ps trajectories before optimizing the bulk
9eHEA structures, we again constructed the GAP potential using 600 snapshots. This
potential shows a smaller force RMSE of 0.3 eV/A. In future work, we will extend the
GAP potential to describe not only bulk but 9eHEA surfaces without using DFT
calculations.

Electronic structure of bulk 9eHEA. Figure S25 shows a bulk 9¢eHEA structure and its
projected density of states (PDOS). 9eHEA is a spin-unpolarized metal and Fe, Mn, Co,

Cr contributed to the density of states at the Fermi level as twice as other atoms.



Supplementary Figures
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Supplementary Figure 1. SEM images of (a) 4eHEA, (b) 5eHEA and (c) 9eHEA
powders after 6 days ball milling.
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Supplementary Figure 2. Nitrogen adsorption and desorption measurements. The
isotherm of (a) 4eHEA, 5eHEA and 9eHEA and (b) 9¢eHEA/CB with their BET surface
area. The large BET surface of 4eHEA could be attributed to the easy-to-crush

characteristics.
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Supplementary Figure 3. Intensity profiles of DF-STEM image in Figure 1d. A Red line

showed the position of intensity profile.



Intensity (count) Intensity (count)

Intensity (count)

i —Ti2p 1 —Cr2p ] ——Mn 2p
£ £
4 =3 >
o o
8 ] g |
2 2
] 2z E
=y 1 =4 7
8 g
£ £ ]
450 455 460 465 470 565 570 575 580 585 590 595 630 635 640 645 650 655 660
Binding energy (eV) Binding energy (eV) Binding energy (eV)
Fe2p ——Co2p 1 —Nizp
1 z z
=3 >
[s] 1 o
8 8 ]
1 2 - B
2z 2z
C [ T
] g | g
£ £ ]
700 710 720 730 740 770 780 790 800 810 840 850 860 870 880
Binding energy (eV) Binding energy (eV) Binding energy (eV)
i ——zrad ] ——Nb3d Mo 3d
£ £
4 =3 3 4
o | o
8 g
2 2
] z | 2
c =4
2 L
£ £
172 174 176 178 180 182 184 186 188 190 196 198 200 202 204 206 208 210 212 214 220 224 228 232 236 240
Binding energy (eV) Binding energy (eV) Binding energy (eV)

Supplementary Figure 4. XPS spectra of 9¢eHEA.
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Supplementary Figure 5. XPS spectra of 4eHEA.
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Supplementary Figure 6. XPS spectra of SeHEA.
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Supplementary Figure 7. Overall EC-XPS at OCP (0.14 V), 1st stage (0.92 V), 2nd stage
(1.65 V), OER (1.90 V), after OER (0.07 V) and HER (—0.30 V) at survey mode.
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Supplementary Figure 8. A typical SEM image of 9¢eHEA powders mixed with carbon
black before tests.
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Supplementary Figure 9. Typical corrosion curves with anodic and catholic scans with

0.1 mV/s scan rate in 0.5 M H2SOs electrolyte.
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Supplementary Figure 10. Binding energy shift toward the applied potentials. MoO3 at
1.90 V (vs. RHE) was not reduced to MoOz2 at 0.07 V (vs. RHE) after the OER (1.90 V

(vs. RHE)).
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Supplementary Figure 11. Typical angle resolved XPS spectra at 45° and 75° for Ni.

Quantitative estimation of Fe, Ni, Co in our analysis included the shake-up satellite peak

(but excluded their Auger peaks) due to the empty of d band.’
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Supplementary Figure 12. Details of the PEM-type water electrolyzer. (a) Schematic

Anode

end plate end plate

cm

illustration of PEM-type water electrolysis cell setup. (b) Optical image of the cell. (c)
schematic illustration of the cell structures. (d) Optical image of the MEA. The assembly
of the single-cell PEM water electrolyzer consisted of stainless steel (SUS316) endplates
housing two titanium blocks (4.0x4.0x2.0 cm®) that served as current collectors. Straight
flow type fields with 4.0 cm? area were engraved into the current collectors. The channels
of the flow fields had width and depth of 1.0 mm, while the width of the lands was 1.0
mm. The temperature was maintained during the experiments using two heating rods
mounted onto the endplates. Two thermocouples were situated at the center of the two
current collectors to measure the cell temperature. Nylon patches (thickness: 2.0 mm)
were sandwiched between the endplates and the current collectors to provide electronic
insulation as well as equal distribution of compressive forces on the sealing and catalyst
layers. The membrane-electrode assembly (MEA) was placed between the current
collectors with a carbon mesoporous gas diffusion layer (GDL) on the cathode and a Pt/Ti
mesh porous transport layer (PTL) on the anode. Two gaskets (thickness: 0.16 mm) placed
on the anode-side PTL and one gasket placed on the cathode-side GDL were used for both
sealing and insulation. These components were kept under compression with the help of
nut/bolt assembly with M8 screws onto the endplates (4 bolts, 4 Nm torque). The flow-

field plates acted as current collectors that connected the power supply cables to the cell.
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Supplementary Figure 13. Cross-sectional SEM image of MEA of 9eHEA/CB and
Nafion 115 before tests.
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Supplementary Figure 14. Initial optimization of (a) catalyst ball milling time and (b)
catalyst lording amount (60 rpm, 6 days ball milling) for IV curves (including iR). 1 day,
6 days and 14 days indicated the ball milling time.
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current density was normalized by electrode surface area (4.0 cm?).
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Supplementary Figure 16. Electrical impedance spectra of (a,b) 9eHEA anode, (c)
9eHEA cathode and (d) Pt/C-IrOz. The Ormic resistance was 84 mQ for 9¢eHEA-IrO2 and
77 mQ for Pt/C-9eHEA and charge transfer resistance was 52.9 mQ for 9eHEA-IrO2 and
100.6 mQ for Pt/C-9eHEA at 2.0 V.
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Supplementary Figure 17. Cross-sectional SEM images of MEA after the CA test for
(a,b) anode and (c,d) cathode. Some catalyst layers were sticked on the GDL/PTL and

then removed.
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Supplementary Figure 18. XRD spectra of 9eHEA with carbon black (CB) anode before
and after the CP test.
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Supplementary Figure 19. Elemental mapping of 9eHEA/CB after the CP test by using
STEM-EDX. Cls was assigned to residue Nafion as binders by XPS.



——CPsS_Ti2p
| ——Ti2p34+ 1
——Ti 2p1 4+ 1 ~———CPS_Mn2p
- Background ]
£ | —Total T A €
= 3 3
o 4 o o
K £ < A
2 A 2 2
B i) B
f=4 & [ =4
2 L A o
c c c
= = ~———CPS_Cr2p =
& 4 ——Cr2p3M 1
——Cr2p3 3+ 4
1 ——— Background
7 —— Total o
450 455 460 465 470 570 575 580 585 590 595 635 640 645 650 655  66(
Binding energy (eV) Binding energy (eV) Binding energy (eV)
1 ——CPS_Fe2p ——CPS_Co2p ——CPS_Ni2p
——Fe 2p3M G ——Co2p3M ——Ni2p3M
——Ni LMM ] — FelMM d ——FKLL
— ] ——Fe 2p1 M — Background —_ ——— Background
t ] Background € 1 —— Total € Total
3 ——Total 3 3
e 4 oA KA
z z z
‘@ ‘@ ‘@
f= (=3 [ =4
o o o
= = =
700 710 720 730 740 770 780 790 800 810 850 860 870 880
Binding energy (eV) Binding energy (eV) Binding energy (eV)
——CPs_zr3D ——CPS_Nb 3D ——CPS_Mo 3D
——2Zr 3D5 4+ ]——Nb3Ds M J ——Mo 3D5 6+
|——2zr3p34+ ——Nb3D3 M ——Mo 3D3 6+
_|—2r 3D5 unknown . |=—Nb3D5 5+ = A ——— Mo 3D5 4+
€ 4= 2Zr 3D3 unknown € |=——Nb3D3 5+ z Mo 3D3 4+
3 |—2zr3psm 3 |——Nb3D52+ 3 1 ——Mo3D5 M
& |—2zr3p3m £ {——Nb3D32+ k=3 ——Mo 3D3 M
2 |——Background 2 |——Background 2 —— Background
2  |—Total 2 q——Total 2 | ——— Total
2 2 2
£ £ | £
174 176 178 180 182 184 186 188 190 200 205 210 215 224 226 228 230 232 234 236 238 240
Binding energy (eV) Binding energy (eV) Binding energy (eV)

Supplementary Figure 20. XPS after the 100 hours CP test for cathode. The Nafion as

binders could not completely removed and influenced the spectra.
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Supplementary Figure 21. XPS after 100 hours CP test for anode. The Nafion as binders

could not completely removed and influenced the spectra.
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Supplementary Figure 22. SEM-EDX of MEA for Pt/C (cathode) - 9eHEA (anode) with

the composition changes.
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Supplementary Figure 23. Cycling stability of 4eHEA and SeHEA cathode and anode.

The current density was normalized by electrode surface area (4.0 cm?).
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Supplementary Figure 24. Comparison of radial distribution function (RDF) calculate

by MLFF-MD and DFT-MD simulations.
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Supplementary Figure 25. (a) Total spin-resolved and (b) projected density of states of
a bulk 9eHEA structure.
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AGL=-0.0045eV AGp=-0.0066 eV AGL=0.0078 eV

Supplementary Figure 26. Top 3 hydrogen adsorption sites for HER on 9eHEA. Red

and white balls represent O and H atoms, respectively.

Supplementary Figure 27. Top 3 OOH adsorption sites for OER on 9eHEA. Red and
white balls represent O and H atoms, respectively. The AGo+ values in the Fig. 4(c) were

—1.00 eV (N1), —1.98 eV (Co), and —2.01 eV (Ni), respectively.
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Supplementary Figure 28. Gibbs free energy profiles on the Ni with and without

oxidation under an applied potential of 1.23 V in Figure 4b-c as magnified figures.

32



Supplementary Figure 29. SEM images of (a) 5eHEA, (b) 6eHEA, (c) 7eHEA and (d)
8eHEA.
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Supplementary Figure 30. Nitrogen adsorption and desorption. Adsorption isotherm of
5eHEA, 6eHEA, 7eHEA, 8¢cHEA and 9eHEA with their BET surface area.
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Supplementary Figure 31. XRD spectra of SeHEA, 6eHEA, 7eHEA and 8eHEA.
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Supplementary Figure 32. IV-curve of PEM-type water electrolysis withSeHEA,

6eHEA, 7eHEA, 8eHEA and 9eHEA cathode and anode. The enhancement of 8eHEA

could be attributed to 10 times higher BET surface area than other HEAs. The current

density is normalised by the electrode surface area (4.0 cm?).
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Supplementary Table 1. Summary of elemental analysis by X-ray Fluorescence.

Element 9eHEA (at.%) | SeHEA (at.%) | 4eHEA (at.%)
Mo 11.9 N/A 22.7
Nb 11.4 N/A 24.3
Zr 10.9 N/A 28.5
Co 12.3 20.8 N/A
Ni 11.8 20.0 N/A
Fe 11.6 19.8 N/A
Mn 8.3% 21.9 N/A
Cr 11.0 17.4 N/A
Ti 10.8 N/A 24.5

* Mn was evaluated during arc melting.
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Supplementary Table 2. Summary of corrosion properties in 0.5 M H2SO4 at 25°C.

Sample Anodic/cathodic Ecoor (mV vs. SHE) | Anodic/cathodic Ieoo(pA/cm?) | Reference
9e-HEA 107/455 1.26/1.55 This work
S5e-HEA —144/489 1.82/1.51 This work
4e-HEA 5.07/519 1.75/0.71 This work
Bulk (poly)Pt 810/1480 0.063/0.013 8
Pt NPs/carbon 500/1550 100/25 9
PtNi-NPs 400/1520 14/6.3 10
PtCo-NPs 470/1560 25/16 10
CrFe; sMnNios —229/N.A 686/N.A 11
Alp3CrFe;sMnNio s —194/N.A 2390/N.A 11
AlysCrFe; sMnNig s —206/N.A 5080/N.A 11
304 stainless steel —186/N.A or —185/N.A 74.5/N.A or 45.3/N.A 11 or 12
Bulk Ni -92.3/N.A 27.46/N.A 13
Bulk Cu 225/N.A 22.5/N.A 14
Bulk Fe —280/N.A 200/N.A 15
Ni7 P2 216/N.A 3.1/N.A 13
NizgWoPi3 200/N.A 6.8/N.A 13
NizMoi4P7 194/N.A 8.3/N.A 13
CoCrFeNi —-81/N.A 15.8/N.A 12
Alg2sCoCrFeNi —95/N.A 16.7/N.A 12
Alps0CoCrFeNi —84/N.A 13.4/N.A 12
AlCoCrFeNi —94/N.A 13.1/N.A 12
Co; sCrFeNi; 5Tio s —92/N.A 30/N.A 16
Co1.5CrFeNi; sTigsMog 1 —71/N.A 78/N.A 16
Coy.5CrFeNi sTipsMog.s —64/N.A 72/N.A 16
Co1.5CrFeNi; sTipsMoog —70/N.A 69/N.A 16

38




Supplementary Table 3. Summary of XPS for each element on 9¢eHEA. “Pristine” and

“Metallic” means the state after the mirror-finished and Ar ion etching (cleaning of carbon

contamination) and after further removal of oxides on the surface, respectively.

Normalized Intensity Binding Energy (eV)

Ti Metal TiO2 TiOx | Metal | TiO2 TiOx

Pristine 0.101 0.674 | 0.133 | 4545 | 459.0 | 457.0

Metallic 0.644 0.000 454.5

OCP 0.297 0.226 4544 | 458.8

092V 0.051 0.429 4544 | 458.6

1.65V 0.000 0.376 458.3

1.90 V 0.000 0.410 457.9

0.07V 0.000 0.479 459.2

Normalized Intensity Binding Energy (eV)
Cr Metal | Cr(OH)3 | CrOs3 | Cr203 | Metal | Cr(OH)s | CrOs3 | Cr203
Pristine 0.940 0.000 0.000 | 0.993 | 5743 576.7
Metallic | 1.324 0.000 0.000 574.1
OCP 0.566 0.669 0.000 574.2 577.3
092V 0.000 0.429 0.000 577.2
1.65V 0.000 0.211 0.143 576.8 579.0
1.90 V 0.000 0.000 0.302 578.8
0.07V 0.000 0.528 0.000 577.7
Normalized Intensity Binding Energy (eV)

Mn Metal | Mn203 | MnO2 | Metal | Mn203 | MnO:2

Pristine 0.000 0.000 0.424 642.7

Metallic | 0.397 0.000 638.9

OCP 0.255 0.000 639.1

092V 0.000 0.108 641.6

1.65V 0.000 0.231 641.7

1.90 V 0.000 0.288 641.6

0.07V 0.000 0.138 641.5
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Supplementary Table 3. Summary of XPS for each element on 9¢eHEA. (continued)

Normalized Intensity Binding Energy (eV)
Fe Metal Fe203 and/or Fe304 Metal Fe203 and/or Fe3O4
Pristine 0.603 707.0
Metallic 1.493 0.000 707.0
OCP 0.493 0.000 707.0
092V 0.036 0.528 706.6 710.9
1.65V 0.000 0.360 711.4
1.90 V 0.000 0.427 710.6
007V 0.000 0.214 710.3
Normalized Intensity Binding Energy (eV)
Co Metal | Co(OH)2 CoO Metal | Co(OH)2| CoO
Pristine 0.620 778.4
Metallic 1.731 0.000 0.000 778.4
OCP 0.610 0.000 0.000 778.3
092V 0.071 0.473 0.000 778.4 781.7
1.65V 0.000 0.000 0.289 780.8
1.90 V 0.000 0.000 0.374 780.6
007V 0.000 0.165 0.000 781.7
Normalized Intensity Binding Energy (eV)
Ni Metal | Ni(OH)2 NiO Metal | Ni(OH)2 NiO
Pristine 1.216 853.1
Metallic 1.610 0.000 0.000 853.1
OoCP 0.774 0.000 0.000 853.0
092V 0.052 0.704 0.000 853.3 856.9
1.65V 0.000 0.000 0.213 855.6
1.90 V 0.000 0.000 0.336 855.6
0.07V 0.000 0.127 0.000 856.6
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Supplementary Table 3. Summary of XPS for each element on 9¢eHEA. (continued)

Normalized Intensity Binding Energy (eV)
Zr Metal ZrO2-A | ZrO2-B Metal ZrO2-A | ZrO2-B
Pristine 0.163 1.050 182.6
Metallic 0.833 0.000 0.000 179.2
OoCP 0.391 0.368 0.102 179.2 182.5 183.8
092V 0.094 0.574 0.160 178.9 182.3 183.9
1.65V 0.026 0.601 0.176 178.9 182.0 183.1
1.90 V 0.000 0.728 0.000 181.8
0.07V 0.010 0.543 0.219 179.0 182.7 184.1
Normalized Intensity Binding Energy (eV)
Nb Metal Nb20s NbO Metal Nb20s NbO
Pristine 0.284 0.456 0.259 203.1 207.5 204.3
Metallic 1.000 0.000 203.1
OCP 0.534 0.466 203.1 207.5
092V 0.105 0.895 203.2 207.4
1.65V 0.018 0.982 203.1 206.9
1.90 V 0.000 1.000 206.6
0.07V 0.010 0.990 203.1 207.9
Normalized Intensity Binding Energy (eV)
Mo Metal MoO2 MoOs3 Metal MoO2 MoOs3
Pristine 0.853 227.9
Metallic 1.196 0.000 0.000 227.7
OoCP 0.561 0.436 0.000 227.8 228.9
092V 0.000 0.579 0.185 228.4 232.8
1.65V 0.000 0.012 0.380 228.9 232.3
1.90 V 0.000 0.000 0.351 232.0
0.07V 0.000 0.000 0.297 232.6
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Supplementary Table S4. Summary of molar percent (mol%) with and without O from
Ols spectra estimated by EC-XPS during the OER process at OCP, 0.92 V, 1.65 V, 1.90
V and 0.07 V after the OER. “Metallic” means the state after further removal of oxides

on the surface.

Zr Nb | Mo Ti Cr Mn Fe Co | Ni | O fromOls
81 | 98 | 11.7 | 6.5 | 129 | 39 |14.6 169 |15.7 N/A

Metallic
8.1 97 | 11.6 | 6.5 |129| 3.9 | 145|168 |15.6 0.4
OCP 127 1 148 | 147 | 8.0 | 182 | 3.8 73 190 | 114 N/A
96 | 11.1 | 11.1 | 6.0 | 13.7| 2.8 55 | 6.8 | 8.6 24.7
13.8 1167 | 127 | 83 | 157 | 1.8 94 | 9.1 |12.6 N/A
092V
94 | 114 | 8.7 57 1107 1.2 64 | 6.2 | 86 31.5
199 | 248 | 9.7 9.7 | 8.8 5.7 89 | 7.2 | 53 N/A
1.65V

104 | 13.0 | 5.1 | 5.1 | 46 | 3.0 | 47 | 3.8 | 2.8 47.6
1.90 V 172 1236 | 83 | 100 | 7.1 | 6.8 | 10.1 | 8.8 | 7.9 N/A

45° 10.1 | 139 | 49 | 59 | 42 | 40 | 59 | 52 | 47 41.3
1.90 V 201 1291 | 6.1 | 7.2 | 53 | 34 | 6.6 | 124 | 9.7 N/A
75° 114 165 | 34 | 41 | 3.0 | 1.9 | 38 | 7.0 | 5.5 43.4

207 1268 | 80 (133 |14.1 | 3.7 | 5.7 | 44 | 3.4 N/A
142 | 184 | 55 | 9.1 | 9.7 | 25 | 39 | 3.0 | 23 31.2

0.07V
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Supplementary Table 5. Summary of PEM performance on the reported anodes and

cathodes. The cycling durability was checked at 5.0 A/cm?.

Catalyst Test conditions Overpotential Cycling Reference
at 1.0 A/cm? durability
9¢HEA Cell: 80°C 2.14 V (anode) | No degradation | This work
Water: 10 ml/min | 1.88 V (cathode) [5.4% reduction
S5eHEA Cell: 80°C 2.4V (anode) 9.8% reduction | This work
Water: 10 ml/min | 2.1 V (cathode) [ 7.8% reduction
4eHEA Cell: 80°C 2.1 V (anode) |No degradation | This work
Water: 10 ml/min| 1.9 V (cathode) [10.3% reduction
[rO2/N-CN Cell: 80°C 1.65V N/A 17
(anode catalyst) Water: 30 ml/min | (iR-contained)
Ti02-IrO; Cell: 80°C 1.64V N/A 18
(anode catalyst) Water: 5 ml/min (iR-contained)
Pt@IrO, Cell: 80°C 1.55V N/A 19
(anode catalyst) Water: 15 ml/min | (iR-contained)
RuO,@IrOx core-shell Cell: 80°C 1.68 V N/A 20
nanocomposite (anode catalyst) | Water: 40 ml/min | (iR-contained) (CA test only)
Magnetized IrO,-FesO4 Cell: 80°C 240V N/A 21
(anode catalyst) Water: 100 ml/min| (iR-contained)
IrO,/ATO Cell: 80°C 1.63V N/A 22
(anode catalyst) Water: 3 ml/min (iR-contained)
[rOx/W-TiO» Cell: 80°C 1.56 V N/A 23
(anode catalyst) Water: N/A (CA test only)
Co((Pntr(CH2)3S).Gm)3(BCsHs)2 Cell: 80°C 203V N/A 24
(cathode catalyst) Water: N/A (iR-contained)
C0304 Cell: 80°C 225V N/A 25
(cathode catalyst) Water: 0.5 mL/min| (iR-contained) (CA test only)
Pd/B;—CNPs Cell: 80°C 2.04V N/A 26
(cathode catalyst) Water: 60 mL/min| (iR-contained) (CA test only)
RuS;@MoS, Cell: 80°C 1.68 V N/A 27
(cathode catalyst) Water: 40 mL/min| (iR-contained)
NizgP2» Cell: 90°C 1.96 V N/A 28
(cathode catalyst) Water: 15 mL/min| (iR-contained)
Fe(Cl,Gm)3(BCsHs)2 Cell: 80°C 210V N/A 29
(cathode catalyst) Water: N/A (iR-contained)
Graphene-encapsulated NiMo Cell: 80°C 2.00V No degradation 30

(cathode catalyst)

Water: 10 ml/min

(iR-contained)
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Supplementary Table 6. DFT-calculated Gibbs free energy of H* on the HER processes.

|AGH+| < 0.1 eV |AGH*| < 0.3 eV
Element Number of sites | Average Number of sites Average
Fe 8 0.0190 29 0.175
Mo 2 0.00698 17 0.188
Mn 3 0.00246 29 0.158
Co 3 0.0248 31 0.203
Cr 7 0.0633 42 0.186
Zr 0 N.A 14 0.163
Ti 0 N.A 25 0.158
Nb 2 0.00549 14 0.195
Ni 1 0.0260 23 0.162

Supplementary Table 7. DFT-calculated Gibbs free energy of maxAG({|AGoun+|, |AGo#|,
|AGoon=*|}—1.23) on the OER processes.

|maxAG — 1.23]<2.0 eV |AGo+| <2.5eV
Element Number of sites | Average | Number of sites | Average
Fe 7 1.73 4 2.44
Mo 5 1.84 0 N.A
Mn 10 1.72 0 N.A
Co 2 1.89 2 2.23
Cr 10 1.84 0 N.A
Zr 1 1.19 0 N.A
Ti 0 N.A 0 N.A
Nb 1 1.72 0 N.A
Ni 2 1.81 2 1.50
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Supplementary Table8. Summary of elemental analysis by X-ray Fluorescence for

5eHEA, 6eHEA, 7eHEA and 8¢HEA.

Element 5eHEA 6eHEA 7eHEA 8eHEA

(at.%) (at.%) (at.%) (at.%)
Mo N/A 26.8 20.0 18.2
Nb N/A N/A 18.6 16.2
Zr N/A N/A N/A 14.7
Co 20.8 15.7 12.9 11.2
Ni 20.0 15.2 12.8 10.7
Fe 19.8 14.7 12.3 10.4
Mn 21.9 15.0 12.8 9.6
Cr 17.4 12.7 10.6 9.0

* Mn was evaluated during arc melting.
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