

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) muf-91-15h-58pc

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: muf-91-15h-58pc

Bond precision: = 0.0000 Å Wavelength=0.71075

Cell: a=17.150 (5) b=17.150 (5) c=17.150 (5)
alpha=90 beta=90 gamma=90

Temperature: 100 K

	Calculated	Reported
Volume	5044 (4)	5044 (5)
Space group	P -4 3 m	P -4 3 m
Hall group	P -4 2 3	P -4 2 3
Moiety formula	2(C9 H5.15 N0.50 O1.71 Zn0.53)	C84 H48 N6 O13 Zn4, C24.095 H13.768 O7.458 Zn2.295
Sum formula	C18.01 H10.30 N O3.41 Zn1.05	C108.09 H61.77 N6 O20.46 Zn6.29
Mr	363.99	2183.02
Dx, g cm-3	0.719	0.719
Z	6	1
Mu (mm-1)	0.773	0.772
F000	1105.1	1105.0
F000'	1107.26	
h, k, lmax	17,17,17	16,17,16
Nref	1059 [595]	1050
Tmin, Tmax		0.669, 0.746
Tmin'		

Correction method= # Reported T Limits: Tmin=0.669 Tmax=0.746
AbsCorr = MULTI-SCAN

Data completeness= 1.76/0.99 Theta (max)= 20.812

R(reflections)= 0.1364(761) wR2 (reflections)=
0.3639(1050)
S = 1.517 Npar= 33

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level A

THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550
Calculated sin(theta_max)/wavelength = 0.4999
PLAT601_ALERT_2_A Unit Cell Contains Solvent Accessible VOIDS of . 1642 Ang**3

Alert level B

PLAT049_ALERT_1_B Calculated Density Less Than 1.0 gcm-3 0.7190 Check
PLAT084_ALERT_3_B High wR2 Value (i.e. > 0.25) 0.36 Report
PLAT987_ALERT_1_B The Flack x is >> 0 - Do a BASF/TWIN Refinement Please Check

Alert level C

STRVA01_ALERT_4_C Flack test results are ambiguous.
From the CIF: _refine_ls_abs_structure_Flack 0.360
From the CIF: _refine_ls_abs_structure_Flack_su 0.020
PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check
PLAT053_ALERT_1_C Minimum Crystal Dimension Missing (or Error) ... Please Check
PLAT054_ALERT_1_C Medium Crystal Dimension Missing (or Error) ... Please Check
PLAT055_ALERT_1_C Maximum Crystal Dimension Missing (or Error) ... Please Check
PLAT077_ALERT_4_C Unitcell Contains Non-integer Number of Atoms .. Please Check
PLAT082_ALERT_2_C High R1 Value 0.14 Report
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.38 Report
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 2.5 Note
PLAT260_ALERT_2_C Large Average Ueq of Residue Including Zn1 0.209 Check
PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -1.150 Report
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.500 4 Report
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) . 3 Check
PLAT927_ALERT_1_C Reported and Calculated wR2 Differ by -0.0015 Check
PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S . 19.50 Check

Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the
_chemical_formula_sum and the formula from the _atom_site* data.
Atom count from _chemical_formula_sum: C108.09 H61.77 N6 O20.46 Zn6.29
Atom count from the _atom_site data: C79.96199 H54.88800 N6 O9.509600
ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu
not performed for this radiation type.
CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01_ALERT_1_G ALERT: Large difference may be due to a
symmetry error - see SYMMG tests
From the CIF: _cell_formula_units_Z 1
From the CIF: _chemical_formula_sum C108.09 H61.77 N6 O20.46 Zn6.29
TEST: Compare cell contents of formula and atom_site data

atom	Z*formula	cif	sites	diff		
C	108.09	79.96		28.13		
H	61.77	54.89		6.88		
N	6.00	6.00		0.00		
O	20.46	9.51		10.95		
Zn	6.29	1.05		5.24		
PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite				10	Note
PLAT003_ALERT_2_G	Number of Uiso or Uij Restrained non-H Atoms ...				18	Report
PLAT042_ALERT_1_G	Calc. and Reported Moiety Formula Strings Differ				Please	Check
PLAT045_ALERT_1_G	Calculated and Reported Z Differ by a Factor ...				6.0000	Check
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large				0.20	Report
PLAT171_ALERT_4_G	The CIF-Embedded .res File Contains EADP Records				3	Report
PLAT172_ALERT_4_G	The CIF-Embedded .res File Contains DFIX Records				11	Report
PLAT174_ALERT_4_G	The CIF-Embedded .res File Contains FLAT Records				3	Report
PLAT178_ALERT_4_G	The CIF-Embedded .res File Contains SIMU Records				4	Report
PLAT180_ALERT_4_G	Check Cell Rounding: # of Values Ending with 0 =				3	Note
PLAT186_ALERT_4_G	The CIF-Embedded .res File Contains ISOR Records				1	Report
PLAT300_ALERT_4_G	Atom Site Occupancy of Zn0A			Constrained at	0.1667	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of O2			Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of O1			Constrained at	0.0417	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C12			Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C13			Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of N1			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C10			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C11			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C14			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C15			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C16			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C17			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C18			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C19			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C20			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of C21			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H12			Constrained at	0.5	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H13			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H17			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H18			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H19			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H20			Constrained at	0.25	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H21			Constrained at	0.25	Check
PLAT301_ALERT_3_G	Main Residue Disorder(Resd 1)				100%	Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in(Resd 1)				16.88	Check
PLAT315_ALERT_2_G	Singly Bonded Carbon Detected (H-atoms Missing).				C14	Check
PLAT315_ALERT_2_G	Singly Bonded Carbon Detected (H-atoms Missing).				C34	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact C13			..C15 .	2.75	Ang.
				z,y,x =	24_555	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact N1			..C15 .	2.40	Ang.
				z,y,x =	24_555	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact C14			..C15 .	3.19	Ang.
				1-x,y,1-z =	9_656	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact C14			..C15 .	3.19	Ang.
				z,y,x =	24_555	Check
PLAT432_ALERT_2_G	Short Inter X...Y Contact C14			..C15 .	3.19	Ang.
				1-z,y,1-x =	23_656	Check
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels				1	Note
PLAT789_ALERT_4_G	Atoms with Negative _atom_site_disorder_group #				32	Check

PLAT860_ALERT_3_G Number of Least-Squares Restraints	87 Note
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	4 Note
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF	2 Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File	3 Note
PLAT955_ALERT_1_G Reported (CIF) and Actual (FCF) Lmax Differ by .	1 Units

2 **ALERT level A** = Most likely a serious problem - resolve or explain
 3 **ALERT level B** = A potentially serious problem, consider carefully
 15 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
 55 **ALERT level G** = General information/check it is not something unexpected

14 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 17 ALERT type 2 Indicator that the structure model may be wrong or deficient
 10 ALERT type 3 Indicator that the structure quality may be low
 34 ALERT type 4 Improvement, methodology, query or suggestion
 0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

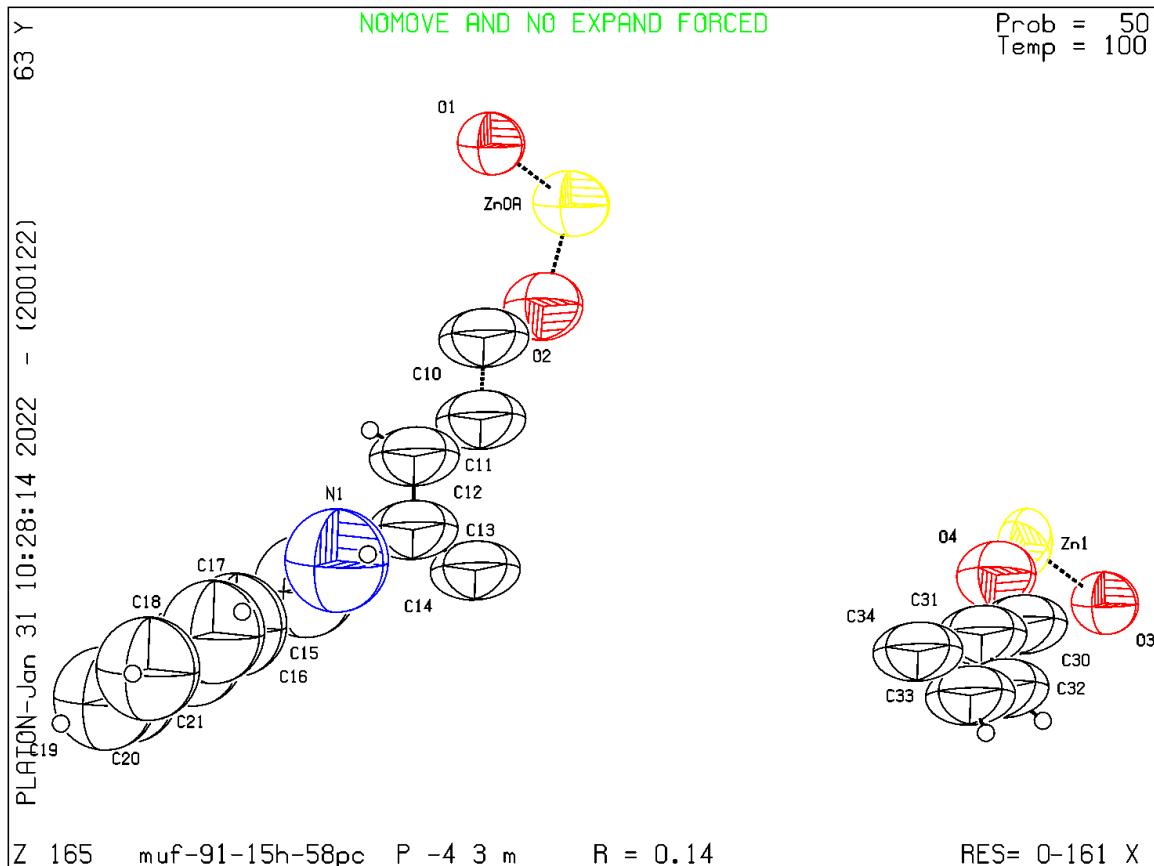
A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.


```

# start Validation Reply Form
_vrf_THETM01_muf-91-15h-58pc
;
PROBLEM: The value of sine(theta_max) /wavelength is less than 0.550
RESPONSE: ...
;
_vrf_PLAT601_muf-91-15h-58pc
;
PROBLEM: Unit Cell Contains Solvent Accessible VOIDS of .           1642 Ang**3
RESPONSE: ...
;
# end Validation Reply Form

```

PLATON version of 20/01/2022; check.def file version of 19/01/2022

Datablock muf-91-15h-58pc - ellipsoid plot

