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Figure S1. PXRD patterns of as-synthesized ZIF-9 (red) and the one by Yaghi’s group1 (black).





Figure S2. PXRD pattern for Co@C.


Figure S3. PXRD pattern for Co3O4@C.
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Figure S4. Raman spectrum for Co3O4@C.
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Figure S5. Low mag HAADF STEM and HRTEM images for as-prepared Co3O4@C together with the power spectrum analysis.
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Figure S6. STEM-EELS elemental mapping for the as-prepared Co3O4@C.



Figure S7. TGA curves of Co3O4@C with the heating rate of 10 °C min-1 in air. The step 1 shows the loss of water whose amount is 1.9 wt% while step 2 indicates the loss of carbon, nitrogen or other unstable species and further oxidation of Co3O4 to Co2O3 at the same time. 
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Figure S8. STEM-EELS elemental mapping for Co3O4@C/GPO.
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Figure S9. Chemical XPS characterization. (a) Overview spectrum of Co3O4@C catalyst with all the relevant core-levels attributed to the electrode composition (Co, O, N and C). No additional elements are identified, supporting the absence of cross-contamination of the catalyst. Indium (In) presence is justified since the samples were deposited onto and In tape for XPS measurement. (b) Co 2p XPS peak of the Co3O4@C (upper) and Co3O4@C/GPO (bottom) samples. No compositional changes are observed due to composite preparation.  (c) N 1s XPS spectra of Co3O4@C (upper) and Co3O4@C/GPO (bottom) samples. Nitrogen detection in the system is below our resolution limit when the electrode composite is prepared.
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Figure S10. (a) CV curves of 20-Co3O4@C/GPO and 20-Co3O4/GPO, respectively. (b) LSV curves of 40-Co3O4@C/GPO and 40-Co3O4/GPO in 1 M H2SO4 electrolyte and (c) stability in chronopotentiometry measurements at 10 mA cm-2 of 40-Co3O4/GPO.
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Figure S11. Electrochemical double-layer capacitance (EDLC) measurements: OCP (vs Ag/AgCl) values recording within 30 mins of (a) 20-Co3O4@C/GPO, (e) 20-IrO2/GPO, (i) 20-Co3O4/GPO and (m) GPO; CV curves under 10 mV s-1 scan rate of (b) 20-Co3O4@C/GPO, (f) 20-IrO2/GPO, (j) 20-Co3O4/GPO and (n) GPO; CV curves under different scan rates of (c) 20-Co3O4@C/GPO, (g) 20-IrO2/GPO, (k) 20-Co3O4/GPO and (o) GPO; The scan rate dependences of the current density differences Δ of  (d) 20-Co3O4@C/GPO, (h) 20-IrO2/GPO, (l) 20-Co3O4/GPO and (p) GPO. Note: the current density for GPO electrode under 100 mV s–1 was very low and hardly detected so higher scan rates (from 500 to 2500 mV mV s–1) were used to obtain clear value for EDLC determination.  
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Figure S12. Time evolution of oxygen production rate in the cell headspace during a chronopotentiometry at 1.4 mA for 2 hours, using 3.3 mL min–1 of Ar stream as sweep gas at 20 ºC and 1 atm. Once the chronopotentiometry starts, the O2 signal rapidly increases, reaching a 3.6 nmol s-1 production of O2 in steady state conditions (reached after 1 hour of operation). This corresponds to a 99% Faradaic efficiency. After the chronopotentiometry, the oxygen signal rapidly decreases, as the chamber is purged with Ar. Integration of all the O2 detected over time, yields a total of 24.9 µmol of O2 that corresponds to ≥ 96% of Faradaic efficiency. 
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Figure S13. PXRD patterns of Co3O4@C (black), Co3O4@C after 2h catalysis, washed with acetone to remove paraffin oil (blue) and commercial graphite (red).
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Figure S14. C1s XPS spectrum of Co3O4@C/GPO (black), Co3O4@C/GPO after 2h of electrolysis at 10 mA·cm-2 (red) and Co3O4@C/GPO after 24h of electrolysis at 5mA·cm-2 (green).
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Figure S15. (a) LSV curves of 40-Co3O4@C/GPO and 70 ug-Co3O4@C/GC in 1 M H2SO4 electrolyte. (b) Chronopotentiometry measurement of 70 ug-Co3O4@C/GC at 10 mA cm-2.
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[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Figure S16. (a) Calibration of the actual value of the potential of the Ag/AgCl (3 M KCl) vs. the reversible hydrogen electrode (RHE) by using a hydrogen electrode reaction with 40 ug-Pt/C (40 wt%)/GC, the Ag/AgCl electrode as the reference electrode, and carbon rod as the counter electrode in a hydrogen-saturated 1 M H2SO4 electrolyte. (b) OCP value recording. (c) CV curve of 40-Pt/C (40 wt%)/GPO with 10 mV s–1 scan rate.
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Figure S17. Adsorption and desorption isotherms of Co3O4@C and Co3O4.
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Descripción generada automáticamente]
Figure S18. Nyquist plots from EIS data for Co3O4@C/GPO, Co3O4/GPO and IrO2/GPO electrodes at different applied potentials (a) 1.53 V vs RHE, (b) 1.58 V vs RHE and (c) 1.63 V vs RHE. The equivalent circuit model employed to fit the data is also showed as an inset in the right panel (c).
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Figure S19. Fitted parameters  from the EIS analysis: (a) Series resistance, Rs, (b) Charge transfer resistance, Rct and (c) Surface capacitance, CS. 
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Figure S20. Setup for oxygen evolution measurement. It includes an H-type cell containing the Co3O4@C/GPO anode, carbon cathode and Ag/AgCl (3 M KCl) reference electrode connected to the potentiostat, the Unisense oxygen sensor connected to the anodic side headspace and the gas flow controlling system employed to feed Ar carrier gas to the cell.


Table S1. The actual ratios of carbon, nitrogen, hydrogen and cobalt determined by elemental analysis.
	
	Carbon (wt%)
	Nitrogen (wt%)
	Hydrogen (wt%)
	Cobalt (wt%)

	Co3O4@C
	8.28
	0.26
	0.47
	62



Table S2. OER activity for working electrodes from LSV curves in 1 M H2SO4 (pH 0.3).
	
	η (mV) 
@ 1 mA cm–2
	η (mV) 
@ 5 mA cm–2
	η (mV) 
@ 10 mA cm–2
	η (mV) 
@ 20 mA cm–2

	40-Co3O4@C/GPO
	190
	313
	356
	393

	40-IrO2/GPO
	291
	344
	368
	396



Table S3. Elemental analysis (ICP-MS) of cobalt before and after 2 h electrocatalytic water oxidation at a constant current density of 10 mA cm-2 in 1 M H2SO4 of 40 mL.
	
	Cobalt amount (μg/L)

	1 M H2SO4 before
	–

	1 M H2SO4 after
	756



Table S4. Performance parameters for different electrocatalysts for OER in strong acidic electrolytes. 
	Catalyst
	Electrolyte
[H2SO4]
	Scan rate
(mV s-1)
	η (mV) @
10 mA cm–2
	Tafel slope (mV dec-1)
	Stability
	loading
(mg cm–2)
	ref.

	Co3O4@C/GPO
	1 M
	1
	356
	
	43 h 
@ 10 mA cm–2 
	20
	this work

	[Co-POM]/CP
	1 M
	1
	361
	97
	24 h 
@ η = 250 mV
	20
	2

	IrO2
	1 M
	1
	458
	66
	24 h 
@ η = 250 mV
	26
	2

	ATO/CoHFe
	0.1 M
	50
	770
	~
	~
	0.61
	3

	IrO2/SrIrO3
	0.5 M
	10
	280
	~
	30 h 
@ 10 mA cm–2
	~
	4

	CoFePbOx
	1 M
	~
	620
	~
	12 h 
@ 2.03 V
	~
	5

	MnO2
	0.1 M
	1
	428
	80
	8000 h 
@ 10 mA cm–2
	36
	6

	Ni0.5Mn0.5Sb1.7Ox
	1 M
	10
	672
	60
	168 h 
@ 10 mA cm–2
	~0.18
	7

	Co0.05Fe0.95Oy
	0.5 M
	10
	650
	110
	50 h 
@ 10 mA cm-2
	1
	8

	MnxSb1-xOz
	1 M
	20
	508
	75
	2 h 
@ 10 mA cm–2
	~
	9

	Co3O4/FTO
	0.5 M
	2
	490
	80
	12 h 
@ 10 mA cm–2
	~
	10

	W0.57Ir0.43O3-δ
	1 M
	20
	370
	125
	2000 s 
@ 10 mA cm–2
	~
	11

	Ti-MnO2
	0.05 M
	5
	~540a
	170
	2 h 
@ 1.9 V
	~
	12

	Ni40Fe40P20
	0.05 M
	5
	540
	-
	30 h 
@ 10 mA cm–2
	~
	13

	c-Fe2O3
	0.5 M
	10
	650
	56
	24 h 
@ 10 mA cm–2
	1
	14

	P-NSC/
Ni4Fe5S8-1000
	0.5 M
	2
	~560
	72
	10000 cycles 
@ 1 mA cm–2
	0.4
	15

	Y1.85Zn0.15Ru2O7-δ
	0.5 M
	10
	291
	37
	2000 cycles 
@ 1.55 V 
	3
	16

	1T-MoS2
	0.5 M
	5
	420
	322
	2 h 
@ 10 mA cm–2
	1
	17


a@ 2 mA cm-2

Table S5. Ohmic drop values determined by the automatic current interrupt (CI) software and actual mass of catalysts in working electrodes. 
	
	40-Co3O4@C/GPO
	30-Co3O4@C/GPO
	20-Co3O4@C/GPO
	40-IrO2/GPO
	30-IrO2/GPO
	20-IrO2/GPO

	Ohmic drop (Ω)
	19
	37
	27
	25
	28
	25

	Total electrode mass (mg)*
	39.9
	39.1
	40.7
	47.7
	45.2
	43.8

	Total mass of  Co3O4@C in the electrode (mg)*
	11
	9
	7
	14
	10
	7


*total mass of the composite: Co3O4@C + graphite + paraffin oil; 1/8 of total mass is used for activity comparison as suggested by Ref.2. 
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