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Abstract
Background: Multiple pathophysiological processes have been described in Alzheimer’s disease (AD).
Their inter-individual variations, complex interrelations, and relevance for clinical manifestation and
disease progression remain poorly understood, however. We tested the hypothesis that cerebrospinal fluid
(CSF) integrative multi-omics analysis highlights novel interacting pathway alterations in AD.

Methods: We performed multi-level CSF omics in a well-characterized cohort of older adults including
subjects with normal cognition, mild cognitive impairment, and mild dementia. Proteomics,
metabolomics, lipidomics, one-carbon metabolism, and neuroinflammation related molecules were
analysed applying Elastic-net regression and Multi-Omics Factor Analysis followed by pathway
enrichment. Multivariate analysis was used to select best predictive models of AD pathology and
cognitive decline.

Results: Multi-omics integration identified five major dimensions of heterogenicity explaining the variance
within the cohort and differentially associated with AD . Further analysis exposed multiple interactions
between single ‘omics modalities and distinct multi-omics molecular signatures differentially related to
amyloid pathology, neuronal injury, and tau hyperphosphorylation. Enrichment pathway analysis revealed
overrepresentation of the hemostasis, immune response and extracellular matrix signalling pathways in
association with AD. Further, combinations of four selected molecules significantly improved prediction
of both AD (protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) and cognitive decline
(protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant protein-1).

Conclusions: Applying an integrative multi-omics approach we confirmed previously reported
associations with AD pathology and report new molecular and pathways alterations. These findings are
relevant for the development of personalized diagnosis and treatment approaches in AD.

Background:
Along with amyloid pathology and tau-related neurodegeneration, multiple other molecular alterations
and pathway dysregulations have been reported in Alzheimer’s disease (AD). However, the contribution
and relevance of these alterations for clinical manifestation and progression of the disease as well as
their inter-individual variations, and complex interrelations, remain poorly understood. While these
processes are generally not considered part of the “core” AD pathology, they may substantially contribute
to the development of amyloid pathology and neurodegeneration, and precipitate the manifestation of
symptoms. As they may be occurring at early clinical and preclinical disease stages, a better
understanding of these processes may be highly relevant for both early diagnosis and prognosis, and the
design of targeted interventions to interfere with developing AD pathology and clinical disease
progression.

‘Omics approaches and technologies have made major progress over the past decade to resolve the
complexity of the metabolome, lipidome and proteome (1). As powerful phenotyping technologies, ‘omics
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significantly accelerate the understanding of mechanisms of pathophysiological alterations that underlie
complex diseases such as AD (2, 3). Beyond the potential of identifying altered biofluid molecule profiles
that could be used as biomarkers, these technological advances also offer the opportunity to explore
different types of molecules in parallel by combining multiple ‘omics methods. Recent statistical
advances have made it possible to integrate the information from multiple data modalities for a thorough
exploration of endophenotype networks, and biological interactions related to disease (4). While multi-
omics approaches have recently shown their potential in relation to different other pathological
conditions (5–7), these methods still need to be more broadly adapted and applied in AD (8).

Here, we hypothesize that unidentified metabolic network alterations are present in AD and investigate
these alterations across multiple biochemical pathways by using a multi-layer dataset acquired by
analysis of cerebrospinal fluid (CSF) from a cohort of elder subjects with normal cognition, mild cognitive
impairment (MCI) and mild AD dementia. In order to integrate data from different ‘omics platforms in an
unbiased fashion while considering interactions between modalities, we combine different approaches
including single ‘omics analysis and Multi-Omics Factor Analysis (MOFA) (9, 10).

Methods:

Study population:
One hundred and twenty community dwelling individuals, aged 55 or older, including subjects with
normal cognition, mild cognitive impairment (MCI) or mild AD dementia (referred to as AD group) were
enrolled into a brain aging study conducted in the Department of Psychiatry and the Department of
Clinical Neurosciences, University Hospital of Lausanne, Switzerland. They were recruited among memory
clinic outpatients or through advertisement. An overall clinical, neurological and comprehensive
neuropsychological assessment was performed between 2013 and 2016, which included the Mini Mental
State Examination (MMSE, (11)), and candidates with unstable medical conditions or with neurological or
psychiatric diseases that could interfere with cognitive performance were excluded as previously
described (12). All subjects in the AD group had clinical diagnoses of either MCI or mild dementia, and a
Clinical Dementia Rating (CDR, (13)) score > 0.5 and displayed memory impairment and/or impairment in
other cognitive domains such as executive tasks or language skills (14). Clinical and neuropsychological
follow-up evaluations were performed at 18 and 36 months using the same methods and tests. MMSE
change (MMSE score at baseline – MMSE at follow-up visit ≥ 2 was used to classify participants with
decreased overall cognition.

Study procedures:

Clinical assessment:
We determined Mini-Mental State Examination (MMSE), CDR, and CDR sum of boxes (CDR-SoB), for all
participants. CDR-SoB and CDR were based on the information available from the participant and his/her
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relative, the clinical examination and comprehensive neuropsychological test performance, as previously
described (12).

Biochemical sample collection and handling:
10–12 ml of cerebrospinal fluid (CSF) obtained from lumbar punctures conducted after an overnight fast
at participant inclusion, were spun down at 4 oC, immediately aliquoted, and snap frozen at -80 oC until
assayed (12). Study personnel blinded to clinical data performed biochemical and genetic analyses.

Analyte measurements:
Multiple ‘omics data from different pathways and various biological levels were acquired. We used mass
spectrometry (MS) for proteomics, one-carbon metabolism and lipidomics, proton nuclear magnetic
resonance (1H NMR) for metabonomics, and immunoassays for neuroinflammation. The initial number
of analytes measured in CSF, the final number of analytes selected per platform (a total of 891 analytes
covered), and quantification method used for each platform are described in Table 1. Further details
about the analysis methods and analytes measured by each platform can be found in Additional File 1.

Genetic measures:
The APOE genotype was determined by PCR as previously described (15). Participants with one or more
e4 alleles were classified as carriers.

Table 1
Datasets used in this study

Dataset Analytes

Initial/Final

Quantification Technique References

Proteomics 791/772 LC-MS/MS (16, 17)

Neuroinflammation 38/21 Multi-array sandwich
immunoassay

(15, 18, 19)

One-carbon metabolism 17/9 LC-MS/MS (20, 21)

Metabonomics 71/63 1H NMR (22)

Lipidomics 65/26 MS (23, 24)

Biomarkers of core AD
pathology

3/3 ELISA (18)

Available datasets from the cohort along with the number of analytes measured in this study and the
associated quantification methods. For each dataset the initial number of analytes quantified, the
number of measurements remaining after quality control, quantification technique used, and
technical references are indicated. LC-MS/MS, liquid chromatography tandem mass spectrometry; 1H
NMR, Proton nuclear magnetic resonance; MS, mass spectrometry; ELISA, enzyme-linked
immunosorbent assay.
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Cerebrospinal fluid AD biomarkers:
CSF beta-amyloid 1–42 (Aβ1−42), total-tau (Tau), and tau phosphorylated at threonine 181 (P-Tau)
concentrations were measured using commercially available ELISA kits (Fujirebio, Gent, Belgium). AD
neuropathology was defined as P-Tau/Aβ1−42 ratio > 0.0779 as described previously (12).

Data preparation and transformation:
Lipidomics: 26 high quality intact lipids with less than 5% of null values were selected as continuous
numerical markers from 65 original measurements. Numerical lipid marker values were log10-
transformed prior to analysis.

Metabolomics: 71 peak integrals were originally measured in CSF. 63 analytes with less than 5% missing
values were selected from the obtained spectra. Peak integral values were log10-transformed prior to
analysis.

One-carbon metabolomics: 17 analytes were initially measured in CSF. Some analytes could not be
measured in the majority of samples and were excluded from the analysis (i.e., homocysteic acid,
dimethylglycine, betaine, total homocysteine, pyridoxine and pyridoxamine); taurine and glycine data
were inconsistent and were also filtered out resulting in 9 measured analytes (i.e., choline, cystathionine,
methionine, riboflavin, S-adenosylhomocysteine, S-adenosylmethionine, serine, cysteine and 5-
methyltetrahydrofolate). Numerical values were log10-transformed prior to analysis.

Neuroinflammatory markers: 38 markers were measured in CSF. Calibration curves, batch effects, and
lower limit of quantification were controlled. After this quality control, 17 markers were removed, resulting
in 21 markers selected. Concentrations were log10-transformed prior to analysis.

Proteomics: Relative quantification data were available for all subject samples as log2 ratios as
previously described (16). Analytes with more than 30% missing data points were removed, resulting in
772 proteins measured from an initial number of 791.

Before analysis, outliers (i.e., data points that exceeded the cutoff value of mean ± 3 × standard deviation)
were replaced by the cutoff value in all datasets.

Statistical and analytical approaches:
Descriptive statistics for the cohort were performed using t-tests comparing AD and control groups for
continuous variables and Chi-square tests for categorical variables. Data was clustered by hierarchical
clustering across samples and factors values or loadings.

Feature selection methods:
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Single-modality approaches: To overcome the bias resulting from correlation between variables and thus
unreliability and saturation of standard regression techniques, we used Elastic-Net regularization (α = 0.5)
for regression analysis. This was performed separately for each individual ‘omics platform using R
software with custom routines implementing the glmnet package (25). Features associated with each
pre-specified CSF biomarker endpoint were considered as a continuous dependent variable and selected
using the minimal lambda statistic.

Multi-omics factor analysis: This analysis was performed using the MOFA package in R and Python
software (9). Latent factors (also referred as LFs) were selected to explain a minimum of 2% variance in
at least one data type. The MOFA model was trained over 938 iterations with a convergence threshold of
0.1. Individual analytes were considered strongly associated with a given LF if their normalised absolute
loading value was > 0.8. More details about the MOFA method can be found in Additional File 1. The
trained MOFA model was validated using both a correlation approach and CSF AD biomarker predictions
(Additional File 2, Fig. S1 and Fig. S2, respectively)

Models for AD pathology and cognitive decline prediction:
Predictions were ran using the glm package in R. We first constructed a reference models using age, sex,
years of education, baseline MMSE score and APOE4 carrier status for AD pathology prediction and age,
sex, years of education, baseline MMSE score, APOE4 carrier status and time to last follow-up for
cognitive decline prediction. We then used an iterative approach, first adding all analytes identified by the
MOFA model and selected the model displaying the smallest Akaike information criterion (AIC) value,
before performing the following iteration with the remaining analytes. Performance of the models was
analyzed by comparing area under the curve (AUC) of the resulting ROC curves using the DeLong method.
No further improvements to the AUC was observed after five iterations for both predictions. Confusion
matrices to assess sensitivity and specificity were calculated for all models.

Pathway enrichment:
Proteins selected by the MOFA model were searched for in the UniProt database (26) and their entry
number was then subsequently used within the Reactome database (27). A separate over-representation
analysis was performed for each LF. This analysis used hypergeometric distribution to determine which
pathways and biological reactions were over-represented within the dataset. Over-represented pathways
were then manually grouped into broader ontology-based categories (Additional File 3, Table S1).

Results:
Cohort description: The clinical and demographical characteristics of the participants included in this
study are shown in Table 2.
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Table 2
Study cohort

  Control (n = 79) AD group (n = 41) P-value

Age (years) 68.42 ± 8.23 74.15 ± 5.7 < 0.001

Sex (%, female) 67.1 58.5 0.354

Education (years) 12.51 ± 2.7 12.10 ± 12.1 0.404

CDR-SoB 0.456 ± 0.9 2.20 ± 2.03 < 0.001

MMSE 27.85 ± 2.28 25.15 ± 3.71 < 0.001

P-Tau/Aβ1−42 ratio 0.048 ± 0.127 0.165 ± 0.104 < 0.001

Characteristics of the study cohort. P-value was obtained from t-test for continuous variables or chi-
square statistics for sex.

 

Single-modality feature selection: Elastic-Net regression within each single ‘omics modality identified 82
molecules associated with CSF “core” biomarkers of AD pathology (i.e., Aβ1−42, Tau and P-Tau, Additional
File 3, Table S2). Strikingly, distinct panels of CSF analytes were associated with either Aβ1−42, or Tau and
P-Tau, reflecting alterations of different pathways in relation to amyloid pathology, neurodegeneration,
and tau pathology, with very little overlap (Fig. 1). Only protein 14-3-3 zeta/delta was associated with all
three biomarkers.

Overview of the MOFA model: In parallel, we trained a MOFA model, to identify major dimensions of
heterogenicity (latent factors; LFs) responsible for the variance within the cohort. This model identified
five LFs that each explained a minimum of 2% variance in at least one of the analysed metabolic levels.
Among these factors, LF1 and LF2 were present in most multi-omics modalities, revealing a broad
participation to variance within the cohort (Fig. 2). On the other hand, the remaining LFs only captured
variance across some modalities (three for LF4 and LF5, two for LF3) and had a smaller contribution to
overall variance. Across all LFs, the CSF AD biomarkers accounted for 38.5%, proteins 39.8%, lipids
10.3%, neuroinflammation markers 10.3%, one-carbon metabolites 9% and other metabolites 3.7% of the
variance contained within the cohort (Fig. 2). We next produced clustered heatmaps of the weight (i.e., the
association of an individual molecule with the LF) of each analyte across different LFs (Fig. 3A-E). This
analysis revealed that amongst LFs there are specific contributions of analytes from different ‘omics
levels. For example, molecules within the one-carbon metabolism were differentially associated with LF1
and LF2 (Fig. 1C). Since only three CSF core AD biomarkers were measured, we did not produce
heatmaps to analyse the association of Aβ1−42, Tau and P-Tau with these five LFs; but rather we
inspected their absolute individual loadings across all LFs (Fig. 4). This revealed that individual CSF AD
biomarkers had different contributions across the identified LFs. CSF Tau and P-Tau levels were strongly
associated with LF1, LF2 and LF3, while Aβ1−42 was the main contributor to variance amongst CSF AD
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biomarkers to LF4 and LF5 indicating that these latter LFs were associated with amyloid pathology and
the former with tau pathology and related neurodegeneration.

Individual analyte contributions to LFs: We next addressed the contribution of individual molecules to
variance within the cohort and how these molecules aligned with CSF AD biomarkers (Table 3a for
proteins and Table 3b for other analytes). Using their normalised absolute loadings, we selected 36
proteins, 7 neuroinflammatory markers, 3 one-carbon metabolites, 5 lipids and 7 other metabolites (not
counting analytes selected in multiple LFs) that contributed the most to variance within the cohort. Since
each individual LF was strongly associated with an individual CSF AD biomarker, we next investigated the
relationship between the identified analytes and the expression levels of CSF AD biomarkers in the
relevant LFs. Four molecules of interest, manually selected from three different modalities, and their
associations with LFs and therefore with either Aβ1−42 and Tau (or P-Tau) are presented in Fig. 5.
Additionally, 14 of the selected proteins were associated with the presence of cognitive impairment at
baseline (Additional File 3, Table S3).



Page 9/29

Table 3a
Proteins associated with latent factors

LF Analyte Full Name Entry# Previously reported AD
association

Proteomics

1 NRN1 Neuritin isoform 1 precursor Q9NPD7  

1 SMS Spermine synthase P52788 Yes (48)

1 NXPH4 Neurexophilin-4 O95158  

1 LTBP1 Latent-transforming growth factor beta-
binding protein 1

Q14766  

1 CLUS Clusterin P10909 Yes (49)

1 NPDC1 Neural proliferation differentiation and
control protein 1

Q9NQX5  

1 PNOC Prepronociceptin Q13519  

1 DYL2 Dynein light chain 2, cytoplasmic Q96FJ2  

1 PDGFB Platelet-derived growth factor subunit B P01127 Yes (50)

1 SAP3 Sphingolipid activator protein 3 P17900  

1 MT1E Metallothionein-1E P04732 Yes (51)

1 PCSK1 Neuroendocrine convertase 1 P29120 Yes (52)

1 TAGL Transgelin-2 P37802 Yes (53)

1 MT3 Metallothionein-3 P25713 Yes (51)

1 LY6H      

2 SAMP Spindle-associated membrane protein 1 Q5SNT2  

2 VTNC Vitronectin P04004 Yes (54)

2 KNG1 Kininogen-1 P01042  

2 FETUA Alpha-2-HS-glycoprotein P02765 Yes (55)

2 HELZ Probable helicase with zinc finger domain P42694  

2 PLMN Plasminogen P00747 Yes (56)

2 PGRP2 N-acetylmuramoyl-L-alanine amidase Q96PD5  

2 AFAM Afamin P43652 Yes (55)

2 ITIH1 Inter-alpha-trypsin inhibitor heavy chain H1 P19827 Yes (57)
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LF Analyte Full Name Entry# Previously reported AD
association

2 CO8B Complement component C8 beta chain P07358 Yes (58)

2 FIBA Fibrinogen alpha chain P02671 Yes (59)

2 CO6 Complement Component C6 P13671 Yes (58)

2 ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 Q14624 Yes (57)

3 EPDR1 Mammalian ependymin-related protein 1 Q9UM22  

3 SIAE Sialate O-acetylesterase Q9HAT2  

4 X1433Z 14-3-3 protein zeta/delta P63104 Yes (60)

4 S10A6 Protein S100-A6 P06703 Yes (61)

4 PRDX6 Peroxiredoxin-6 P30041 Yes (62)

5 VTM2A V-set and transmembrane domain-
containing protein 2A

Q8TAG5  

5 S10A6 Protein S100-A6 P06703 Yes (61)

5 CMGA Chromogranin-A P10645 Yes (63)

5 ZP2 Zona pellucida sperm-binding protein 2 Q05996  

5 SLIK1 SLIT and NTRK-like protein 1 Q96PX8 Yes (64)

Table 3a: CSF proteins significantly associated with the LFs within the MOFA model and whether they
have been previously associated with AD. Entry# denotes the protein identifier within the UniProt
database.
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Table 3b

Other molecules associated with latent factors
LF Analyte Full Name Entry# Previously reported AD

association

Neuroinflammation

1 sVCAM-1 Circulating vascular cell adhesion
molecule-1

P19320 Yes (65)

1 IL-15 Interleukin-15 P40933 Yes (65)

1 sICAM-1 Soluble Intracellular adhesion molecule-1 P05362 Yes (65)

2 SAA Serum amyloid A P0DJI8 Yes (66)

2 PIGF_1R Insulin-like growth factor 1 receptor P08069 Yes (67)

3 PIGF_1R Insulin-like growth factor 1 receptor P08069 Yes (67)

4 IL-16 Interleukin-16 Q14005 Yes (68)

5 MCP-1 Monocyte chemoattractant protein-1 P13500 Yes (65)

5 PIGF_1R Insulin-like growth factor 1 receptor P08069 Yes (67)

One-carbon metabolism

1 MTHF 5-methyltetrahydrofolate 20612 Yes (69)

1 SAH S-adenosyl-L-homocysteine 16680 Yes (70)

2 CYST Total Cysteine 15356 Yes(71)

3 SAH S-adenosyl-L-homocysteine 16680 Yes (70)

4 CYST Total Cysteine 15356 Yes (71)

5 CYST Total Cysteine 15356 Yes (71)

Metabonomics

1 N/A Glycoproteins 17089 Yes (72)

2 N/A Alanine 16449 Yes (73)

2 N/A Valine 27266  

2 N/A Glycoproteins 17089 Yes (72)

3 N/A Inositol 24848  

4 N/A Glycoproteins 17089 Yes (72)

5 N/A Formic acid 30751  

5 S69 Unidentified metabolite N/A N/A
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5 N/A Acetoacetic acid 15344 Yes (74)

Lipidomics

1 PC 32:0 1,2-dihexadecanoyl-sn-glycero-3-
phosphocholine

N/A (41)

2 SE 27:1
18:2

Cholesteryl ester N/A  

3 PC 32:0 1,2-dihexadecanoyl-sn-glycero-3-
phosphocholine

N/A (41)

4 SE 27:1
18:2

Cholesteryl ester N/A  

4 SE 27:1
20:4

Cholesteryl ester N/A  

4 SE 27:1
16:0

Cholesteryl ester N/A  

5 LPG 20:1 1-(11Z-eicosenoyl)-glycero-3-phospho-(1’-
sn-glycerol)

N/A  

Table 3b: CSF biomolecules significantly associated with the LFs within the MOFA model and whether
they have been previously associated with AD. Entry# denotes the analyte identifier within the UniProt
database (for neuroinflammation) or ChEBI database (for other analytes).

Prediction of AD pathology and cognitive decline using MOFA-selected molecules: To confirm a posteriori
the importance of the molecules selected by our MOFA model in clinical practice, we analysed their
contribution to prediction of both AD pathology and global cognitive decline (see Methods). The addition
of the four following analytes: protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2,
improved the AUC of the ROC curve when compared to the reference model for AD prediction (Fig. 6A, p-
value < 0.001). The addition of protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and
monocyte chemoattractant protein-1, improved prediction on cognitive decline (Fig. 6B, p-value = 0.047)

Metabolic pathway enrichment: Using the Reactome database and coarse-grain ontological categories
(See Methods and Additional File 3, Table S1), we investigated which biological pathways were over-
represented within each LF for the proteomic modality. Other modalities were not analysed in this fashion
since they were selected a priori to represent distinct metabolic pathways (one-carbon metabolism and
inflammatory markers) or did not contain enough molecules to conduct pathway analysis. Lipids were
also excluded from this analysis since our quantification method did not allow to dissociate between
different isoforms of compounds with the same chemical formula. This approach revealed an
overrepresentation of the hemostasis (28.8%), immune response (20.8%) and extracellular matrix
signalling pathways (8.8%) (Fig. 7).

Discussion:
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Here, we applied a multi-layered integrative approach to disentangle sources of variance within a cohort
of elderly participants with normal cognition, mild cognitive impairment or mild AD dementia. We
identified five major dimensions of heterogenicity that together comprehensively explained the variance
within the cohort and were associated with core AD pathology. Further analysis revealed multiple
interactions between single ‘omics modalities, distinct multi-omics molecular patterns differentially
associated with amyloid aggregation, neurodegeneration, and tau hyperphosphorylation, and novel
molecules associated with cognitive impairment. Specific signatures of four molecules improved the
accuracy of both AD and cognitive decline prediction. Additionally, pathway enrichment showed over-
representation of the hemostasis, immune response and extracellular matrix signalling pathways in
association with AD.

Single modality feature selection: We first used Elastic-net regression, to identify molecules associated
with individual biomarkers of CSF AD pathology without considering any possible interactions between
different ‘omics modalities. This approach identified several proteins (SPARC-related modular calcium-
binding protein 1, brain acid soluble protein 1, neuromodulin, pyruvate kinase PKM, thymosin beta-10, 14-
3-3 protein zeta/delta, and fructose-bisphosphate aldolase A) in strong accordance with recent studies of
the AD CSF proteome (16, 28). The zeta/delta isoform of protein 14-3-3 was associated with Aβ1–42,
Tau, and P-Tau levels. This apoptosis inhibitor, one of the most abundant proteins in the brain, was
previously found to exhibit altered levels in AD and modulate AD risk (29, 30). We also identified
associations of neurofilament medium polypeptide with Tau levels and of reelin with Aβ1−42 and Tau
levels. Both these molecules have previously been associated with AD (31–33). Regarding
neuroinflammatory molecules, C-reactive protein and monocyte chemoattractant protein-1 have
previously been associated with AD, albeit in plasma (34). In addition, we have also previously shown
that soluble intracellular cell adhesion molecule-1 in CSF is associated with AD (18). At metabolite level,
we identified 10 molecules in CSF associated with Tau and P-Tau, which differ from the blood biomarkers
associated with AD identified in a recent study in a large sample (35). Overall, our approach identified
more molecules associated with AD pathology as compared to previous studies. A likely source of
differences is the use of Elastic-Net regression in the current study which eliminates saturation of the
regression and could therefore identify more associations.

Heterogenicity within the cohort: An important strength of our study is to consider all interactions
between multiple biological levels and their associations with the heterogenicity within the cohort. This
was achieved by training a MOFA model on the multi-omics dataset which has the advantage of not
giving any additional analysis weight to the established CSF biomarkers of core AD pathology while also
reducing the complexity of the data to better depict the sources of variation. This revealed proteomic
measures and CSF core AD biomarkers as the main contributors to the variance. This was to be expected
since i) protein expression levels do not only reveal changes related to AD pathology, but also reflect the
effects of different environments, life style, health conditions, and genetic backgrounds; all factors
potentially affecting protein expression and regulation (36); and ii) our sample contains a large
proportion of participants with AD, each displaying CSF AD biomarkers significantly different from
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subjects without AD. Nonetheless, this approach identified 21 proteins with previously reported
association to AD, suggesting the MOFA approach can accurately disentangle the inter-individual
heterogeneity driven by AD pathology and differentiate between individual (i.e., not repeated in the
dataset) and cohort heterogeneity (i.e., underlying changes in many participants). Conversely, the
metabolomic dataset was only responsible for a small amount of the cohort heterogeneity (3.7%), a
possible explanation being that it represents individual heterogeneity for the most part caused by the
environment, disease processes or nutritional habits. This low contribution of metabolomics to variance
could also result from the lower dimensionality of the metabolomics dataset as molecules within had
lower concentrations compared to molecules in the other modalities. Yet, despite this low level of
variance, our model was able to correctly retrieve metabolites previously reported in association with AD,
underlining the sensitivity of the model. This is further supported by the ability of our model to identify a
four-molecule signature that improves the prediction of the occurrence of AD pathology, confirming that
the identified LFs and molecules reflect metabolic differences resulting from the presence of AD
pathology rather than from other factors. This also confirms the clinical and diagnosis relevance of the
identified molecules.

Associations between LF and specific aspects of AD pathology: We next investigated how individual LFs
related to specific aspects of AD pathology by comparing which CSF AD biomarkers were most strongly
associated with each of them. This revealed that LFs 1–3 were primarily associated with CSF Tau levels
suggesting relationships with neuronal injury while LF4 and LF5 were mainly associated with CSF Aβ1−42

suggesting implication in the development of amyloid pathology. In LF3 and LF4, the association of
Aβ1−42 was opposite to those of Tau and P-Tau. We speculate that the molecules within and the
associated alterations could play a role in both amyloid aggregation and tau-related neurodegeneration
or represent a consequence of developing cerebral AD pathology.

Interactions between LFs and ‘omics modalities: Besides the identification of molecular profiles and
metabolic pathways alterations associated with AD, our approach also disentangled how components of
individual LFs interact with each other to explain variance within the cohort. In other words, the
contribution of individual LFs to total variance results from a specific combination of the different ‘omics
modalities. Indeed, while the variance explained by LF1 and LF2 was associated with all modalities, other
LFs only contained a subset of these (one-carbon metabolism and metabolomics were only very weakly
associated with LF3 and LF4, whereas lipidomics was nearly absent from LF3 and LF5); revealing
specific interactions between a subset of molecules and particular metabolic pathways. Individual
molecules also presented different patterns of association across LFs. For example, a subset of lipids,
including PC 32:0, PC 34:1, LPA 18:3 and TAG 54:3, had a strong positive association with LF2 and a
weak negative association with LF4. Since LF2 was associated with all tested modalities, this suggests
these analytes interact within multiple biological pathways and could be within a hub of metabolic
changes. LF2 is associated with both Tau and P-Tau; neurodegeneration and tau pathology could
therefore relate to a more general metabolic alteration. The association of PC 32:0 with tau pathology in
single ‘omics approaches supports this assumption. In contrast, LF4 is strongly associated with amyloid
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pathology and it is only associated with changes in lipids and proteins (in addition to CSF AD
biomarkers). Therefore, only a subset of lipids appears to interact directly with amyloid pathology.

Novel associations uncovered by the MOFA model: The MOFA model uncovered additional relationships
not revealed by single ‘omics exploration paradigms, such as the association of S-adenosylhomocysteine
and glycoproteins associated with CSF Aβ1−42, Tau and P-Tau; and of total cysteine associated with
Aβ1−42. Indeed, since the trained MOFA model did not only consider molecules from one modality but the
whole dataset from different ‘omics, it was able to reveal additional associations resulting from the
downstream effects of these molecules or from interactions with other modalities. While several analytes
identified by the trained model have previously been associated with AD (see Additional File 1), it also
uncovered novel associations, such as dynein light-chain 2, cytoplasmic (DYL2) and neurexophilin-4
(NXPH4). Both were associated with LF1 and with cognitive impairment (Additional File 3, Table S3).
DYL2 is thought to regulate dynein function (37) and maintain cytoskeletal structure, therefore regulating
synaptic function (38). NXPH4 structurally resembles neurexophilin-1, an α-neurexin ligand, which
promotes adhesion between dendrites and axons and modulates specific cerebellar synapses and motor
functions (39). Altered levels of these proteins may therefore be associated with neurodegeneration
processes and related to cognitive impairment in AD. Another novel analyte we identified is the cholesteryl
ester SE 27:1 16:0. While links between phosphatidylcholine metabolism and AD in general (40) and PC
32:0 in particular (41) have been previously reported, to our knowledge cholesteryl esters have not
previously been associated with AD pathology. In our MOFA model, this cholesteryl ester was strongly
correlated to LF4, suggesting a role in amyloid pathology. These molecules were also associated with
cognitive performance as measured by MMSE (Additional File 3, Table S4). Together, these results
demonstrate the capacity of integrative multi-omics to provide additional insights into the relationship of
molecular alterations with specific aspects of the AD pathology.

Prediction of AD pathology and cognitive decline using MOFA-selected molecules: Molecular signatures
associated with AD or predictive of cognitive decline were derived from our model. Both signatures
contain four molecules each, taken from multiple biological levels, and share two common molecules,
protein 14-3-3 zeta/delta and clusterin, suggesting common biological pathways associated with AD and
cognitive decline. Both signatures also significantly improved the prediction performance when added to
reference models. These findings demonstrate the ability of our model to identify molecules reflecting
metabolic differences related to AD pathology or cognitive decline rather than to other factors. While
these results need validation in an independent cohort, they already demonstrate the ability of our model
to identify biomarker combinations that may be used in clinical practice.

Infer pathway relationships with AD pathology: One important strength of the MOFA approach is that it
enables addressing the relationship between multiple biological pathways and associate them with
sources of variance (i.e., LFs). Using over-representation of metabolic pathways, we were able to show
that individual LFs, and the main related pathological aspects of AD (i.e., amyloid aggregation,
neurodegeneration and tau pathology) are associated with distinct pathways. Hemostasis and immune
response were the most over-represented. Only the immune response was associated with all LFs in
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which individual pathways could be identified. LF1 and LF2 presented a significant enrichment in
biomolecules implicated in hemostasis, suggesting an association between this pathway and neuronal
injury, and tau pathology. While an association between hemostasis and amyloid pathology pathway was
previously described (42), in particular related to expression of amyloid precursor protein and release of
Aβ (43), there have also been recent reports of an association between Tau and hemostasis (44).
Molecules involved in the extracellular matrix were significantly enriched in LF2, also suggesting an
association with tau-related pathology, in line with previous reports (45). However, this pathway was not
detected within LF1 or other LFs. We therefore hypothesise that the molecules involved are those
presenting a specific pattern of association with LF2, such as PC 32:0, PC 34:1, LPA 18:3 and TAG 54:3.
Neuronal function was confined to associations with LF5, suggesting little variation and differences in
signal transmission and synaptic function across the cohort since this LF only explained 8% of the
variance. Nonetheless, this result suggests an association with amyloid pathology, which is in
accordance with previous findings of amyloid being released in an activity-dependent fashion from
neurons and modulating synaptic function and plasticity (46, 47). Overall, the enriched metabolic
pathways suggest that AD pathology affects not only pathways related to neuronal biological systems
but is linked to a broader spectrum of metabolic dysfunctions.

Limitations: The inclusion of some targeted analysis results in the multi-omics models may be
considered as a limitation. While the proteomic and lipidomic dataset are hypothesis-free measurements
and the study could be limited to this data, we chose to include further available modalities. In particular,
we considered neuroinflammation and one-carbon metabolism given their previously reported
associations with AD and relevance for brain metabolism. The replication of these and other previously
reported associations in our MOFA model supports the validity of the new findings revealed in the present
study. Our findings, in particular the identified biomarker combinations need validation in independent
cohorts.

Conclusions:
Here, applying integrative multi-omics in AD, we have identified five axes of variation within a cohort of
individuals with or without cognitive impairment and AD pathology. These five LFs were associated with
different aspects of the core AD pathology. We confirmed several previously reported associations with
AD core pathology and identified new molecular patterns interrelated within each LF. Additionally, we
identified molecular biomarker signatures improving the diagnosis of AD pathology and the prediction of
future cognitive decline. Furthermore, using pathway enrichment analysis, we have revealed metabolic
pathways represented within single LFs and explored specific relationships with markers of amyloid
pathology, neuronal injury, and tau hyperphosphorylation. These findings demonstrate the added value of
integrative multi-omics analysis to uncover interrelated pathway alterations in AD and its ability to
identify biomarker combinations that and may be used in clinical practice. This is relevant for the
development of both personalized diagnosis and tailored therapeutic interventions in AD.
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Figure 1
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Venn diagram of associations with CSF core AD biomarkers. Venn diagram of associations of analytes
obtained by regression models with CSF core AD biomarkers. Number of molecules identified as well as
those shared between biomarkers is shown. The full list of associated molecules is presented in
Additional File 3, Table S1.

Figure 2

Overview of the MOFA model. Overview of the trained MOFA model showing variance (R2) within the
cohort explained by each modality (top) and latent factors (LFs, bottom) from the trained MOFA model.
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Figure 3

Clustering of loadings across latent factors. Heatmaps of hierarchical clustering of the measured
loadings across in LFs for data obtained from proteomics (A), neuroinflammation markers (B), one-
carbon metabolism (C), metabonomics (D) and lipidomics (E). Note the distinct pattern within each LF.
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Figure 4

Loadings of CSF AD biomarkers. Normalised loadings of CSF AD biomarkers across the five latent
factors of the trained MOFA model. Signs are relative within the model and not absolute.
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Figure 5

Relationship between selected CSF molecules and latent factors. Relationship between selected CSF
molecules and latent factors, indicating associations with specific CSF AD biomarkers. Example analytes
that show a specific pattern of association with LFs allowing to identify with which CSF AD biomarker
they are associated. A) Measured loadings of total cysteine and S-adenosyl-L-homocysteine within each
LF. B) Loadings of PC 32:0 within individual LFs. C) Measured loadings of glycoproteins within individual
LFs. SAH, S-adenosyl-L-homocysteine.
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Figure 6

Clinical predictions. Binary logistic regression models to improve clinical predictions. A) ROC curves and
AUCs for the reference model (green) and the final prediction model of AD pathology (red) obtained after
addition of four analytes (14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) selected by the
MOFA model. B) Confusion matrix of the final prediction model of AD. C) ROC curves and AUCs for the
reference model (green) and the final prediction model of cognitive decline (red) obtained after addition
of four analytes (14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant
protein-1) selected by the MOFA model. D) Confusion matrix of the final prediction model of cognitive
decline.
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Figure 7

Pathway enrichment. Pathway enrichment analysis of identified proteins across LFs and overall. Top
analytes from each LF and identified by the Reactome database were assigned to coarse-grain categories
(Fig. S3). The number of entities found within each pathway for each LF and overall (expressed as a
percentage) is represented. NB: the low number of analytes associated with LF3 did not allow for an
enrichment analysis.
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