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Section 1 | The scattering field of a free electron by a 2D crystal layer 

When a free electron traverses a 2D crystal layer with Bravais lattice spanning the 𝑥-𝑦 plane at 

𝑧ൌ0, the electromagnetic field that accompanies the free electron is scattered by a collection of 

atoms modeled as a dipole array characterized by their linear atomic polarizability. To exploit the 

discrete translational symmetry of the lattice, we use the 2D Fourier transform1 of a function 𝑓ሺ𝐑ሻ 

located at the lattice sites 𝐫௡ൌሺ𝐑௡, 0ሻ, 𝑓௡ൌ𝑓ሺ𝐫௡ሻ, defined as 

 
𝑓ሺ𝐐ሻ ൌ 𝐴෍𝑒ି௜𝐐⋅𝐑౤𝑓௡

ஶ

௡ୀଵ

 ,  (1) 



𝑓௡ ൌ ඲
𝑑ଶ𝐐
ሺ2𝜋ሻଶ

𝑒௜𝐐⋅𝐑౤𝑓ሺ𝐐ሻ

୆୞

 ,  

where 𝐴 is the area of the lattice unit cell and BZ indicates that the integral over 𝐐 is performed 

within the first Brillouin zone (BZ) of the reciprocal lattice. 

 

Figure s1 | Schematic of a free electron traversing a 2D crystal layer spanning the 𝒙 െ 𝒚 plane 
at 𝒛ൌ𝟎. The electron velocity forms an incidence angle 𝜃 with respect to the crystal layer normal. 
𝐑ୟ and 𝐑ୣ denote the in-plane distances from the center of the unit cell to the atom and electron 
crossing position, respectively.  

The free electron is described as a classical point charge in 𝐫-𝑡 space, introducing its current 

density 𝐉ሺ𝐫, 𝑡ሻ ൌ െ𝑒𝐯𝛿ሺ𝐫 െ 𝐫 െ 𝐯𝑡ሻ, where 𝐫 ൌሺ𝐑ୣ, 0ሻ denotes the displacement of the electron 

in the 𝑧ൌ0 plane at time 𝑡ൌ0, and 𝐯 is the electron velocity vector. The current density in 𝐪-𝜔 

space is 𝐉ሺ𝐪,𝜔ሻ ൌ െ2𝜋𝑒𝐯𝑒ି௜𝐪⋅𝐑౛𝛿ሺ𝜔 െ 𝐪 ⋅ 𝐯ሻ. The electromagnetic field that accompanies the 

free electron is then2 

 
𝐄୧୬ୡሺ𝐫,𝜔ሻ ൌ 2𝑖𝜋𝜔𝜇଴𝑒න

𝑑ଷ𝐪
ሺ2𝜋ሻଷ

ቀI ̿ െ
𝐪𝐪
𝑘ଶ
ቁ
𝑒௜𝐪⋅ሺ𝐫ି𝐫౛ሻ

𝑘ଶ െ 𝑞ଶ
⋅ 𝐯𝛿ሺ𝜔 െ 𝐪 ⋅ 𝐯ሻ

ൌ
𝑖𝑒
𝜀଴𝑣௭

න
𝑑ଶ𝐐
ሺ2𝜋ሻଶ

𝑘 𝐯 𝑐⁄ െ 𝐪
𝑘ଶ െ 𝑞ଶ

𝑒௜𝐪⋅ሺ𝐫ି𝐫౛ሻ

ൌ න
𝑑ଶ𝐐
ሺ2𝜋ሻଶ

𝐄୧୬ୡሺ𝐐,𝜔ሻ𝑒௜𝐐⋅𝐑, 

(2) 

where 𝜔  and 𝑘 ൌ 𝜔/𝑐  are the photon angular frequency and wavenumber, 𝜇଴  and 𝜀଴  are the 

vacuum permeability and permittivity, െ𝑒 is the electron charge, 𝐐 is the 𝑥-𝑦 component of the 



Fourier wave vector 𝐪 ൌ ቀ𝐐, ఠି𝐐⋅𝐯∥
௩೥

ቁ (notice that the 𝑧 component is determined by the 𝛿 function 

in Eq. (2)), 𝐑 is the 𝑥-𝑦 component of the position vector, 𝐫  is the position of the electron at time 

𝑡 ൌ 0, and 𝐄୧୬ୡሺ𝐐,𝜔ሻ is the 2D Fourier transform of 𝐄୧୬ୡሺ𝐫,𝜔ሻ.  

The atomic dipole moment at position 𝐫 ൌ ሺ𝐑௡ ൅ 𝐑ୟ, 0ሻ  is denoted as 𝐩௡ ൌ

𝛼ሺ𝜔ሻ𝐄୧୬ୡሺ𝐫 ,𝜔ሻ, where 𝐑௡ is the 2D lattice site position, 𝐑ୟ is the position of the atom relative 

to the center of the unit cell, and 𝛼ሺ𝜔ሻ is the atomic polarizability that can be derived from the 

scattering factor3.  The field scattered by the 2D dipole array is  

 𝐄ୱୡୟሺ𝐫,𝜔ሻ ൌ 𝜔ଶ𝜇଴෍Gനሺ𝐫 െ 𝐫 ሻ ⋅ 𝐩௡ሺ𝜔ሻ
௡

, (3) 

where Gനሺ𝐫 െ 𝐫 ሻ is the electromagnetic dyadic Green function. The latter can be expanded as 

Gനሺ𝐫 െ 𝐫 ሻ ൌ ௜

ଶ௞మ
׬

ௗమ𝐐

ሺଶగሻమ
௞మି𝐤𝐤

௞೥
𝑒௜𝐐⋅ሺ𝐑ି𝐑೙ି𝐑౗ሻା௜௞೥|௭| , where 𝐤 ൌ ሺ𝐐,േ𝑘௭ሻ and  𝑘௭ ൌ ඥ𝑘ଶ െ 𝑄ଶ . 

The atomic dipole moment 𝐩௡ሺ𝜔ሻ  is also Fourier expanded following Eq. (1) as 𝐩௡ሺ𝜔ሻ ൌ

න ௗమ𝐐

ሺଶగሻమ
𝑒௜𝐐⋅𝐑೙𝐩ሺ𝐐,𝜔ሻ

୆୞
  . By making use of the identity ෌ 𝑒௜𝐐⋅𝐑೙

௡
ൌ෍

ሺଶగሻమ

஺
𝛿ሺ𝐐 െ 𝐆ሻ

𝐆
, where 

𝐆 is the 2D reciprocal lattice vector and 𝐴 is the area to a 2D unit cell, the electron scattering field 

in Eq. (3) becomes 

 
𝐄ୱୡୟሺ𝐫,𝜔ሻ ൌ

𝑖
2𝐴𝜀଴

න
𝑑ଶ𝐐
ሺ2𝜋ሻଶ

𝑘ଶ െ 𝐤𝐤
𝑘௭

⋅ 𝐩ሺ𝐐,𝜔ሻ𝑒௜𝐐⋅ሺ𝐑ି𝐑౗ሻା௜௞೥|௭|. (4) 

It should be noted that 𝐐 is not limited to the first BZ and is periodic in reciprocal lattice space, 

and the idensity 𝐩ሺ𝐐,𝜔ሻ ൌ 𝐩ሺ𝐐 ൅ 𝐆,𝜔ሻ  follows from the definition in Eq. (1). Under the 

assumption of isotropic polarizabilities, the dipole moment 𝐩௡ሺ𝜔ሻ is linearly polarized along the 

direction of the electron electric field at position 𝐫ൌሺ𝐑௡, 0ሻ . We also note that the linear 

polarizability is 𝛼ሺ𝜔ሻ/ሺ𝜀଴𝑉ୡୣ୪୪ሻ ≪ 1 (of the same order as the susceptibility) in the X-ray range, 

where 𝑉ୡୣ୪୪ is the volume of one unit cell (i.e., the 2D unit cell area A times the interlayer spacing). 

The dipole-dipole interaction is neglected as it is of order 𝑂ሺ𝛼ଶሻ, and therefore, we have 

 𝐩௡ሺ𝜔ሻ ൌ 𝛼ሺ𝜔ሻ𝐄୧୬ୡሺ𝐫 ,𝜔ሻ, (5) 



𝐩ሺ𝐐,𝜔ሻ ൌ 𝛼ሺ𝜔ሻ෍𝐄୧୬ୡሺ𝐐 ൅ 𝐆 ,𝜔ሻ 𝑒௜ሺ𝐐ା𝐆ሻ⋅𝐑౗

𝐆

, 

Where the latter equation is the Fourier transform of the former one, and 𝐄୧୬ୡሺ𝐐 ൅ 𝐆 ,𝜔ሻ is the 2D 

Fourier transform of 𝐄୧୬ୡሺ𝐫,𝜔ሻ defined in Eq. (2).  Combining Eqs. (2), (4), and (5), we have  

𝐄ୱୡୟሺ𝐫,𝜔ሻ ൌ
𝑖𝛼ሺ𝜔ሻ

2𝐴𝜀଴
෍න

𝑑ଶ𝐐
ሺ2𝜋ሻଶ

𝑘ଶ െ 𝐤𝐤
𝑘௭

⋅ 𝐄୧୬ୡሺ𝐐 ൅ 𝐆 ,𝜔ሻ𝑒௜𝐐⋅𝐑ା௜𝐆⋅𝐑౗ା௜௞೥|௭|

𝐆

 

ൌ െ
𝛼ሺ𝜔ሻ𝑒
2𝐴𝑣௭𝜀଴

ଶ෍න
𝑑ଶ𝐐
ሺ2𝜋ሻଶ

𝑘ଶ െ 𝐤𝐤
𝑘௭𝐆

⋅
𝑘 𝐯 𝑐⁄ െ 𝐐𝐆 െ 𝑞௭𝑧̂ 
𝑘ଶ െ 𝐐𝐆

ଶ െ 𝑞௭ଶ
𝑒௜𝐆⋅ሺ𝐑౗ି𝐑౛ሻା௜𝐐⋅ሺ𝐑ି𝐑౛ሻା௜௞೥|௭|, 

(6) 

where 𝑘௭ ൌ ඥ𝑘ଶ െ 𝑄ଶ, 𝐐𝐆 ൌ 𝐐 ൅ 𝐆 and 𝑞௭ ൌ
ఠି𝐐𝐆⋅𝐯

௩೥
. Using the saddle-point approach and the 

Weyl identity 
௘೔ೖೝ

௥
ൌ ௜

ଶగ
׬ 𝑑ଶ𝐐

௘೔൫ೖೣೣశೖ೤೤శೖ೥|೥|൯

௞೥
, we arrive at the following analytical expression for 

the scattering field produced by a free electron upon interaction with the atomic array: 

 
𝐄ୱୡୟሺ𝐆, 𝐫,𝜔ሻ ൌ

𝑖𝑒𝛼ሺ𝜔ሻ

𝐴𝑣௭𝜀଴
ଶ ሺ𝑘

ଶ െ 𝐤𝐤ሻ ⋅
𝑘 𝐯 𝑐⁄ െ 𝐐𝐆 െ 𝑞௭𝑧̂ 

𝑘ଶ െ 𝐐𝐆
ଶ െ 𝑞௭ଶ

𝑒௜௞௥
ᇲା௜𝐆⋅ሺ𝐑౗ି𝐑౛ሻ

4𝜋𝑟ᇱ
, (7) 

where 𝑟ᇱ ൌ |𝐫 െ 𝐫 | is the far-field distance from the point where the electron transverses the 2D 

layer.   

 



Section 2 | The dispersion of PXR emission from a bent crystal 

  

Figure s2 | Substituting flat layers for bent layers. The atomic positions along the line 𝐴𝐶 
remain fixed during the bending process. A free electron (red arrow) traverses a bent layer (blue 
curve) at point 𝑆. The electron trajectory and the radial line 𝐴𝐶 are parallel and separated by a 
distance 𝐿. The blue bent layer is substituted by a flat layer (dashed red line) with the tangential 
point 𝑆. We introduce two frames: the 𝑥-𝑧 frame, in which the electron moves along the 𝑧-axis, 
and the 𝑥ᇱ-𝑧ᇱ frame, in which the 𝑧ᇱ axis is perpendicular to the flat layer located at 𝑧ᇱൌ𝑅 cosଶ 𝜃. 
Here, 𝑅 is the radius of the bent layer and 𝜃 is the electron incidence angle relative to the normal 
direction (shared by the flat layer and the curved one to which is substitutes).  

We substitute the bent multilayers by a series of flat layers of different orientations relative to 

each other. Their positions and normal vectors are determined to match those of the bent vdW 

structure at the points where the electron crosses the corresponding bent layers. We sketch in Fig. 

s2 how a bent layer (blue curve) can be substituted by a flat layer (dashed red line). We can image 

the bent layer being flattened around the point 𝑆  without shearing deformation, and thus, the 

atomic positions around point 𝑆 are the same in both layers. We consider that the crystal structure 

is cylindrically bent with mirror and translational symmetry along the radial line 𝐴𝐶, so that the 

atom positions along such line remain invariant during the bending process. The point 𝐶 on the 

bent layer is projected onto the point 𝐶ᇱ on the flat layer with the same in-plane distance to the 

tangential point 𝑆, such that 𝑆𝐶ᇱതതതതത ൌ 𝑆𝐶ෲ . From Eq. (7), we know that when the 2D Bravais lattice 



sits in the 𝑧 ൌ 0 plane and the electron passes through the 2D lattice at the origin point, the phase 

of the scattered field is 𝜙 ൌ 𝑘𝑟 ൅ 𝐆 ⋅ 𝐑ୟ.  However, when the free electron passes through the 

equivalent flat layer in Fig. s2, the phase equation should be modified to include the changes of 

the electron impacting position and the atomic position 𝐑ୟ.  

Vectors and their components in the 𝑥 െ 𝑦 ሺ𝑥ᇱ െ 𝑦′) frame are denoted without (with) prime. 

We repeat the scattered field calculation from Eqs. (1) to (6) in the 𝑥ᇱെ𝑧ᇱ frame with the 2D flat 

layer located at 𝑧ᇱ ൌ 𝑅 cosଶ 𝜃 and the electron passing by point 𝑂′ at time 𝑡 ൌ 0. The phase factor 

in the equation is thus 𝑒௜𝐆
ᇲ⋅𝐑౗ᇲ ା௜𝐐ᇲ⋅𝐑ᇲା௜௞೥ห௭ିோ ୡ୭ୱమ ఏหା௜௤೥ᇲோ ୡ୭ୱమ ఏ, where 𝑞௭ᇱ ൌ ൣ𝜔 െ ሺ𝐐ᇱ ൅ 𝐆ᇱሻ ⋅ 𝐯∥

ᇱ൧ 𝑣௭ᇱ⁄ , 

𝐯∥
ᇱ and 𝑣௭ᇱ are the electron velocity components in the 𝑥ᇱെ𝑧ᇱ frame, 𝐯 ൌ െ𝑣 sin𝜃 𝑥ොᇱ ൅ 𝑣 cos 𝜃 𝑧̂ᇱ, 

and 𝐑ୟ
ᇱ  is the atomic relative position in the 𝑥ᇱ െ 𝑦′ frame.  

We need to define 𝐑ୟ
ᇱ  in a way such that it maintains the match of the atomic positions 

between the bent layer and the flat layer around the tangent point 𝑆. The in-plane atomic position 

of the bent layer 𝐑ୟ ൌ 𝜎ଵ𝑥ො ൅ 𝜎ଶ𝑦ො  relative to the line 𝐴𝐶  is marked by the green arrow. 

Correspondingly, 𝐑ୟ
ᇱ  in the flat layer is defined relative to the point 𝐶ᇱ with |𝐑ୟ| ൌ |𝐑ୟ

ᇱ | under the 

condition of plastic bending. In the 𝑥ᇱ െ 𝑧ᇱ frame, 𝐑ୟ
ᇱ ൌ 𝜎ଵ𝑥ොᇱ ൅ 𝜎ଶ𝑦ොᇱ െ 𝐶ᇱ𝑂ᇱ𝑥ොᇱ ൌ 𝜎ଵ𝑥ොᇱ ൅ 𝜎ଶ𝑦ොᇱ െ

ሺ𝑅𝜃 ൅ 𝑅 cos𝜃 sin𝜃ሻ𝑥ොᇱ with the 2D origin point at 𝑂".  

Consequently, the phase of the waves in the 𝑥ᇱ െ 𝑦′  frame becomes 

𝑒௜𝐆
ᇲ⋅൫ఙభ௫ොᇲାఙమ௬ොᇲ൯ି௜ீೣᇲோఏା௜𝐐ᇲ⋅൫𝐑ᇲାோ ୡ୭ୱఏ ୱ୧୬ఏ௫ොᇲ൯ା௜௞೥ห௭ᇲିோ ୡ୭ୱమ ఏหା௜

ഘ
ೡ
ோ ୡ୭ୱఏ . We use the saddle point 

approach to derive the far-field phase, that is, 𝜙ሺ𝜃ሻ ൌ 𝐆ᇱ ⋅ ሺ𝜎ଵ𝑥ොᇱ ൅ 𝜎ଶ𝑦ොᇱሻ െ 𝐺௫ᇱ𝑅𝜃 ൅
ఠ

௩
𝑅 cos 𝜃 ൅

𝑘|𝐫 െ 𝑅 cos𝜃 𝑧̂|. It should be noted that we have 𝐆ᇱ ⋅ ሺ𝜎ଵ𝑥ොᇱ ൅ 𝜎ଶ𝑦ොᇱሻ ൌ 𝐆 ⋅ ሺ𝜎ଵ𝑥ො ൅ 𝜎ଶ𝑦ොሻ under the 

condition of plastic bending.  

The relation between the incidence angle 𝜃, its variation 𝛿 in the neighboring layer, and the 

interlayer distance 𝑑 is 𝑑 ൌ ௅

ୱ୧୬ఏ
െ ௅

ୱ୧୬ሺఏାఋሻ
≃ 𝐿 ୡ୭ୱఏ

ୱ୧୬మ ఏ
𝛿. The radius is related to the incidence angle 

𝜃  through 𝑅 sin𝜃 ൌ 𝐿 . The dispersion of radiation from the bent layers is obtained from 

 𝜙ሺ𝜃 ൅ 𝛿ሻ െ 𝜙ሺ𝜃ሻ ൌ 2𝑛𝜋, where 𝑛 is an integer. This leads to 

 
𝑘

𝑧 െ 𝐿 cot𝜃
|𝐫 െ 𝐿 cot𝜃 𝑧̂|

ൌ െ
2𝑛𝜋
𝑑

cos 𝜃 ൅
𝜔
𝑣
൅ 𝐺௫ᇱሺsin𝜃 െ 𝜃 cos 𝜃ሻ,  (8) 



which is Eq. (2) in the main text, with  𝐺௫ᇱ  replaced by 𝑔∥ and 
ଶ௡గ

ௗ
 replaced by 𝑔ୄ.  

 

Section 3 | The trajectory equation of the X-ray Airy beam 

From ray optical theory, Eq. (8) shows the 𝜃-dependent trajectory of the rays, as shown in Fig. 1b 

of the main text. The envelope equation of the rays can be obtained by combining Eq. (8) and its 

derivative, that is, 

 
𝑘

𝑧 െ 𝐿 cot 𝜃
|𝐫 െ 𝐿 cot𝜃 𝑧̂|

ൌ െ
2𝑛𝜋
𝑑

cos 𝜃 ൅
𝜔
𝑣
൅ 𝐺௫ᇱሺsin𝜃 െ 𝜃 cos 𝜃ሻ, 

𝑘
𝜕
𝜕𝜃

𝑧 െ 𝐿 cot 𝜃
|𝐫 െ 𝐿 cot𝜃 𝑧̂|

ൌ
𝜕
𝜕𝜃

൤െ
2𝑛𝜋
𝑑

cos 𝜃 ൅
𝜔
𝑣
൅ 𝐺௫ᇱሺsin𝜃 െ 𝜃 cos 𝜃ሻ൨. 

(9) 

Indeed, combing these two equations, we obtain the envelope equation 

 
|𝐫 െ 𝐿 cot𝜃 𝑧̂| ൌ

𝐿

െ2𝑛𝜋𝑐
𝑑𝜔 sinଷ 𝜃

ቈ1 െ ൬
2𝑛𝜋𝑐
𝜔𝑑

cos 𝜃 ൅
𝑐
𝑣
൰
ଶ

቉, (10) 

where we set 𝐺௫ᇱ ൌ 0 because our numerical results show that this component dominates over the 

contribution of all other in-plane reciprocal lattice vectors.  

The radius of the central layer is 𝑅, as indicated in Fig. s2. We also consider here another layer 

with radius 𝑅 ൅ 𝑡. The respective electron incidence angles are 𝜃଴ and 𝜃଴ ൅ δ𝜃, with sin𝜃଴ ൌ

𝐿/𝑅 and 𝐿 ୡ୭ୱఏబ
ୱ୧୬మ ఏబ

δ𝜃 ≅ 𝑡 under the condition 𝑡 ≪ 𝑅. Performing a Taylor expansion on both sides 

of Eq. (10), we have  
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(11) 

where cos𝜑଴ ൌ
ଵ

ఉ
൅ ௡ఒ

ௗ
cos 𝜃଴  and cos 𝜃଴ ൌ ට1 െ ቀ௅

ோ
ቁ
ଶ

. The first term following the last equality 

represents the focal distance of the Airy beam, while the second term stands for the caustic axial 

distribution. 



Section 4 | Justifying the substitution of a bent layer by a flat layer 

   

Figure s3 | Error produced by substituting a bent layer by a flat layer. The flat layer is 
tangential to the bent layer at point 𝑆, which is the electron impact point on the bent layer. The 
difference between the electron scattered fields in the two types of layers is estimated by discussing 
the phase difference of the dipoles on the two layers within the range of the electron Bohr cutoff 
(𝐿୆୭୦୰ൌ𝑣𝛾/𝜔), where 𝑣 is the electron velocity, 𝛾 is the Lorentz contraction factor, and 𝜔 is the 
angular frequency.  

We use a flat crystal layer to substitute the bent crystal layer in our calculation. In what follows, 

we justify the approximation by comparing the phase difference of the electron excited dipoles on 

the flat layer and the bent layer within the Bohr cutoff range 𝐿୆୭୦୰ൌ𝑣𝛾/𝜔 , where 

𝛾ൌ 1 ඥ1 െ 𝑣ଶ 𝑐ଶ⁄⁄  is the Lorentz contraction factor. We note that 𝐿୆୭୦୰ measures the distance up 

to which the free electron field takes significant values (i.e., its spatial extension away from the 

electron trajectory). The Bohr cutoffs for (1) a 300 keV electron and 3 keV photon energy, (2) a 1 

MeV electron and 3 keV photon energy, and (3) a 10 MeV electron and 10 keV photon energy are 

(1) 0.08 nm, (2) 0.18 nm, and (3) 0.40 nm, respectively.  

The phase variation of the field supplied by a free electron moving along the 𝑧 direction is 

𝜔𝑧/𝑣. Therefore, the phase difference of the electron excited dipoles on two consecutive layers 

along the electron trajectory at the Bohr cutoff is 
ఠ

௩
Δℎ, as shown in Fig. s3. We have Δℎ ൌ ஺஻ିோ

ୡ୭ୱఏ
 



by applying the approximation that 𝑂𝐵 is parallel to 𝑂𝐴 under the condition that 𝐿୆୭୦୰ ≪ 𝑅, since 

𝐴𝐵 െ 𝑅 ൌ ோ

ୡ୭ୱఈ
െ 𝑅 ൌ ఈమ

ଶ
𝑅 , Δℎ ൌ ଵ

ଶ
ቆ
ಽా౥౞౨
ౙ౥౩ഇ

ோ
ቇ
ଶ

ோ

ୡ୭ୱఏ
ൌ ଵ

ଶ

௅ా౥౞౨
మ

ோ ୡ୭ୱయ ఏ
. The phase difference is thus 

ఠ

௩
Δℎ ൌ ఉఊమఒ

ସగோ ୡ୭ୱయ ఏ
, where 𝛽 ൌ ௩

௖
. When the phase difference satisfies 

ఠ

௩
Δℎ ≪ గ

ଶ
, the substitution is 

justifiable. In the main text, the kinetic energy of the electron is set to 1 MeV, the photon energy 

is 3 keV, the bending radius is 𝑅 ൌ 5 μm, and the incidence angle is 𝜃 ≃ sinିଵ ቀସ
ହ
ቁ, and therefore, 

we have 
ఠ

௩
Δℎ ≃ 10ିସ ≪ 1.  

 

Section 5 | X-ray Airy beam from elastically bent vdW materials  

 

Figure s4 | Lattice variation of an elastic bending multilayer structure (cross section). The 
red curve represents the length-invariant surface. The double arrows represent the in-plane lattice 
constants, which are directly proportional to the radii.  

 



 

Figure s5 | Caustic X-ray beam from a cylindrically bent multilayer WSe2 heterostructure 
modelled in the (a) elastic bending and (b) plastic bending configurations. In the elastic 
bending model, the in-plane lattice constants are extended or compressed during the bending 
process, so the in-plane reciprocal lattices are correspondingly scaled down or up. In the plastic 
bending model, the in-plane lattice constants and reciprocal lattices remain invariant. The 
numerical results in both configurations are nearly identical because the caustic beam is mainly 
contributed by a zero in-plane reciprocal lattice vector.  

If the multilayers are perfectly glued together, they bend as a single plate following the continuum 

mechanics plate theory. We consider a cylindrically bent plate with the cross section shown in Fig. 

s4. The red curve is the length-invariant neutral surface, away from which the layers are extended 

(e.g., the purple curved surface) or compressed (e.g., the blue curved surface) parallel to it by 



scales that are proportional to the distances from the neutral surface, and therefore, the magnitudes 

of in-plane reciprocal lattice vectors are inversely proportional to the radii. In Fig. s5, we compare 

the X-ray Airy beam generated from a bent WSe2 multilayer structure modelled as elastic bending 

(Fig. s5a) or plastic bending (Fig. s5b). The numerical results show that there is no significant 

difference between the two results, as the specific Airy beam plotted in the image is mainly 

contributed by the zero reciprocal lattice vector.  

 

Section 6 | Photon density operator  

The reduced density operator of the photons is 𝜌୮୦ ൌ Trୣ୪ୣሺ|𝑓⟩⟨𝑓|ሻ, which is constructed from the 

final states of the joint system |𝑓⟩ ൌ ∑ ଵ

√௏
𝜓ሺ𝐤,𝐩′ሻ|𝐩′⟩𝐩ᇲ,𝐤 ⨂|1𝐤⟩. We can also write 𝜌୮୦ as 

 
𝜌୮୦ ൌ

1
𝑉
෍෍𝜓ሺ𝐤,𝐩′ሻ𝜓∗ሺ𝐤′,𝐩′ሻ|1𝐤⟩

𝐤,𝐤ᇱ

⟨1𝐤ᇱ|
𝐩ᇱ

. (12) 

 

Section 7 | Quantum aspects of the generation of X-ray caustics  

For regular periodic crystals, the vector potential modes are written from Bloch’s theorem as4  

  𝐀ሺ𝐫ሻ ൌ ෍ 𝐀𝐠,𝐤𝑒௜
ሺ𝐤ା𝐠ሻ⋅𝐫

ሼ୬ሽ,𝐤

൅ 𝑐. 𝑐.ൌ ෍ 𝐮𝐠,𝐤𝑒௜
ሺ𝐤ା𝐠ሻ⋅𝐫𝑎𝐤

ሼ୬ሽ,𝐤

൅ c. c.,  (13) 

where the ሼnሽ sum runs over the reciprocal lattices. The crystal structure of a bent vdW material 

is aperiodic because the crystal lattice rotates gradually along the electron trajectory, as shown in 

Fig. 1b of the main text. Therefore, the amplitude 𝐮𝐠,𝐤ሺ𝐫ሻ and the reciprocal lattice vector 𝐠ሺ𝐫ሻ are 

not constant but position dependent.  

The initial electron-photon state is described as |𝑖⟩ ൌ ∑ ଵ

√௏
𝜓ሺ𝐩ሻ|𝐩⟩𝐩 ⨂|0⟩ , where 

∑ ଵ

√௏
𝜓ሺ𝐩ሻ|𝐩⟩𝐩  is the superposition of electron momentum states |𝐩⟩ and  |0⟩ is the photon vacuum 

state. The final electron-photon state is |𝑓⟩ ൌ ∑ ଵ

√௏
𝜓ሺ𝐤,𝐩′ሻ|𝐩′⟩𝐩ᇲ,𝐤 ⨂|1𝐤⟩. From Eq. (12), we 



know that the interference of different photon states relies on the overlap of the spectral function 

𝜓ሺ𝐤,𝐩′ሻ. From the perturbation theory of quantum electrodynamics (QED),  

𝜓ሺ𝐤,𝐩′ሻ

ൌ െ
𝑖
ℏ
න 𝑑𝑡ଵ෍𝜓ሺ𝐩ሻ ർ1𝐤,𝐩′ฬ𝑒

௜
ℏுబ

ሺೞሻ௧భ ቄെ
𝑞
𝑚𝐏 ⋅ 𝐀ሺ𝐫ሻቅ 𝑒ି

௜
ℏுబ

ሺೞሻ௧భฬ0,𝐩඀
𝐩

௧

଴
 

(14) 

 

To evaluate the above equation, we proceed as follows: 

ർ1𝐤,𝐩′ฬ𝑒
௜
ℏுబ

ሺೞሻ௧భ ቄെ
𝑞
𝑚𝐏 ⋅ 𝐀ሺ𝐫ሻቅ 𝑒ି

௜
ℏுబ

ሺೞሻ௧భฬ0,𝐩඀

ൌ෍ർ 𝐩′ቚെ
𝑞
𝑚𝐏 ⋅ 𝐮𝐠,𝐤𝑒௜

ሺ𝐤ା𝐠ሻ⋅𝐫ቚ𝐩඀ 𝑒
௜
ℏቀିா೛ାா೛ᇲାℏఠೖቁ௧భ

ሼ୬ሽ

, 

where 𝐸௣ᇲ, 𝐸௣, and ℏ𝜔௞ are the energies of the electron final state, the electron initial state, and 

the emitted photon, respectively. The evaluation of ർ 𝐩′ቚെ ௤

௠
𝐏 ⋅ 𝐮𝐠,𝐤𝑒௜

ሺ𝐤ା𝐠ሻ⋅𝐫ቚ𝐩඀ cannot be carried 

out analytically because both 𝐮𝐠,𝐤 and 𝐠 are position dependent for aperiodic crystals. We denote 

it as the transition matrix element ℳ௞௣௣ᇲ. Then Eq. (16) becomes 

  𝜓ሺ𝐤,𝐩ᇱሻ

ൌ െ
𝑖
ℏ
෍ 𝜓ሺ𝐩ሻ ർ 𝐩′ቚെ 𝑞

𝑚𝐏 ⋅ 𝐮𝐠,𝐤𝑒௜
ሺ𝐤ା𝐠ሻ⋅𝐫ቚ𝐩඀

𝐩,ሼ୬ሽ

න 𝑑𝑡ଵ𝑒
௜
ℏቀିா೛ାா೛ᇲାℏఠೖቁ௧భ

௧

଴

ൌ െ
𝑖
ℏ
෍ 𝜓ሺ𝐩ሻℳ௞௣௣ᇲ

𝐩,ሼ୬ሽ

𝑇𝛿ா೛ᇲାℏఠೖ ,ா೛  

 

(15) 

where the energy conservation equation 𝑇𝛿ா೛ᇲାℏఠೖ,ா೛ ൌ ׬ 𝑒
೔
ℏ
ቀିா೛ାா೛ᇲାℏఠೖቁ௧భ𝑑𝑡ଵ

௧
଴  is applied and 𝑇 

is the interaction time.  
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