

**1 Supplementary Information for
2 Collective optical behavior from coupled quantum dots
3 visualized by wavelength-resolved and polarization-resolved
4 super-resolution microscopy**

5 *Duncan P. Ryan^{1,*}, Megan K. Dunlap², Jennifer A. Hollingsworth¹, Somak Majumder¹,
6 Martin P. Gelfand³, James H. Werner¹, Alan van Orden², and Peter M. Goodwin¹*

7 ¹Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New
8 Mexico, 87545, USA

9 ²Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA

10 ³Department of Physics, Colorado State University, Fort Collins, Colorado, 80523, USA

11 *E-mail: ryand@lanl.gov

12 I QD characterization

13 CdSe/CdS core/shell QDs were synthesized according to procedures described by Chen,
14 *et al.*[1] Figure S1a illustrates a representative TEM image of the final particles. This
15 protocol utilizes slow growth to produce high-quality QDs. Particles were faceted with
16 narrow shape and size distributions. The ensemble emission profile, Fig. S1b, is a single
17 emission wavelength centered at 636 nm. The single-particle spectral bandwidth reported
18 in[1] is $\sigma = 10.2$ nm while the ensemble emission profile has a spectral width of $\sigma = 14.5$ nm,
19 indicating a narrow distribution of emission centers. When assembled into nanoassemblies,
20 this distribution of wavelengths results in some particles taking on the role of donors and
21 others acceptors for energy transfer. Figure S1c shows the distribution of CdSe sizes after
22 core synthesis and the distribution of the final QD sizes after capping with CdS shells. In the
23 size regime below 10 nm, QD-QD separation distances after clustering can be small enough to
24 facilitate energy transfer with modest to low efficiency. Therefore, emission from donor QDs
25 are not completely quenched and can be substantial enough to provide robust fluorescence
26 localization.

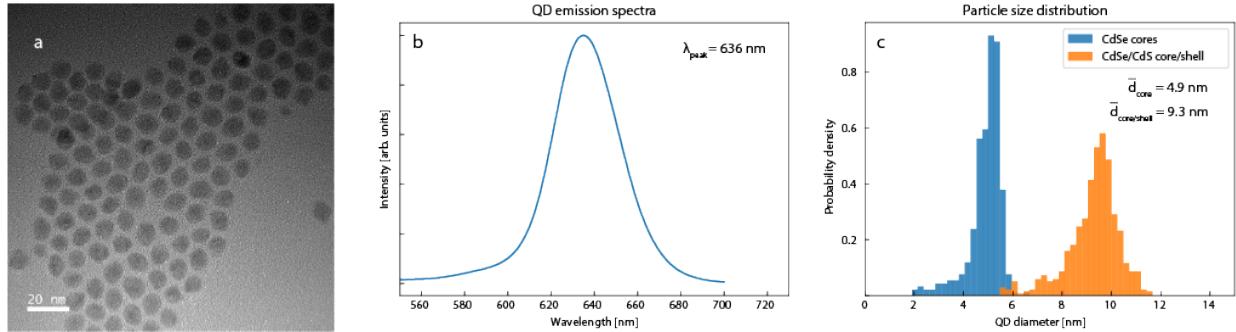


Figure S1: **QD characterization.** **a**, TEM image of QD sample. The aggregation shown is due to the drying, wicking individual QDs together, and is a different clustering/concentrating process than the one used to form nanoassemblies for optical imaging experiments. Additionally, inter-particle gaps are not present in QD nanoassemblies. **b**, Emission profile of QD sample. Ensemble peak emission was 636 nm. **c**, Histogram of QD diameters measured from TEM images. 578 QDs were used to generate the core/shell probability distribution.

27 II Rotation consistency

28 To demonstrate the instrumentation and analysis methods of dual-color polarization mi-
 29 croscopy are sensitive to expected orientation changes, a sample of QDs was imaged in two
 30 known orientations. QDs were imaged in an initial orientation, the sample was unmounted
 31 from the microscope, rotated 90° counter-clockwise, remounted, and the same constellation
 32 of QDs imaged a second time with the different orientation. Figure S2 shows orientation
 33 analysis results for a representative QD. The orientation features, initially aligned north-
 34 south (along y -axis in sample plane), were rotated to east-west (along x -axis in sample plane)
 35 in the physically rotated image series. The minor discrepancy of the polar angle θ changing is
 36 within the uncertainty and scatter of the two measurements. Additionally, the physical rota-
 37 tion moved spots into different regions of the FOV. Different channel correction factors were
 38 necessarily applied based on the translated spot locations. The consistency of expected ori-
 39 entation signatures further demonstrates the analysis methods required to extract accurate
 40 orientation information about an emitter.

41 Although the QDs presented in this work generally exhibited similar azimuthal angles
 42 ϕ , this appears to be coincidental. As shown in Figs. S2 and S15, other orientations were
 43 observed, but were uncommon in the datasets presented in this study.

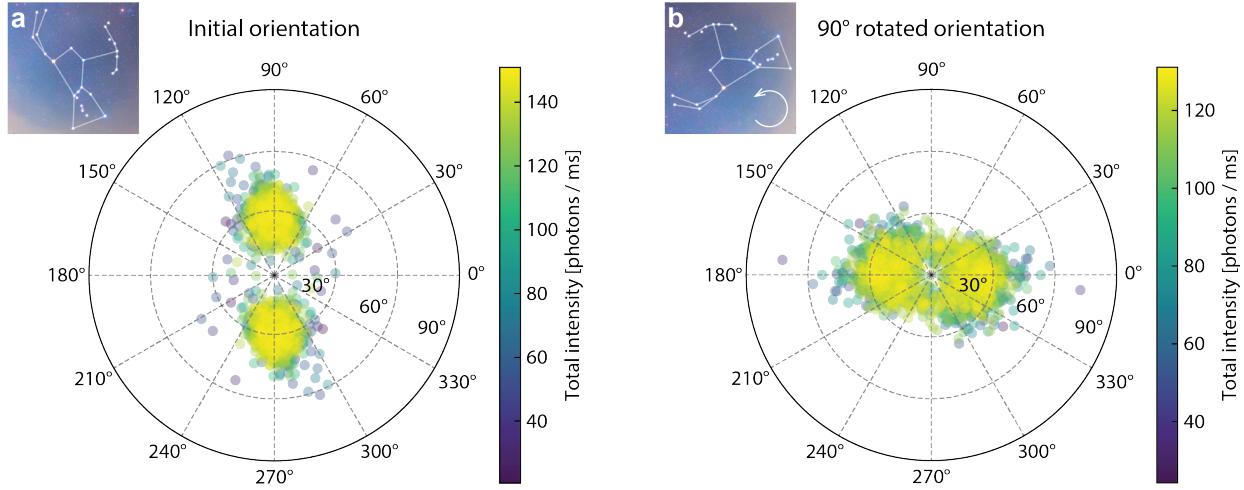
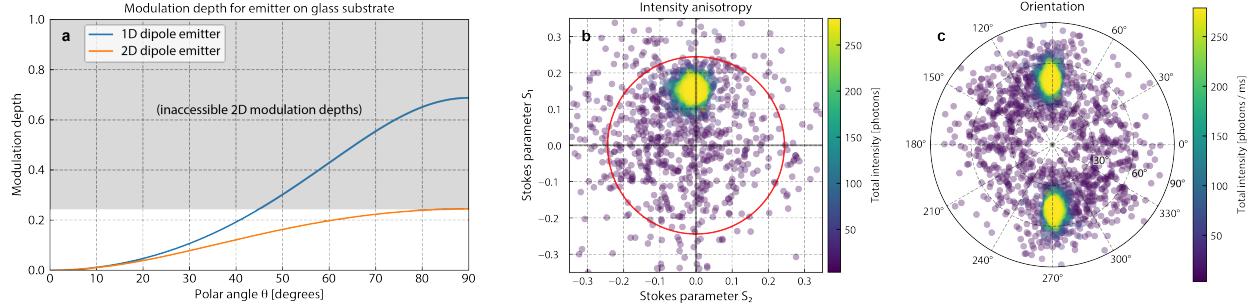


Figure S2: **Sample rotation.** **a**, Orientation projection of a single QD as initially mounted on microscope. **b**, Orientation projection of the same QD after the coverslip was rotated 90° counter-clockwise and remounted. The orientation information extracted from polarization measurements correctly registered the physical rotation of the sample.

44 III Orientation analysis


45 While the azimuthal angle ϕ of an emitter can be obtained directly from the Stokes parameters S_0 , S_1 , and S_2 up to a degeneracy of 180°, the polar angle θ requires a more
46 comprehensive description of the imaging system and the emitter itself. Lethiec *et al.*[2]
47 formulated a model describing the polarized emission generated by 1D and 2D dipole emitters
48 in various imaging configurations. In that work, the signal modulations generated by a
49 rotating analyzer setup is related to θ through
50

$$P_{1D}(\theta) = \frac{C \sin^2 \theta}{(2A - 2B + C) \sin^2 \theta + 2B}$$

$$P_{2D}(\theta) = \frac{C \sin^2 \theta}{-(2A - 2B + C) \sin^2 \theta + 4A + 2C}$$

51 where the variables A , B , and C are given in [2] and are dependent on parameters of the
52 imaging system. Figure S3a shows the dependence of the modulation depth on the tilt angle θ
53 of the emitter. The use of a high-NA objective and the 2D nature of the emission restrict the
54 range of modulation depths that can be observed. The camera-based configuration presented
55 in this work measures signals from four fixed analyzer angles. While the analysis framework
56 by Lethiec *et al.* is based on a continuously rotated analyzer, the theory may be applied to
57 other setups. The Stokes polarization factor p measured by a camera-based experiment is
58 equivalent to the modulation depth of a rotating analyzer.

59 The nature of the dipole emission from semiconductor QDs has seen modest attention in

Figure S3: Polar angle calculation. **a**, Calibration curves from Lethiec model for a 1D (blue) and 2D (orange) dipole emitter. The models were calculated for an emitter with emission at 630 nm located on the glass/air interface of a coverslip (index of refraction $n = 1.518$) and with the emission collected by a 1.50 NA objective. Given the high NA of the objective, modulation depths among the polarization channels are limited. For 2D dipole emitters, such as QDs, modulation depths greater than ~ 0.25 are not predicted by the model. **b**, After applying corrections for the optical path efficiencies, anisotropy values among orthogonal polarization intensity pairs were calculated to determine orientation. Correlation plots of the two anisotropy values (rotated and non-rotated polarization optical paths) determine the final orientation: the angle relative to the x -axis indicates $\phi/2$, and the radius corresponds to the modulation depth. The model in **a** is used to calculate θ . The red circle indicates the maximum radius/modulation depth for the model of a 2D emitter. Measurements beyond this radius cannot be converted into angles. **c**, The orientation depiction of the data in **b**.

literature[3–7]. QDs are generally categorized as 2D dipole emitters. However, evidence for elliptical 2D emission[4] and 2D+1D transition moments[6] has been shown. These studies combined polarization anisotropy measurements and defocused imaging, demonstrating the anisotropy method of measuring orientation can be skewed for QD systems with complex dipole moments. While defocused imaging can elucidate the nature of the dipole emission, super-resolution localization precision suffers as a result. The CdSe/ZnS semiconductor system (different capping shell than this work) has been the most extensively studied for these complex signatures, and lattice strain has been identified as impacting fluorescence behaviors in this system[8, 9]. Poor-quality QDs can exhibit polycrystallinity and have irregular shapes, further complicating emission polarization. However, the CdSe/CdS system exhibits less lattice strain due to mismatch, and the QDs in this work were synthesized with a slow growth protocol that produced high-crystalline purity and regular shapes. Lethiec, *et al.*[2] demonstrated CdSe/ZnS QDs may be 2D+1D, but the distribution of anisotropy measurements from CdSe/CdS QDs fit the model for 2D emission. Thus, the application of the 2D emission model is justified for the QDs in this study.

Figure S3 illustrates the steps to calculate orientation (θ and ϕ) from the Stokes anisotropy parameters (S_1 and S_2). Analysis for a single QD is shown. The range of valid modulation depths for a 2D emitter is indicated in Fig. S3a, which is represented by a red circle in the

78 correlation plot of the Stokes anisotropy parameters, Fig. S3b. The angle of a marker relative
79 to the positive x -axis indicates $\phi/2$ and the radius is a measure of the modulation depth (*i.e.*
80 the Stokes polarization parameter p). All individual QDs and QD nanoassemblies studied
81 in this work exhibited polarization parameters smaller than the maximum predicted for a
82 2D emitter. Figure S3c shows the mapping of the radial and angular components of the
83 anisotropy plot onto the 2D dipole emission model, producing the orientation plot.

84 IV Spectral calibration

85 To calculate the spectral signature from the distribution of intensities into the red and blue
86 channels of a given polarization component, we followed the procedure outlined in[10] with
87 modifications for the two passes of the dichroics. After encountering the second dichroic
88 beamsplitter, a fraction of the photons are lost because they do not continue along an
89 imaging path. Thus, the spectral response functions $f_i^2(\lambda)$ serve to determine the photon
90 flux into the detection arm of the microscope, increasing intensity estimates to account
91 for losses from the dichroic beamsplitters. The polarization components separated by the
92 polarization optics are aligned along either the S- or P-polarization directions of the dichroic
93 optics (see Fig. 1). Thus, the spectral response functions must correspond to the appropriate
94 S- or P-polarization for analysis. The manufacturer spectral response curves for the 624
95 dichroic beamsplitters (Semrock) were used for spectral calculations. Figure S4a shows the
96 transmission of the dichroics for S- and P-polarization after convolution with the bandwidth
97 of a single QD. The single-pass (dashed) and double-pass (solid) transmission curves are
98 displayed, illustrating the losses from uncollected light, but only the double-pass curves are
99 used for analysis. Because of losses, reflection curves are not complimentary functions to the
100 transmission curves. That is,

$$R_i \equiv (1 - f_i(\lambda))^2 \leq 1 - f_i^2(\lambda)$$

101 Following the procedure in[10], spectral response functions are used to generate calibra-
102 tion curves that map measured intensities of the red and blue channels onto wavelength.
103 Figure S4b shows the calibration curves for single- and double-pass of the dichroics. If the
104 double-pass is not considered, the calibration curve can result in spectral errors in excess
105 of 5 nm. Furthermore, the spectral anisotropy value η has a more limited range if only
106 single-passes are considered than when two passes are considered. Among the QDs studied
107 in this work, η values that could only be valid with the double-pass treatment of the spectral
108 response function were frequently encountered.

109 The raw wavelength calculation (see Spectral analysis in the Methods section) and the
110 spectral-intensity distributions shown in this work use an approximation of the calibration
111 curves presented in Fig. S4b to depict the uncertainty associated with the spectral calcu-
112 lations. Reference[10] discusses the process and accuracy of the approximation. S- and

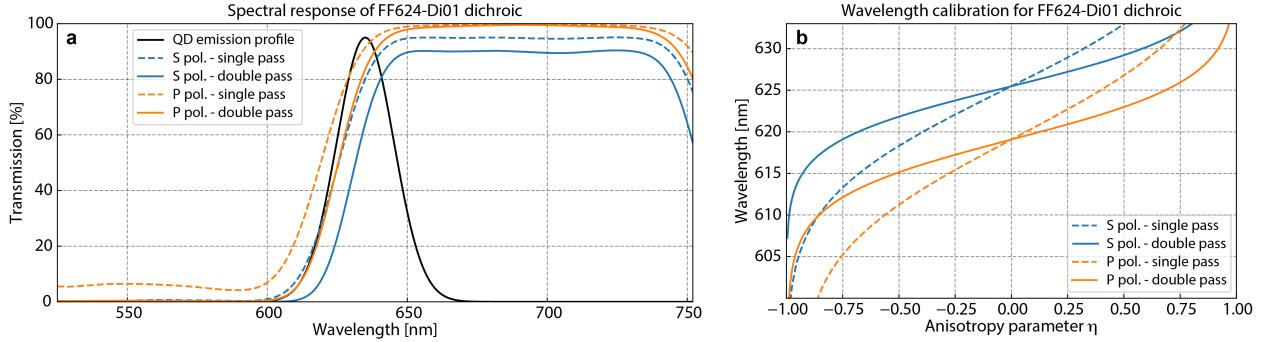


Figure S4: **Dichroic calibration.** **a**, Theoretical S-polarization (blue) and P-polarization (orange) response curves of the 624 dichroic beamsplitters. The responses of single transmission passes are shown as dashed lines, and the system responses after two passes are shown as solid lines. The 10.2 nm spectral bandwidth of the QDs is shown in black for reference. **b**, Wavelength calibration curves for the S polarization (blue) and the P polarization (orange) signals using the spectral response curves of **a**. If only a single transmission/reflection pass is considered, the calibration curves (dashed lines) are significantly different and have smaller ranges of valid anisotropy values η . The double-pass curves (solid lines) were used to calibrate spectral features in this work and encompass η ranges that were found in the experimental data.

	$a \approx \lambda_{Di}$ [nm]	$b \approx \sqrt{2}\sigma$ [nm]	$c \approx 1$	$d \approx 0$
S polarization	625.51	7.95	1.005	-9.77×10^{-4}
P polarization	619.01	8.46	1.012	1.12×10^{-3}

Table S1: Parameters for the analytical expression of wavelength. The parameters were determined from fitting the approximation expression to the wavelength calibration curves generated from the spectral response functions.

113 P-polarization channels require different parameter sets for the approximation. Table S1
 114 summarizes these parameter sets, determined from the spectral response functions of the
 115 624 nm dichroic beamsplitters.

116 The application of the spectral calibration to a single QD is shown in Fig. S5. Scatter
 117 plots of the intensity and spectral anisotropy η for each polarization component (top row,
 118 a-d) illustrate the first step of the spectral calculation. Each marker indicates the results
 119 from a single frame. Spectral-intensity distributions (bottom row, e-h) apply the spectral
 120 calibration curves (Fig. S4) to the anisotropy data, compiling the results from individual
 121 frames into a probability map that incorporates the uncertainty of the intensity and spectral
 122 calculations, as well as the frequency a given emission state was visited.

123 A grouping of the spectral signatures of the two S-polarization channels and the two P-

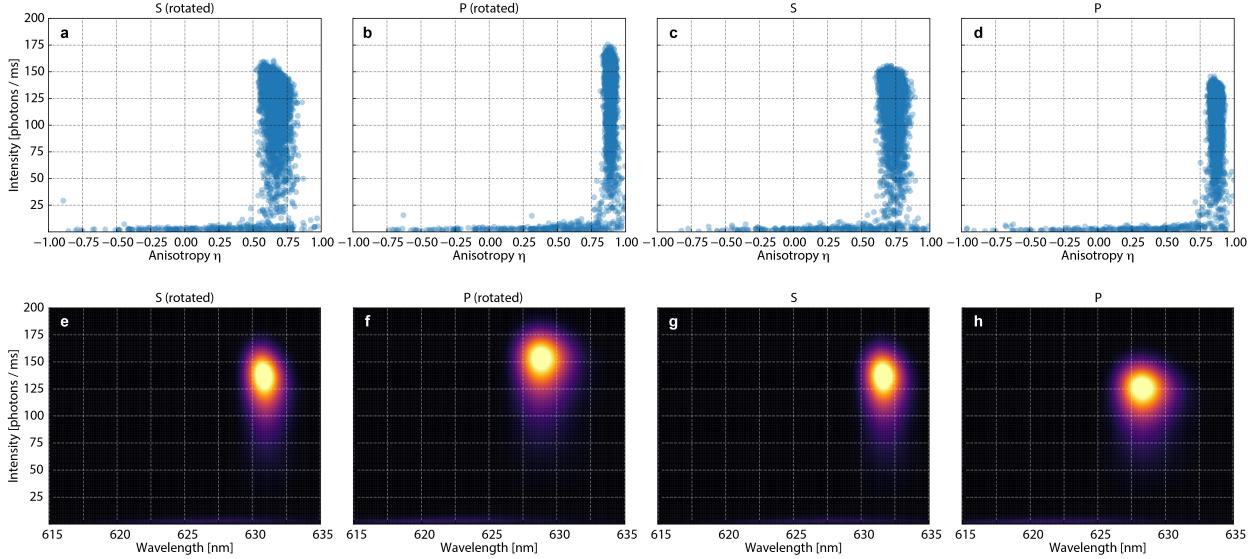


Figure S5: **Spectral calibration.** **a–d**, The raw anisotropy values η from comparing blue/red channel intensities of each polarization optical path for the single QD example in the manuscript. Because of the different S/P polarization response curves of the dichroic beamsplitters, the two S optical paths (rotated and non-rotated) are similar to each other but different from the P optical paths. **e–h**, Spectral-intensity distributions of the same QD for each polarization optical path. After applying the relevant calibration curve (see Fig. S4b), the spectral features look more consistent across all polarization optical paths. The widths of the distributions are also similarly matched across the different paths.

124 polarization channels was observed. P-polarization channels generate wavelength signatures
 125 ~ 3.5 nm shorter than the S-polarization channels in Fig. S5e–h. This discrepancy is due to
 126 the change of dichroic response as a function of the angle of incidence (AOI). To separate the
 127 polarization images on the cameras, small propagation angles are introduced into each path
 128 with the turning mirrors located before the polarizing beamsplitter. Therefore, the AOIs on
 129 the dichroic beamsplitters are $45^\circ \pm \gamma$, where γ is small. The transition wavelengths of the
 130 dichroics are linear with AOI near 45° . This feature manifests as a small wavelength offset
 131 in each polarization channel. Without incorporating the AOIs explicitly into the spectral
 132 response functions $f_i^2(\lambda)$, the true wavelength of an emitter is the average of the S- and
 133 P-polarization results because the AOIs and angular responses are symmetric around 45° .
 134 An additional contributing factor to the discrepancies is that the spectral calculations do not
 135 apply corrections related to the optical path efficiencies. However, the red channel of a given
 136 polarization component is imaged onto one camera and the blue channel is imaged onto the
 137 other camera. Differences of dirt on the sensor, sensor quantum efficiency, and camera gain
 138 calibration can impact spectral results. However, these effects are less significant than AOI
 139 considerations.

140 A summary of the median wavelength and peak emission intensity for 20 single QDs

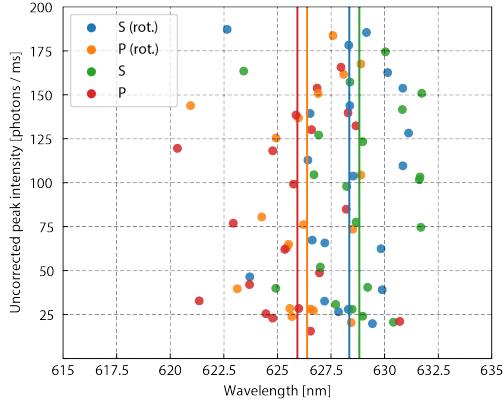


Figure S6: **Spectral characterization of single QDs.** The distribution of single QD spectral and intensity features to demonstrate single-particle characterization of the QD sample batch. Each marker represents the median wavelength and peak emission intensity over the duration of 4,000 frames for an individual QD.

141 is shown in Fig. S6, illustrating the distribution of emission properties for a collection of
 142 particles. Such spectral variation shows how donor/acceptor roles emerge from a batch of
 143 the same species of QDs, despite the monodisperse QD sample. The polarization component
 144 sample averages are indicated by solid lines and demonstrate the same grouping between
 145 S- and P-polarizations as described previously. We note that the average wavelength from
 146 single particle measurements is \sim 10 nm shorter than the in-solution ensemble characteriza-
 147 tions shown in Fig. S1. Studies have reported no significant spectral shifts between toluene
 148 ensemble measurements and QDs embedded in PMMA[11]; however, QDs in air were not
 149 examined and ligands specific to the Chen *et al.*[1] synthesis method were not investigated.

150 V Optical path efficiency corrections

151 Correction factor maps calculated from QD films (see Methods section) are shown in Fig. S7
 152 for two imaging configurations: polarization-only measurements and dual-color polarization
 153 measurements. For the former, the dichoric beamsplitters necessary to determine emitter
 154 wavelength were not installed, and, for the latter, the dichroics were installed, requiring the
 155 additional spectral considerations described above. In all configurations and polarization
 156 components there were regions within the FOVs that required non-trivial corrections to
 157 calculate orientation from intensity information. The non-uniform correction factors across
 158 the FOVs can be due to a variety of factors, including: clipping/occultation along the
 159 optical paths from optical mounts, imperfect intensity splitting from the 50/50 and polarizing
 160 beamsplitters, non-uniform transmission through optical elements such as lenses due to dirt,
 161 and the spectral and polarization responses of individual optical elements. Blue channels
 162 require the most significant corrections for both S- and P-polarization components. To

163 the best of our knowledge, generating calibration maps that consider spatial variation, as
164 opposed to single-valued correction values, is a new approach to polarization microscopy,
165 and this work is the first demonstration of the correction method.

166 When correction factors are not applied, the resulting Stokes parameters will not accu-
167 rately reflect the magnitudes of the polarization components. To illustrate the effects of not
168 addressing correction factors or their spatial distributions, Fig. S8 shows maps of the Stokes
169 parameters S_1 and S_2 for the films presented in Fig. S7 (*i.e.* parameters calculated directly
170 from channel intensities without corrections). The films produce ensemble averaged emission
171 that are orientationally isotropic, which would correspond to Stokes parameters $S_1 = S_2 = 0$.
172 However, all imaging configurations and color channels result in skewed values for the Stokes
173 parameters. Within the red channels, the Stokes parameters are skewed both positively and
174 negatively, depending on the location in the FOV. Such spatial variation demonstrates the
175 need for correction factors to be dependent on the location of the emitter being analyzed.

176 Propagating the skewness of the Stokes parameters S_1 and S_2 , Fig. S9 illustrates the
177 resulting bias of the azimuthal angle ϕ and Stokes polarization parameter p due to the
178 spatial variations of the optical path efficiencies. The bias in p is small for the polarization-
179 only configuration and the red channel. However, the blue channel exhibits values in excess
180 of the maximum modulation depth predicted for a 2D emitter, a condition that should only
181 be available to a 1D emitter (see Fig. S3a and orientation analysis section above).

182 Optical path calibration measurements of QD films are valid at the red-shifted wave-
183 lengths of the films. The spectral terms of the correction factors need to be adjusted for
184 single particle analyses at the appropriate wavelength of the emitter. Figure S10 shows
185 spectral maps of the calibration dataset used to calculate correction factors in the dual-color
186 configuration. From each polarization optical path, red/blue channel pairs determine spec-
187 tral maps over the FOVs. The ratio of the spectral response functions (see Methods section)
188 utilizes the film wavelength maps to determine the fraction of undetected photons from the
189 correction factor dataset to adjust for the fraction of undetected photons at the wavelength
190 of an emitter of interest. The spectral maps in Fig. S10a are spatially uniform, contrary to
191 the clear spatial heterogeneity of the source maps (the correction factor maps in Fig. S7).
192 Because the spectral maps of the calibration films are uniform, matching an emitter's lo-
193 cation within these maps is less significant for the spectral correction, unlike the correction
194 factor maps. Similar to the QD spectral example in Fig. S5, the two S-polarization compo-
195 nents and the two P-polarization components are different due to the AOI on the dichroic
196 beamsplitters.

197 Figure S11 demonstrates the application of correction factors for the orientation calcula-
198 tion of a single QD. The same QD was imaged in both a polarization-only configuration and
199 a dual-color configuration. The top row shows the raw Stokes anisotropy parameters S_1 and
200 S_2 when no corrections are applied. Each channel generates a feature with a different phase
201 (corresponding to different orientation azimuthal angles ϕ) and radius (Stokes polarization

parameter p). For the case of combined red/blue channels, the feature corresponds to the average of the individual components. As expected from the significant skewness in the blue channels (see Fig. S8), the feature is positioned deep into the positive S_1 and S_2 quadrant and is outside the limits of a 2D emitter (red circle). Without correction, the blue channel data cannot be transformed into a polar angle. When the correction factors are applied for the appropriate spatial location of the spot and emission wavelength (bottom row), all channels and imaging configurations produce the feature at the same location in the polarization anisotropy scatter plots. Furthermore, the dual-color measurements that require the more extensive spectral adjustments due to photon losses produce the same results as the polarization-only measurements.

The effects of the correction factors for a several single QDs are summarized in Fig. S12. The before (open circles) and after (crosses) Stokes anisotropy scatter illustrate the systematic skewness of the red and blue channels. Each marker represents the average S_1 and S_2 value from a time-series measurement.

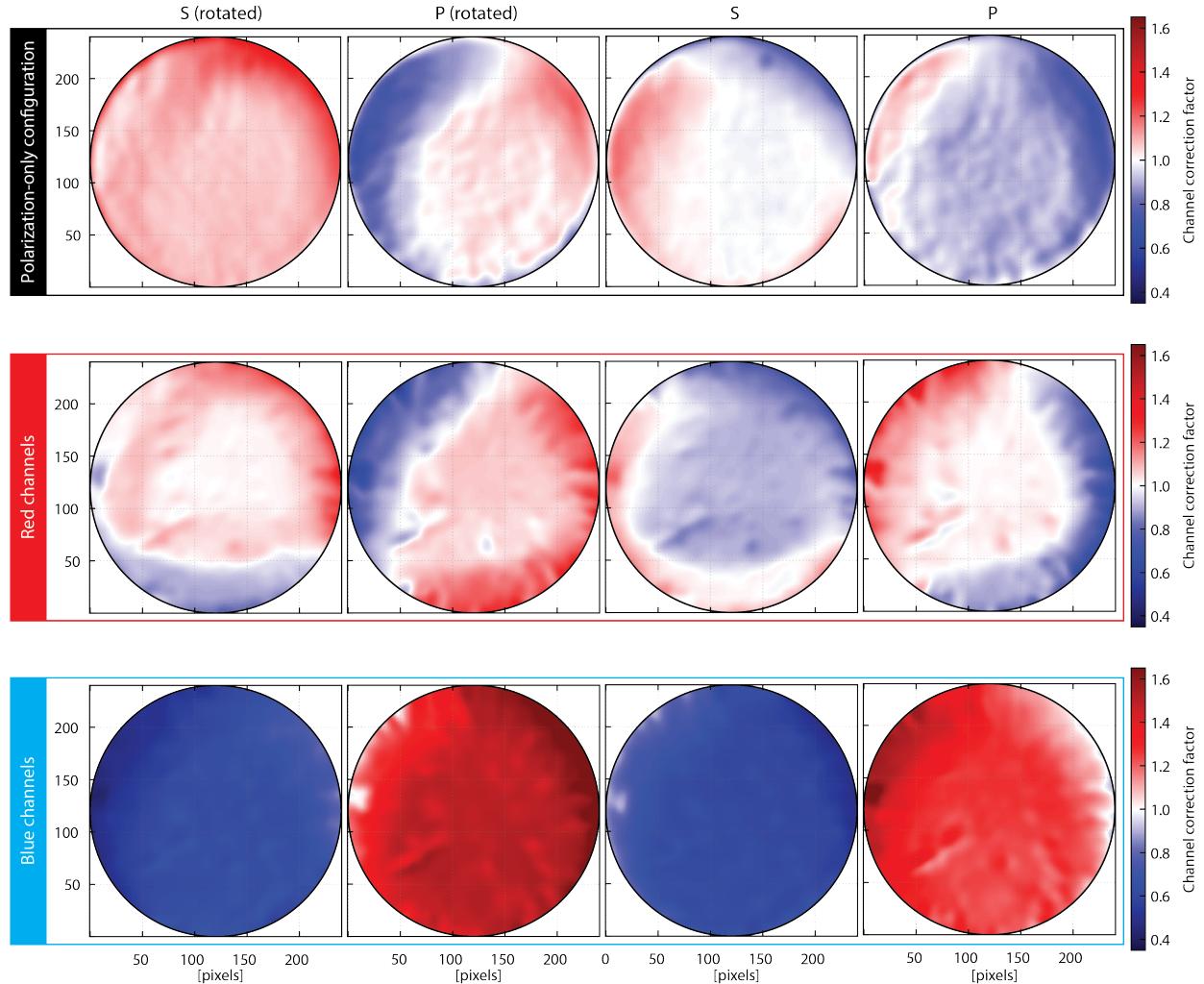
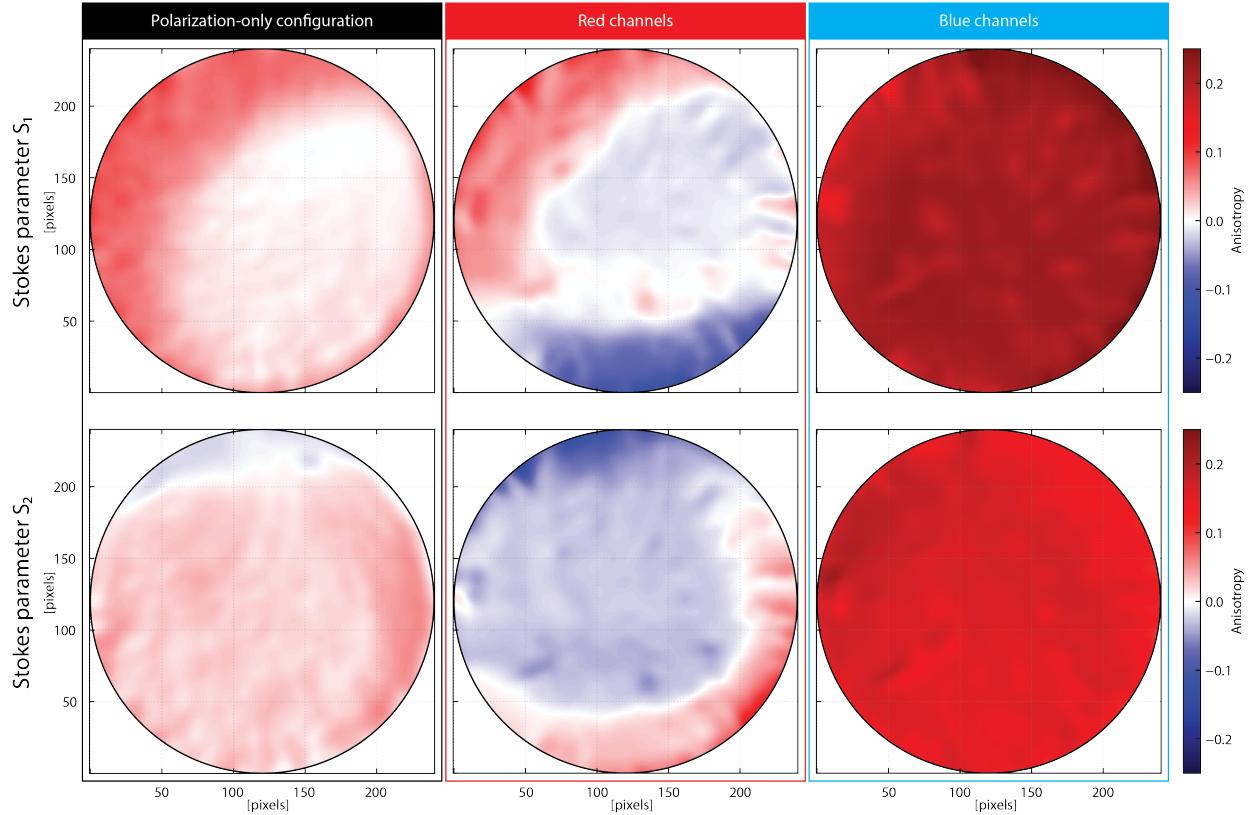
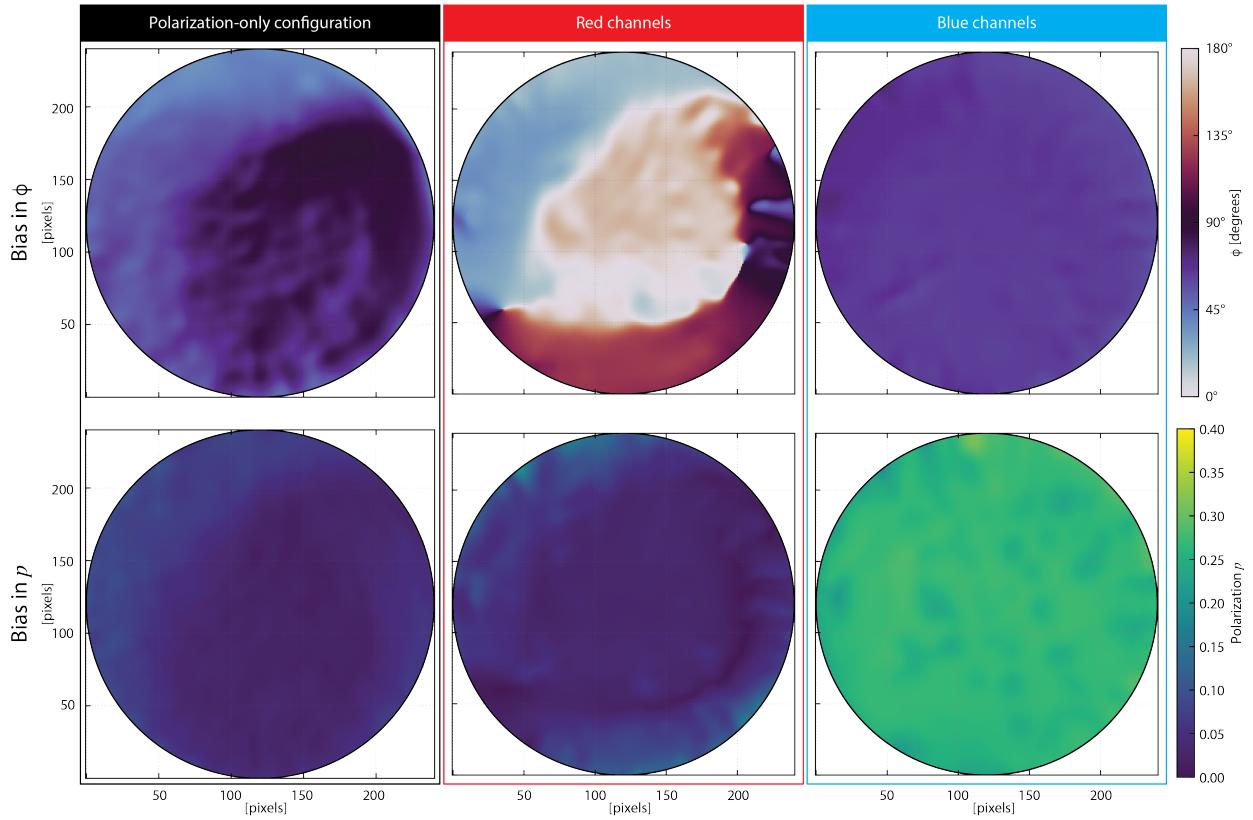
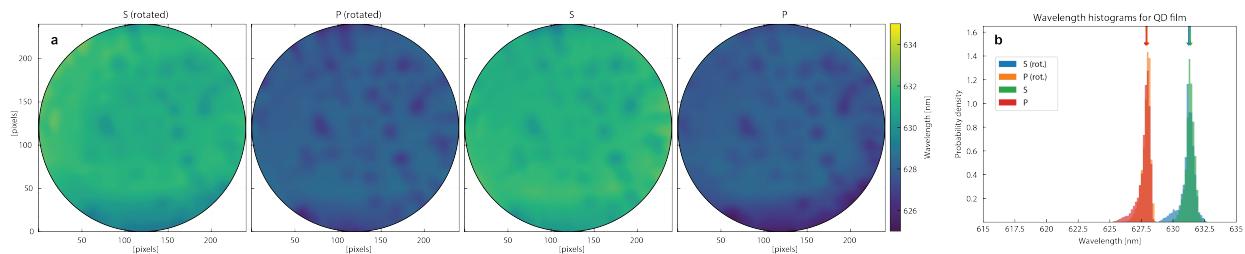
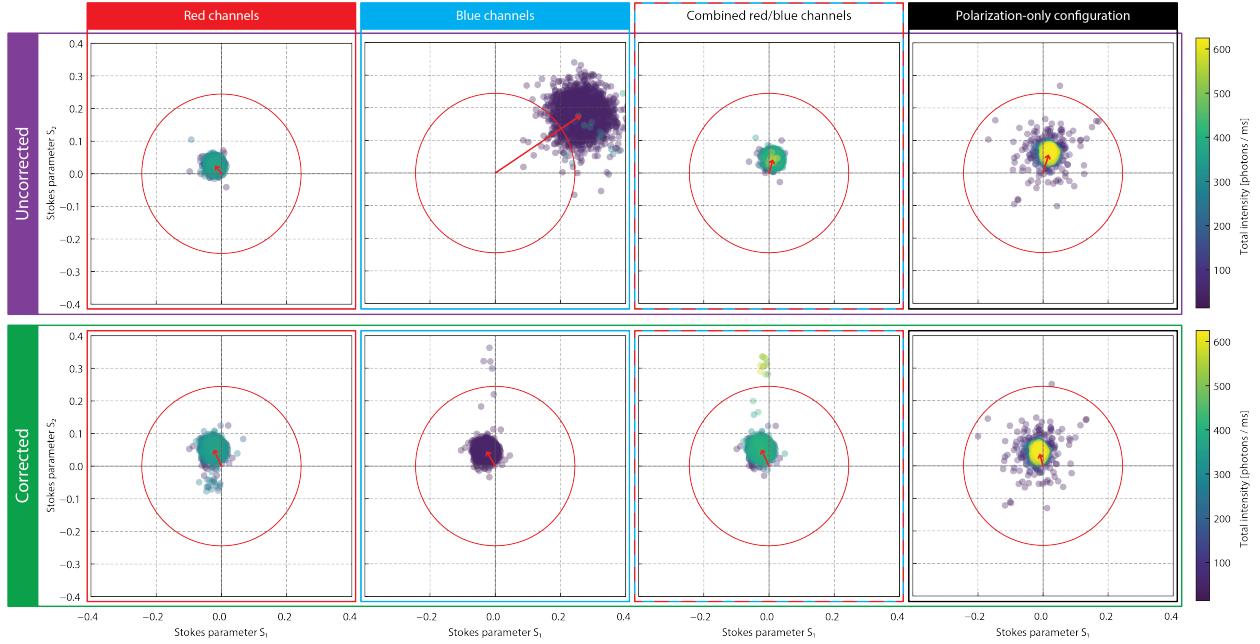


Figure S7: **Correction maps from QD films.** The correction factors $\delta_{i,j}(x, y, \lambda^{\text{film}})$ for various color imaging configurations. Top row: polarization-only configuration without dichroic beamsplitters. Middle row: red channel correction maps for dual-color configuration. Bottom row: blue channel correction maps for dual-color configuration. The correction factors for polarization-only and the red channel of dual-color configurations are similar, but the blue channels require significant corrections. Red map coloring indicates channel efficiency is high and blue map coloring indicates efficiency is low, while white indicates regions where the channel is well-balanced.


Figure S8: **Raw Stokes parameters of QD film.** The bias of the Stokes parameters S_1 (top row) and S_2 (bottom row) if intensity corrections are not applied. The bias is non-uniform across the FOV and different among the configurations. Strong bias to positive S_1 and S_2 values is present in the blue channels, which would lead to modulation depths not physically possible according to the model to extract the polar angle of a 2D emitter. Bias in polarization-only and the red channel of the dual-color configuration is also present, but less significant.

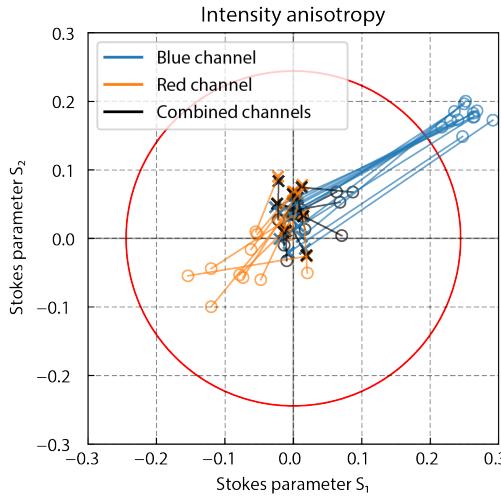

Figure S9: Orientation bias of QD film. Calculating the azimuthal angle ϕ from uncorrected intensity information (top row) results in bias among all channels, and is particularly non-uniform for red channels of the dual-color configuration. Bias of the modulation depth p (bottom row) is significant in the blue channel and values exceed the valid modulation depths for the polar angle model of a 2D emitter. The bias in p is relatively uniform in all configurations.

Figure S10: Spectral maps of QD film. **a**, Spectral maps of each polarization channel from a QD film. The spectral signature is uniform across the FOV. Polarization pairs (*e.g.* S rotated and S) estimate the same wavelength, but across pairs (*e.g.* S and P) there is a spectral shift. **b**, Histograms of the spectral maps.

Figure S11: Application of corrections for a single QD. Stokes parameter scatter plots of a single QD without (top row) and with (bottom row) the application of correction factors. The combined channel configuration adds red and blue channel intensities together. Without correcting optical path efficiencies, each channel generates different orientations. Applying correction factors results in each channel individually producing the same orientations as the other channels and results are consistent among each configuration.

Figure S12: Corrections for single QDs. Average Stokes parameters before (open circles) and after (crosses) correction for a collection of single QDs. The systematic bias of the red and blue channels is evident. The markers indicating corrected positions overlap well among the various channels.

216 VI Localization correction

217 Emission from dipole emitters can produce asymmetric PSFs that affect localization re-
218 sults[12–14]. While the 2D emission from QDs produces more symmetric PSFs than 1D
219 emitters by mixing basis images, they are similarly prone to localization errors. For sin-
220 gle QDs, such localization errors manifest as position offsets. In QD clusters, individual
221 particles may have different orientations that generate unique PSFs, resulting in incorrect rel-
222 ative localizations as the QDs change emission states. These errors produce super-resolution
223 localization maps that are inconsistent with the physical layout of the emitters. Figure S13a–
224 b,d–e show the raw super-resolution localization from each polarization component of a QD
225 cluster (red channels only). Because of dipole effects, each polarization component generates
226 a different map of the cluster as the QDs transition among their emission states.

227 Several methods have been proposed to correct localization errors from dipole effects.
228 PSF engineering has been used to eliminate the effects of dipole emission by restoring sym-
229 metry to the PSFs with additional optics[15, 16]. Recently, Nevskyi, *et al.*[17] identified a
230 simple solution available to detection schemes that separately image orthogonal polariza-
231 tion pairs. Recognizing that there is always one axis of symmetry in a given polarization
232 component, a corrected super-resolution map can be generated by using the coordinates
233 corresponding to the symmetric axes. For example, using the pair of S- and P-polarization
234 components, the x -coordinate is taken from the localization results of the P-polarization
235 component and the y -coordinate is taken from the S-polarization results. For the rotated S-
236 and P-polarization channels, the axes of symmetry are rotated 45° . Thus, the localization
237 results must be transformed into the symmetric coordinate system (x', y') , the valid com-
238 ponent identified, and transformed back. The transformation into the primed coordinate
239 system is

$$x' = x \cdot \cos\left(-\frac{\pi}{4}\right) - y \cdot \sin\left(-\frac{\pi}{4}\right)$$
$$y' = x \cdot \sin\left(-\frac{\pi}{4}\right) + y \cdot \cos\left(-\frac{\pi}{4}\right)$$

240 Figure S13c,f show the corrected localization maps for the same dataset. The corrected
241 super-resolution maps are consistent among the direct and polarization-rotated optical paths.
242 Because two polarization components combine to generate a single localization map, the
243 intensity scales in the corrected images indicate the combined intensities.

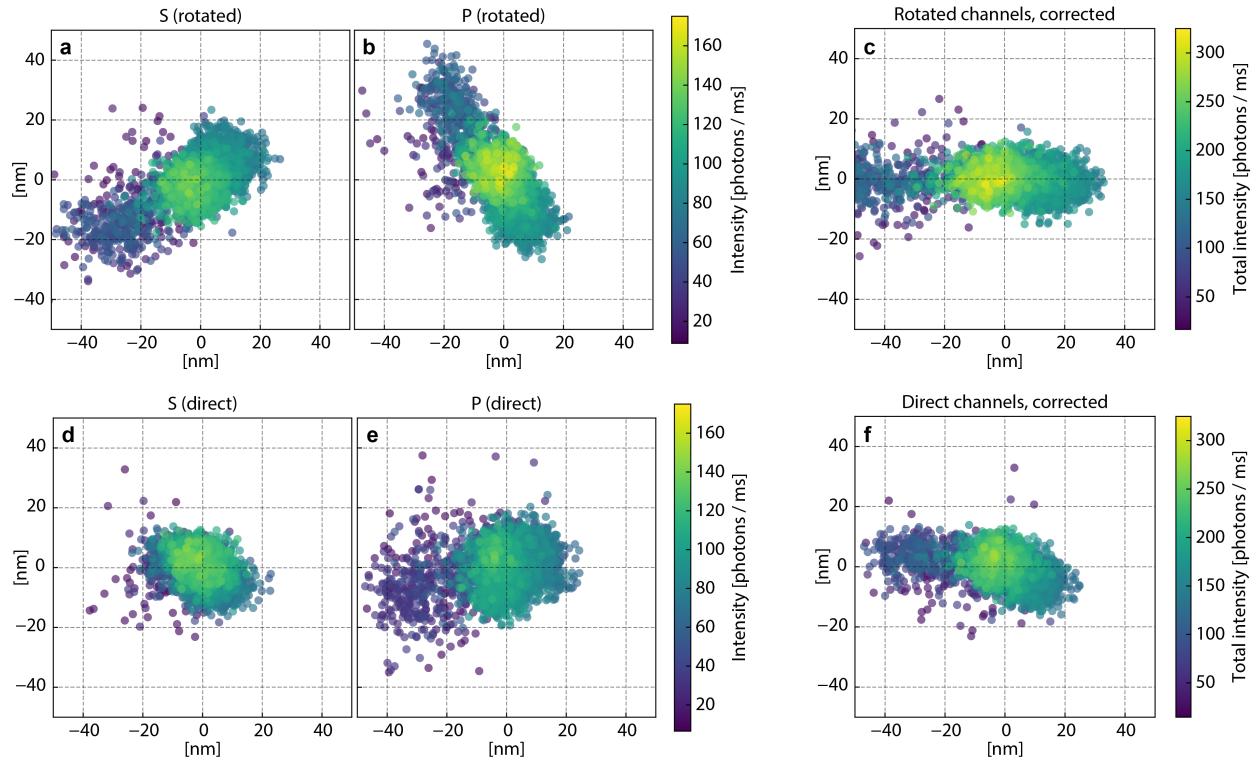


Figure S13: **Localization correction.** **a**, Drift-corrected localization plot for a QD nanoassembly from the red spectral channel of the rotated S polarization optical path. **b**, Localization from the rotated P polarization optical path. Raw localization maps are distorted and inconsistent because of PSF asymmetry. **c**, Corrected localization map using the x' coordinate from the rotated P optical path data and the y' coordinate from the rotated S optical path. **d**, Drift-corrected localization plot for the same QD nanoassembly from the red spectral channel of the S polarization optical path. **e**, Localization from the rotated P polarization optical path. **f**, Corrected localization map using the x coordinate from the P optical path data and the y coordinate from the S optical path. **c** and **f** depict similar shapes after localization corrections are applied compared to the four different localization maps from the raw localization data.

²⁴⁴ **VII PSF considerations**

²⁴⁵ Byproducts of the localization fitting procedure (see Methods) are residual images of the
²⁴⁶ PSFs for each spot and each polarization component. These images indicate spatially where
²⁴⁷ the 2D pixel-integrated Gaussian PSF underestimates or overestimates the number of pho-
²⁴⁸ tons actually detected. In principle, the residuals could be used in conjunction with a near-
²⁴⁹ focus dipole PSF model to extract orientation[18–20]; however, the high-quality oversampled
²⁵⁰ residuals generated during localization fitting in this work reduce noise by averaging over
²⁵¹ entire measurements. Dynamic changes to the orientation would require individual frame
²⁵² analysis, but would also be degraded by shot noise noise, amplification noise, and pixela-
²⁵³ tion. Furthermore, aberrations introduce distortions into the image that, if severe, can be
²⁵⁴ challenging to a fitting algorithm.

²⁵⁵ The residuals of several QDs and QD nanoassemblies are shown in Fig. S14. Although
²⁵⁶ the multiple datasets were acquired over several measurements—and would have minor focal
²⁵⁷ set-points differences—there are common patterns among the individual polarization com-
²⁵⁸ ponents. PSF symmetries that the localization correction method takes advantage of are
²⁵⁹ evident: -45° and 45° polarization component residuals are symmetric with respect to axes
²⁶⁰ rotated 45° , and 0° and 90° residuals are symmetric with respect to the horizontal and
²⁶¹ vertical directions. However, distortions exist that make each residual unique.

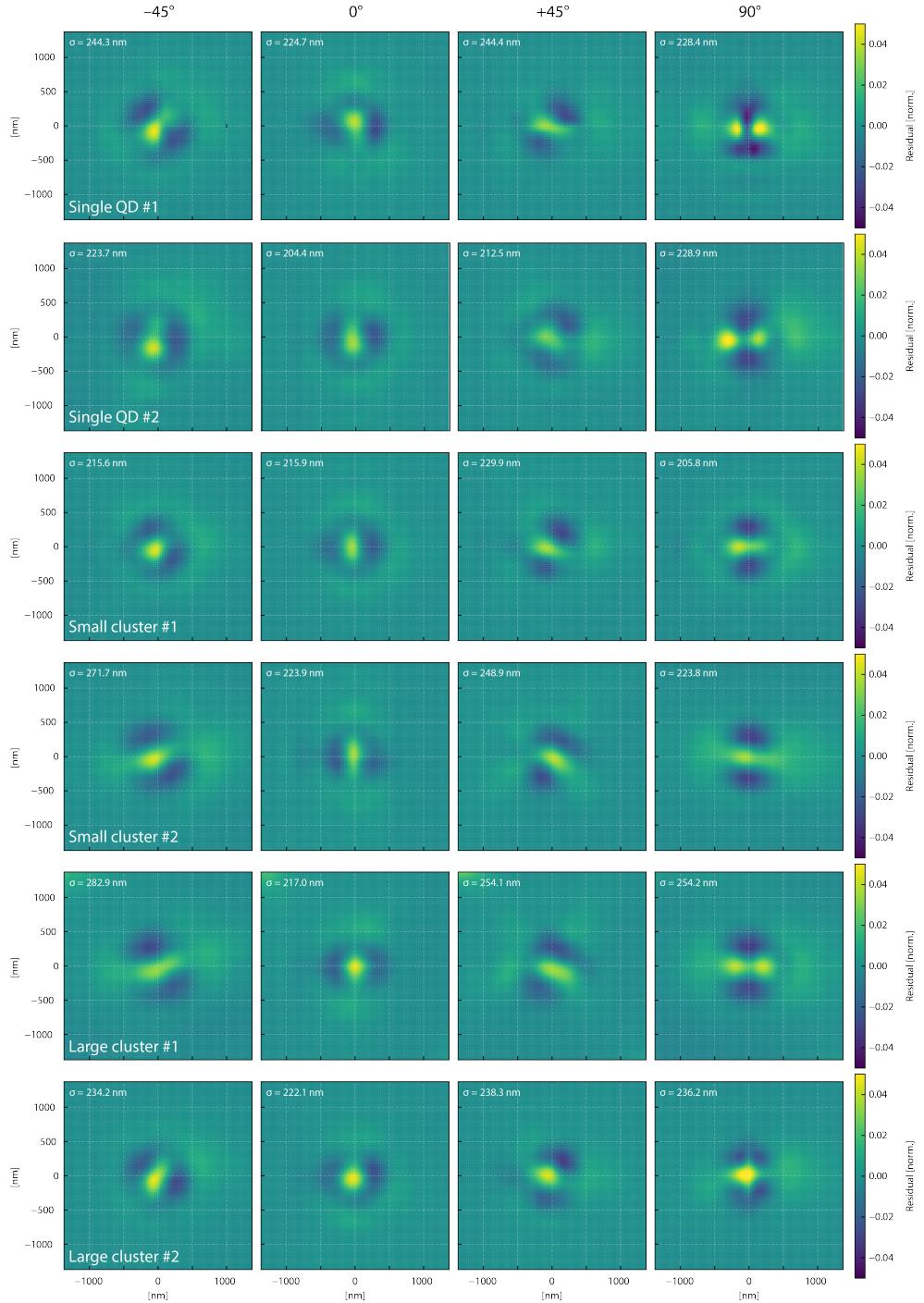


Figure S14: **PSF residuals.** Residuals from red channel images for several QDs and QD nanoassemblies. Each column is a polarization channel and each row a different QD/nanoassembly. The average first-pass PSF fit width σ is indicated for each residual.

262 **VIII Additional examples**

263 The spectral-intensity distribution, orientation, and localization maps for the example nanoassembly
 264 in Fig. S13 are shown in Fig. S15. This spot may have been a nanoassembly with low
 265 coupling efficiency, a broken nanoassembly with components whose final alignments were
 266 different, or a rare example of separate QDs depositing nearby despite sparse coverage in the
 267 FOV. The orientation signature displays more variation than the other examples presented,
 268 demonstrating the measurement and analysis methods are sensitive to different orientations.
 269 The width of the spectral feature was broader than strongly-coupled the QD clusters in the
 270 main manuscript.

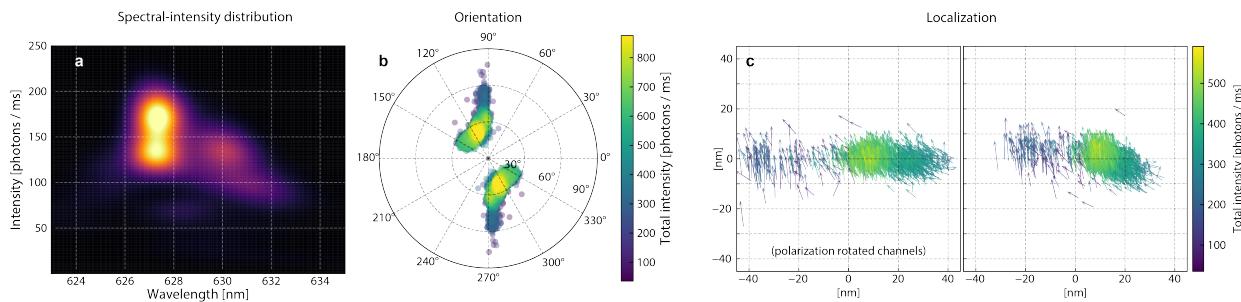


Figure S15: **Alternative cluster example.** **a–c,** Spectral-intensity distribution, orientation, and localization maps for the QD nanoassembly (same nanoassembly as Fig. S13). The localization plots have been thinned to better visualize the arrow orientations. This is a rare example of a QD nanoassembly that had orientation signatures with dramatically different angles. The different orientations are localized to different spatial regions and correspond to different intensity levels.

271 An additional interacting large cluster example is shown in Fig. S16. Similar to the
 272 large cluster shown in Fig. 4, intensity and wavelength were spatially inhomogeneous, but
 273 the polarization signature was uniform. This example showed minor correlation among the
 274 azimuthal orientation and the wavelength, as opposed to correlation with the polar angle
 275 in the main text, but this was also a weak correlation.

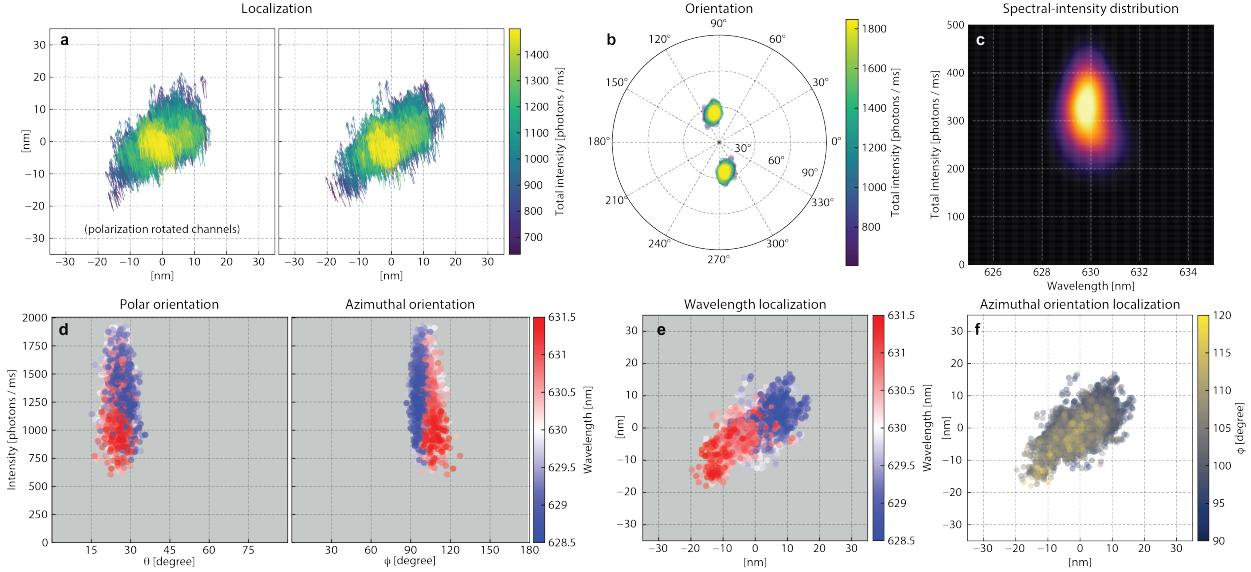


Figure S16: Alternative large cluster example.

276 IX Polar angle wavelength correlation

277 The correlation between the polar tilt angle and emission wavelength for the large QD
 278 nanoassembly example in Fig. 4 is shown in Fig. S17. While there is a correlation between the
 279 two emission properties, the weakness of the correlation and broadness of the distributions
 280 explain why the polar tilt angle is uniformly distributed spatially whereas the wavelength
 281 has distinct short- and long-wavelength sub-regions in the localization plot.

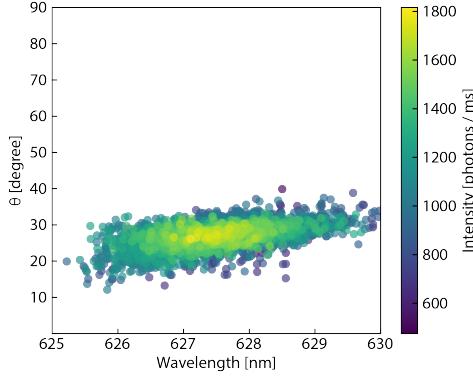


Figure S17: Polar angle wavelength correlation. Correlation of polar tilt angle θ with wavelength for large QD nanoassembly.

282 **References**

- 283 1. Chen, O. *et al.* Compact high-quality CdSe–CdS core–shell nanocrystals with narrow
284 emission linewidths and suppressed blinking. *Nature Materials* **12**, 445 (2013).
- 285 2. Lethiec, C. *et al.* Measurement of Three-Dimensional Dipole Orientation of a Single Flu-
286 orescent Nanoemitter by Emission Polarization Analysis. *Physical Review X* **4**, 021037
287 (2014).
- 288 3. Koberling, F. *et al.* Fluorescence Anisotropy and Crystal Structure of Individual Semi-
289 conductor Nanocrystals. *The Journal of Physical Chemistry B* **107**, 7463–7471 (2003).
- 290 4. Schuster, R., Barth, M., Gruber, A. & Cichos, F. Defocused wide field fluorescence
291 imaging of single CdSe/ZnS quantum dots. *Chemical Physics Letters* **413**, 280–283
292 (2005).
- 293 5. Htoon, H., Furis, M., Crooker, S. A., Jeong, S. & Klimov, V. I. Linearly polarized ‘fine
294 structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots.
295 *Physical Review B* **77**, 035328 (2008).
- 296 6. Cyphersmith, A. *et al.* Disentangling the role of linear transition dipole in band-edge
297 emission from single CdSe/ZnS quantum dots: Combined linear anisotropy and defo-
298 cused emission pattern imaging. *Applied Physics Letters* **97**, 121915 (2010).
- 299 7. Li, J., Kwok, K.-C. & Cheung, N.-H. Determination of the Dipole Geometry of Flu-
300 orescent Nanoparticles Using Polarized Excitation and Emission Analysis. *Applied Spec-
301 troscopy* **70**, 302–311 (2016).
- 302 8. Talapin, D. V. *et al.* CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrys-
303 tals. *The Journal of Physical Chemistry B* **108**, 18826–18831 (2004).
- 304 9. Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of
305 colloidal nanocrystals by lattice strain. *Nature Nanotechnology* **4**, 56–63 (2009).
- 306 10. Ryan, D. P. *et al.* A framework for quantitative analysis of spectral data in two channels.
307 *Applied Physics Letters* **117**, 024101 (2020).
- 308 11. Zhu, M., Zhou, J., Hu, Z., Qin, H. & Peng, X. Effects of Local Dielectric Environment on
309 Single-Molecule Spectroscopy of a CdSe/CdS Core/Shell Quantum Dot. *ACS Photonics*
310 **5**, 4139–4146 (2018).
- 311 12. Enderlein, J., Toprak, E. & Selvin, P. R. Polarization effect on position accuracy of
312 fluorophore localization. *Optics Express* **14**, 8111 (2006).
- 313 13. Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J. & Moerner, W. E. The Role of
314 Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Impli-
315 cations for Super-Resolution Imaging. *ChemPhysChem* **15**, 587–599 (2014).
- 316 14. Furubayashi, T. *et al.* Nanometer Accuracy in Cryogenic Far-Field Localization Mi-
317 croscopy of Individual Molecules. *The Journal of Physical Chemistry Letters* **10**, 5841–
318 5846 (2019).

319 15. Lew, M. D. & Moerner, W. E. Azimuthal Polarization Filtering for Accurate, Precise,
320 and Robust Single-Molecule Localization Microscopy. *Nano Letters* (2014).

321 16. Backlund, M. P. *et al.* Removing orientation-induced localization biases in single-
322 molecule microscopy using a broadband metasurface mask. *Nature Photonics* **10**, 459–
323 462 (7 2016).

324 17. Nevskyi, O., Tsukanov, R., Gregor, I., Karedla, N. & Enderlein, J. Fluorescence pol-
325 arization filtering for accurate single molecule localization. *APL Photonics* **5**, 061302
326 (2020).

327 18. Böhmer, M. & Enderlein, J. Orientation imaging of single molecules by wide-field epiflu-
328 orescence microscopy. *Journal of the Optical Society of America B* **20**, 554–559 (2003).

329 19. Aguet, F., Geissbühler, S., Märki, I., Lasser, T. & Unser, M. Super-resolution orienta-
330 tion estimation and localization of fluorescent dipoles using 3-D steerable filters. *Optics
331 Express* **17**, 6829 (2009).

332 20. Backer, A. S. & Moerner, W. E. Determining the rotational mobility of a single molecule
333 from a single image: a numerical study. *Optics Express* **23**, 4255–4276 (2015).