

Training load responses modelling in elite sports: how to deal with generalisation?

Frank Imbach^{1,2,3,*}, Stephane Perrey², Romain Chailan¹, Thibaut Meline⁴, and Robin Candau³

¹Seenovate, Univ. Montpellier, Montpellier, 34000, France

²EuroMov Digital Health in Motion, Univ. Montpellier, IMT Mines Ales, Montpellier, 34090, France

³DMeM, Univ. Montpellier, INRAe, Montpellier, 34000, France

⁴Laboratoire Européen Performance Santé Altitude, Univ. Perpignan Via Domitia, Font-Romeu, 66120, France

*frank.imbach@umontpellier.fr

Appendix

Specific training

On-ice sessions refer to specific training. Session TLs were calculated from Power Output (PO , W), volume and ice properties. Individual PO depends on power required to change kinetic energy (P_{kin}), power required to overcome air and ice resistance (P_{aero} and P_{ice} respectively). Let us define

$$P_{kin} = \frac{\frac{1}{2}(mv_f^2 - v_i^2)}{t},$$

$$P_{aer} = \frac{1}{2}AC_D \rho v^3 \quad \text{and}$$

$$P_{ice} = C_f m g \bar{v}.$$

In this context, m denotes the mass of the athlete and that of the equipment, v_f is the maximal velocity reached during the run, v_i is the initial velocity being null, \bar{v} is the mean velocity and t is the exercise duration. The effective frontal area AC_D is a standardised fixed value of 0.25 m^2 according to subjects corpulence and Van Ingen Schenau⁵⁶. Also, ρ denotes the air density recorded at 1850 meters above sea and is equal to 1.029 kg.m^{-3} . The friction coefficient C_f is standardised as $C_f = 0.006$, according to maximal values found by De Koning *et al.*⁵⁷ and due to a track with sharper turns. Finally, g denotes the acceleration due to the gravity, equal to 9.80665 m.s^{-2} .

Thus,

$$PO = P_{kin} + P_{aer} + P_{ice}.$$

Relative intensity of the session (I_{ice} , as a percentage of the maximal PO) can now be determined as

$$I_{ice} = \frac{I_{ice}^f N_f + I_{ice}^b (N - N_f)}{N}. \quad (\text{S1})$$

This relative exercise intensity includes both forward and backward positions denoted I_{ice}^f and I_{ice}^b respectively, with

$$I_{ice}^f = \frac{PO}{\max PO} + C,$$

$$I_{ice}^b = I_{ice}^f - E I_{ice}^f.$$

Here, C denotes the ice impact on skating for an ice quality (Q_{ice}) arbitrary measured by athletes on a 0-10 Borg scale and averaged. If Q_{ice} is below 7.5 arbitrary units (a.u), a linear penalisation is attributed such as $C = -0.008 Q_{ice} + 0.06$, where α

and β coefficients were estimated from at least two equal performances with different values of Q_{ice} . In addition, E denotes the skating economy due to drafting and N denotes the overall number of laps with also a distinction for the forward position (N_f). Finally, ice session training load is

$$TL_{ice} = I_{ice} V K \left(\frac{I_{RPE}}{\max I_{RPE}} \right) \rho, \quad (S2)$$

where V is the volume parameter defined as the product of the number of laps run and the distance of a lap; K depends on the subject's gender with $K = 0.64 e^{1.921}$ for males and $K = 0.86 e^{1.671}$ for females respectively and according to Banister *et al.*⁵; I_{RPE} is the rate of perceived exertion quoted on a 6-20 Borg scale, $\max I_{RPE}$ is the maximal value that can be quoted ($\max I_{RPE} = 20$); ρ denotes the density parameter, such as $\rho = \frac{1}{2} \rho_s$ with ρ_s the density of the session (%) which represents the effective work done by the athlete.

Non-specific training

Training loads of resistance training (TL_{RT}), aerobic training (TL_{aer}), repeated sprint training (TL_{RS}) and activation sessions (TL_{act} , specific warm-up) were also quantified as

$$TL_{RT} = I_{RT} V K \left(\frac{I_{RPE}}{\max I_{RPE}} \right) \rho, \quad (S3)$$

$$TL_{aer} = I_{RPE} T K \rho_s k_{aer}, \quad (S4)$$

$$TL_{RS} = I_{RS} V K \left(\frac{I_{RPE}}{\max I_{RPE}} \right) \rho \quad \text{and} \quad (S5)$$

$$TL_{act} = I_{RPE} T K \rho_s k_{off}. \quad (S6)$$

Here I_{RT} denotes the intensity in percentage of the maximal repetition, V is the volume defined by the number of repetitions, T is the total time of exertion, k_{aer} and k_{off} denote a weighting factor for aerobic and activation exercises such as $k_{aer} = 5$ a.u (empirically defined by the coach) and $k_{off} = 15$ a.u respectively. Any of the training sessions are weighted by I_{RPE} . However, a specific intensity was only quantifiable for TL_{RT} and TL_{RS} and further considered in the training load calculation.

According to the training condition, Equations S2 – S6 respectively define the discrete function $w(t)$.