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Extended data 

Table S1: Constituents of wellbeing and their relationship to SDGs. 

Well-being 

dimension 

SDG  Potential metric 

Food 

 

access to sufficient and safe nutrition 

Water 

 

access to adequate and clean drinking water 

Air 

 

exposure to dangerous concentrations; pollutants both indoor and 

outdoor 

Health 

 

access to health services; physical and mental health ; obesity 

Sanitation 

 

access to adequate sanitation; waste and sewage management 

Energy 

 

ability to attain a socially and materially necessitated level of energy 

services (often related to access to electricity) ; access to affordable, 

reliable and sustainable fuels (electricity); renewable and clean 

electricity 

Shelter 

 

access to accommodation ; affordable housing market  

Mobility 

 

ability to access key other services physically in a safe and affordable 

manner; access to safe walking and cycling infrastructures, and to 

public transport 

Education 

 

education for all ; access to education and material ; knowledge and 

information 

Communication  

 

ability to make human connections with and without personal 

meetings; access to information and entertainment 

Social protection 

 

 

community, social insurance, social assistance, and labor markets that 

enhance people’s capacity to manage economic and social risks, e.g. 

unemployment, exclusion, sickness, disability and old age. 

Participation 

 

democratic rights (voting, association, etc.) 

Personal Security 

 

exposed to homicide, crime, war/state violence 

Social cohesion 

 

social trust; bottom-up initiatives; reduce inequality; sense of 

usefulness 

Political stability 

 

trust in politicians; good governance; quality of governance 

Economic stability 

 

not having to fear unexpected expenses; access to jobs  

Economic supply 

side effects  

upstream effects of demand-side measures on upstream production 

systems (e.g.: compact cities make reduce demand for cars, increase 

demand for shared mobility) 

Material 

provision  

ability to access wellbeing services which are derived from materials; 

provision of adequate industrial capacity; access to infrastructure 
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Table S2: Demand-side mitigation strategies and potentials over sectors- Extended version 

Sector Gt CO2 

in 2050 

Mitigation strategy Changes in 

CO2 

Sources 

 Building  

 
8.8  Avoid: Sufficiency of energy and resources  

(include Compact city and Nature based 

solution from Urban sector) 

Passive building design, energy saving 

practices (including passive management 

and flexibility over time), low carbon 

building materials, green/blue surfaces, 

circular and sharing economy 

10-40% 

[median: 25%] 

IEA 20201; Ürge-Vorsatz et al. 20202; Niamir et al. 20203; Ahl et al. 

20194; IGES et al. 20195; van der Grijp et al. 20196; ECF 20187; Galassi 

& Madlener 20188; Rakha et al. 20189; Sköld et al. 201810; Talele et al. 

201811; Valencia et al. 201812; Ala-Mantila et al. 201713; Alders 201714; 

Chang et al. 201715; Kusumadewi & Limmeechokchai 201716; Hansen 

and Hauge 201717; Sanguinetti et al. 201718; Sun and Hong 201719; 

Darby et al. 201620; Hasegawa 201621; Taniguchi et al. 201622; Virage-

énergie 201623; Singh 201624; Dong et al. 201525; Rafsanjani et al. 

201526; Ayoub et al. 201427; Cao et al. 201428; Fell et al. 201429; Brown 

et al. 201330; Tokuda et al. 201331; van Den Wymelenberg 201232; 

Volochovic et al. 201233 

Shift: Improve access and switch to 

renewables  

On-site renewables, micro-grids, switch to 

lower carbon fuels and electrification for 

space heating, cooling, cooking, hot water  

and electrical uses 

30-70%  

[median: 50%] 

IEA 20201; Niamir et al. 202034; Mastrucci & Rao 201935; González-

Mahecha et al. 201936; IGES et al. 20195; Langevin et al. 201937; ECF 

20187; Economidou et al. 201838; Peñaloza et al. 201839; Giraudet et al. 

201840; Mata et al. 201841; Oluleye et al. 201842; Braulio-Gonzalo and 

Bovea 201743; Iten et al. 201744; Purohit and Höglund-Isaksson 201745; 

Sharma et al. 201746; Oluleye & Smith 201647; Purohit et al. 201648; 

Timilsina et al. 201649; Virage-énergie 201623; Wittchen et al, 201650; 

Novikova et al. 201551; Markandya et al. 201552; Markewitz et al. 201553;  

Ürge-Vorsatz et al. 201454; Bettgenhäuser &Hidalgo 201355; Dolman et 

al. 201256 

Improve: Efficiency 

Improved building envelope, improved 

building technical systems (for HVAC, 

cooking and electrical uses), smart home and 

digitalization, efficient appliances, control 

systems, clean cooking  

50-95%  

[median: 70%] 

IEA 20201; Mata et al. 202057; IGES et al. 20195; Ellsworth-Krebs et al. 

201958; ECF 20187; Oluleye et al. 201842; Braulio-Gonzalo & Bovea, 

201743; Purohit and Höglund-Isaksson 201745; Sharma et al. 201746; ; 

Oluleye & Smith 2016; Purohit et al. 201648; Ruparathna et al. 201659; 

Timilsina et al. 201649; Virage-énergie 201623; Wittchen et al, 201650; 

Novikova et al. 201551; Bettgenhäuser and Hidalgo 201355 

Food 18  Avoid: Food waste 

Food waste prevention: improved 

information ('best before dates'); adequate 

portion sized (HORECA); food sharing 

programs. Food waste recycling: use of food 

waste as animal feed (including insects); 

8-25%  

[median: 15%] 

Poore and Nemecek, 201860; Schanes et al. 201861; Gunders & Bloom 

201762, Makov et al 202063 
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improved collection & composting, 

anaerobic digestion. 

Avoid: Over-consumption  

Information campaigns; adequate portion 

sized (HORECA); marketing restrictions on 

energy-dense food; taxes on energy dense 

and/or luxury protein foods; choice 

architecture instruments 

n/a  Smith et al. 201364 

Shift: Animal free protein 

Green procurement; food-based dietary 

guidelines; food labels; educational 

campaigns; subsudies/taxes; voluntary 

sustainabilty standards; R&I on improved on 

nutritional and agronomic characteristics of 

plant proteins; regulations on novel foods 

18%-87% 

[median: 40%] 

Semba et al. 202065; Springmann et al. 201866; Willett et al. 201967; 

Parodi et al. 201868; Springmann et al. 201669; Aleksandrowicz et al., 

201670;  IPCC SRCCL, 201971 

Land 

Transport 

9.5  Avoid: Teleworking 

Teleworking or telecommuters partially or 

entirely replace their out-of-home work 

activities by working at home or at locations 

close to home. In general, telecommuting 

offers more flexibility to workers by relaxing 

the temporal and spatial work-related 

constraints. In addition IOT represents use of 

behavior data to nugde commuting behavior; 

school travel behavior and transforming 

shopping travel behavior 

0-10% 

[median: 1%] 

Brand et al. 202072; Creutzig et al. 201673; Ivanova et al. 202074; Riggs 

202075 

Avoid: Walking and Cycling 

Supported by compact highly accessible city 

design and safe infrastructures for 

pedestrians and cyclists.  

10-30%  

[median: 15%] 

Brand et al. 202072; Creutzig et al. 201673 

Shift: Shared economy and digitalization 

Pooled shared mobility with high occupancy 

and micro-mobility with high lifetime of 

vehicle stock; convenient rail-based public 

transit; supported by urban design and 

transit-oriented development resulting in 

reduced travel distances; logistic 

optimization in last-mile freight.   

from -50% to 

+50%  

[median: 0%] 

ITF, 202076,77; ITF, 201778,79; Creutzig et al. 201673; ITF, 201680 
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Improve: Evs 

Electric Vehicles when charged with the 

electricity generated from medium 

decarbonized power system (IEA stated 

policies); Behavior change programs on the 

socio-economic structures that impede 

adoption of EV’s; the urban structures that 

enable reduced car dependence and how 

EV’s can assist grids; and the synergies 

between emerging technologies and shared 

economy to maximizing the greater benefit of 

EVs 

20-75%  

[median: 50%] 

EEA, 201881; Hill et al 201982; Lutsey 2015; Plötz et al 201783; Khalili et 

al 201984 

Industry  15.8 Gt 

CO2 

Avoid: Materials efficient services 

Materials-efficient service provision involves 

avoided material demand through 

dematerialization, the sharing economy, 

materials-efficient designs, and yield 

improvements in manufacturing. For 

example, researchers calculate that if beam 

designs were optimized to suit their use 

instead of their production cost, weight of up 

to 30 per cent could be saved. Opportunities 

to reduce metal requirement through 

lightweight design was assessed by Carruth 

et al. (2011) who found that 25% to 30% of 

metal can be saved across five case study 

products: construction beams, reinforcement 

bar, car body and crash structures, food cans 

and deep-sea oil and gas pipelines. 

5%-22%  

[median: 13%] 

IEA 20201,85; Grubler et al. 201886; Allwood and Cullen, 201587; Carruth 

et al., 201188 

Avoid: Lifespan extension 

Designing products so that their lifetime can 

be extended through repair, refurshing, and 

remanufacturing. For example, Cooper et al 

(2014) estiamtes that approximately 40% of 

annual demand for steel worldwide is used to 

replace products that have failed. 

Standardisation, modularity and functional 

segregation can help extending the lifespan 

of steel in products and therefore present a 

3%-7%  

[median: 5%] 

IEA 20201,85; Cooper et al. 201489 
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significant opportunity to reduce demand 

and carbon dioxide emissions from steel 

production. Similar appraoch are possible 

with other emission intensive materials. 

Shift: Reuse and recycling 

Increasing the re-usability and recyclability 

of product's components and materials once 

these products are at the end of their life. 

For example, old cars are dismantled to be 

re-used for reparing cars that can be 

repaired and most of the old components that 

cannot be re-used are recycles in scrap 

metals. / CE covers: avoid material use by 

reuse; shift from primary to recycled 

materials. 

4%-7%  

[median: 5%] 

IEA 20201,85; Ellen MacArthur Foundation, 201990; IEA 201991; Material 

Economics 201892 

 

Improve: Energy Efficiency 

Reducing the need for energy consumption 

through the installation of new efficient 

technologies and through systems and 

operating practices that contribute to reduce 

energy needs (ex: Energy Management 

System practices). 

25%-28% 

[median: 26%] 

IEA 20201,85; Material Economics 201892 

Urban  

(not 

included in 

aggregate 

potential 

analysis to 

avoid 

double 

counting) 

 
Compact city  

Urban planning interventions for increasing 

density 

4-25%  

[median: 12%] 

Creutzig et al. 201673; Borck and Brueckner 2016 

Circular and shared economy 

Shared spaces and facilitites: energy co-ops, 

group purchasing, libraries, repair cafes, 

food production and consumption; food 

sharing; . Circular economy: urban 

industrial ecology; Consumer actions at 

reducing waste, recycling. Shared spaces 

and shared mobility not included here due to 

overlap with buildings and transport; 

Improved diets and no excessive 

consumption 

30-60%  

[median: 50%] 

Cantzler et al 202093 
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Systems approach 

A comprehensive climate change city plan- 

climate change actions embedded in urban 

plans. Innovation in urban institutional 

structure; promote regenerative culture, 

behaviour, anddesign innovative financing, 

stronger science policy linkages. Nexus 

approaches’ that trace linkages between 

water, food and energy systems ; integrated 

strategies for energy-material reduction 

through urban industrial ecology; formal 

and informal governance arrangements for 

green and built infrastructure. Local energy 

generation- renewables; waste to energy; 

reverse auctions 

n/a 
 

Nature based solution  

All urban scale green spaces/interventions 

including networks of parks and open spaces, 

green corridors, planted and indigenous 

trees, and original grassland and woodlands, 

protection of urban nature (e.g., forests and 

wetlands), urban agriculture, and water-

sensitive designs well as possible street level 

design interventions that incorporate 

vegetation.  

0-10%  

[median: 5%] 

Culwick and Bobbins, 2016 

Aviation  1.8  Avoid: flights 

Aviation is of low economic value and 

demand is highly sensitive to prices. A 

carbon price of aviation fuel of $400/tCO2 

would have demand for aviation in 2050. 

0-47% 

[median: 40%] 

IATA 202094; Schäfer et al. 201995; Gossling et al (in review) 

Shipping  1.9  Avoid: Reduce demand and slow steaming  

Shifting supply chains, lower demand for 

consumption goods, and slow steaming of 

ships would reduce shipping demand 

substantially. 

40%-60% 

[median: 47%] 

Bouman et al 201796, McKinnon 202097, ITF, 201898 
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Shift: modal shift to train  

Shift from ships to long-distance train 

(especially across the Eurasian continent) 

reduces GHG emissions, but not more than 

1% of expected emissions. 

0%-1%  

[median: 1%] 

ITF, 201898 

Improve: Design and power system 

Independent of fuels (supply) better hull 

design and improved propulsion system can 

make ships highly more efficient 

30%-50% 

[median: 40%] 

Bouman et al 201796, McKinnon 202097, ITF, 201898 
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Guide through Table S3-7  

 High positive impact [+3] 

 Medium positive impact [+2] 

 Low positive impact [+1] 

 Overall Neutral 

 No impact 

 Low negative impact [-1] 

 Medium negative impact [-2] 

 Level of evidence 

{limited, medium, robust} 

☺☺☺ Level of agreement  

{low, medium, high} 

★★★★★ Level of confidence  

{very low, low, medium, high, and very high} 

 

Table S3: Human wellbeing and demand-side mitigation strategies in building sector 

 Sufficiency Efficiency Lower carbon and renewable energy 

Fo
o

d
 

[+1]   ☺☺☺ ★★★ [+2]   ☺ ★ [+2/-1]   ☺☺ ★★★ 

Energy sufficiency measures result in lower 
energy bills and reduce the “heat or eat” 
dilemma99,100. 

Improved cook stoves provide better food security 
and reduced risk of fuel shortage in developing 
countries. Under real-world conditions, these impacts 
may be limited as the households use these stoves 
irregularly and inappropriately101,102. Energy 
efficiency measures result in lower energy bills and 
avoiding the “heat or eat” dilemma99,100.  

Improving energy access enhances agricultural 
productivity and improves food security. On the other 
hand, increased bioenergy production may restrict the 
available land for food production86,103–106. 
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W
at

e
r 

[+2]   ☺☺☺ ★★★★ [+2]   ☺☺☺ ★★★★ [+2/-1]   ☺☺☺ ★★★★ 

Reduced energy demand due to sufficiency 
measures can lead to reduced requirements on 
energy supply and the associated water 
consumption103,107,108.  

Reduced energy demand due to efficiency measures 
can lead to reduced requirements on energy supply 
and the associated water consumption103,107,108.  

An upscaling of RES usually results in reduced water 
demand for thermal cooling at energy production 
facilities. Improved access to electricity is necessary to 
treat water at homes. In some situations the switch to 
bioenergy could increase water use compared to existing 
conditions 103,107–111. 

A
ir

 

[+2]   ☺☺☺ ★★★★★ [+3/-1]   ☺☺☺ ★★★★ [+3]   ☺☺☺ ★★★★★ 

Air quality improvements due to reduced direct 
and indirect emissions associated with sufficiency 
measures112–116.  

Air quality improvements (indoor and outdoor) due 
to reduced direct and indirect emissions associated 
with energy efficiency measures, including improved 
cook stoves3,102,102,112–115,117–119.  
Energy efficiency interventions with inadequate 
ventilation or use of improper materials may have 
negative impacts on indoor air quality120,121.  

Fuel switching to RES and improvements in energy access 
would eliminate major sources (both direct and indirect) 
of poor air quality (indoor and outdoor)112–115,122–124.  

H
ea

lt
h

 

[+3]   ☺☺☺ ★★★★★ [+3/-1]   ☺☺☺ ★★★★★ [+3]   ☺☺☺ ★★★★★ 

A consequence of better indoor and ambient air 
quality, energy/fuel poverty alleviation and 
elimination of the heat island effect. Efficiency 
measures with inadequate ventilation may lead to 
the sick building syndrome symptoms86,99,100,112–

115,120–122,125–131.  

A consequence of better indoor and ambient air 
quality, energy/fuel poverty alleviation and 
elimination of the heat island effect. Efficiency 
measures with inadequate ventilation may lead to 
the sick building syndrome symptoms86,99,100,112–

115,120–122,125–131.  

A consequence of better indoor and ambient air quality, 
energy/fuel poverty alleviation, and elimination of the 
heat island effect5,18,29,35–3786,99,100,112–115,120–122,125–131. 

Sa
n

it
at

io
n

 

[+1]   ☺ ★ [+1]   ☺ ★        

A consequence of improved conditions and 
smaller dwellings130. 

A consequence improved dwelling conditions130.   

En
er

gy
 

[+3]   ☺☺☺ ★★★★ [+3]   ☺☺☺ ★★★★ [+3]   ☺☺☺ ★★★★ 

Energy/fuel poverty alleviation in both developed 
and developing countries86,115,126,130,132–135  (EC 
2016). 

Energy/fuel poverty alleviation in both developed and 
developing countries86,115,126,130,132–135  (EC 2016). 

Energy/fuel poverty alleviation in both developed and 
developing countries86,115,126,130,132–135  (EC 2016). 
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Sh
el

te
r 

       [+2]  ☺☺ ★★★★ [+1]   ☺ ★★★ 

  Buildings with high energy efficiency and/or green 
features are sold/rented at higher prices than 
conventional, low energy efficient houses136–150 
(Högberg, 2013; EC, 2016). 

Buildings with green features are sold/rented at higher 
prices than conventional, low energy efficient houses136–

150 (Högberg, 2013; EC, 2016).  

M
o

b
ili

ty
            [+1]   ☺☺☺ ★★★ 

    Helpful if in-situ production of RES combined with 
charging electric two, three and four wheelers at home 
103,151,152. 

Ed
u

ca
ti

o
n

 

       [+1]   ☺☺☺ ★★★ [+1]   ☺☺☺ ★★★ 

  Energy efficiency measures result in reducing the 
school absenteeism due to better indoor 
environmental conditions. Also, energy poverty 
alleviation increases the available space at home for 
reading99,153,154. 

Improved access to  clean  electricity and fuels enables  
people living in poor developing countries to read, while it 
is also associated with greater school attendance by 
children103,106,128,155. 

C
o

m
m

u
n

ic
at

io
n

 

       [+1]   ☺☺☺ ★★★ [+2]   ☺☺☺ ★★★ 

  Better indoor conditions, such as reduced exposure 
to cold, damp and mould in winter period, avoiding 
high temperatures in summer, reduced indoor 
pollution, etc., achieved through energy efficiency 
interventions can enable residents to avoid social 
isolation and improve social cohesion. Also, they can 
reduce stress related to chronic discomfort and high 
bills, fear of falling into debt, and a sense of lacking 
control, which are potential drivers of further social 
isolation99,126,156,157 (Wilson et al. 2016). 

Improved access to clean electricity and fuels in 
developing countries results in substantial timesaving for 
women and children, increasing the time for rest and 
communication122,158,159. Adoption of distributed 
generation and smart grids helps in communication 
infrastructure expansion160,161 (ENISA 2015). 

So
ci

al
 

p
ro

te
ct

io
n
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P
ar

ti
ci

p
at

io
n

 
       [+1]   ☺☺☺ ★★★★ [+1]   ☺☺ ★★★ 

  When lower energy use gives occupants more 
control, their wellbeing increases162. Stakeholder 
engagement is a key success factor in urban energy 
efficiency initiatives163. 

RES projects are an opportunity for inclusion and 
participation of citizens, indigenous communities with 
different mechanisms (co-ownership, procurement, 
investments, knowledge transfer, professionalization), 
often leading to increased positive synergies for both the 
project and participants164 (Salman, 2016; Koch and 
Christ, 2018). 

P
er

so
n

al
 S

ec
u

ri
ty

        [+1]   ☺☺ ★★★ [+1]   ☺☺☺ ★★★ 

  Building retrofits are associated with lower crime99. Improved access to electric lighting can improve safety 
(particularly for women and children)103 (Burnes and 
Sammad, 2018; Alston and Jacobson, 2018). 

So
ci

al
 c

o
h

es
io

n
 [+2]  🗏 ☺☺ ★★★ [+2/-1]   ☺☺☺ ★★★ [+2/-1]   ☺☺☺ ★★★★ 

Sufficiency measures lead to reduced energy 
expenditures that further lead to poverty 
reduction103,115,130,135. 

Efficiency measures lead to reduced energy 
expenditures that further lead to poverty reduction. 
The distributional costs of some mitigation policies 
may reduce the disposable income of the 
poor99,103,115,129,135,165.  

Access to RES will largely help alleviate poverty in 
developing countries as the productive time of women 
and children will increase, new activities can be 
developed, etc. The distributional costs of some 
mitigation policies may reduce the disposable income of 
the poor101,103,119,135,155,165.  

P
o

lit
ic

al
 s

ta
b

ili
ty
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Ec
o

n
o

m
ic

 s
ta

b
ili

ty
 [+2]   ☺☺☺ ★★★★ [+2]   ☺☺☺ ★★★★★ [+2/-1]   ☺☺☺ ★★★★★ 

Through lower energy prices due to the reduced 
energy demand, positive direct macroeconomic 
effects (GDP, employment, public budgets) and 
fostering innovation 103,115,133,135,166. 

Through lower energy prices due to the reduced 
energy demand, positive direct macroeconomic 
effects (GDP, employment, public budgets) and 
fostering innovation103,115,129,130,133,135,166. 

Through lower energy prices due to the reduced energy 
demand, positive direct macroeconomic effects (GDP, 
employment , public budgets), improved energy access 
and fostering innovation103,115,130,133,135,166. Recognized 
risks of increased RES  include higher peaks and 
congestions in low price-hours, difficulties in designing 
electricity tariffs and potential instability in the entire 
electricity system (Mata el al, 2020). 

M
at

e
ri

al
 

p
ro

vi
si

o
n

 [+2]   ☺☺☺ ★★★★ [+2/-1]   ☺☺☺ ★★★★ [+2]   ☺☺☺ ★★★★ 

Reduced consumption of natural resources, 
namely metal ores, minerals, etc115,167–169 (EC 
2016). 

Reduced consumption of natural resources, namely 
metal ores, minerals, etc115,167–169 (EC 2016). Negative 
impacts (increased use of materials) from increased 
penetration of new efficient appliances157. 

Reduced consumption of natural resources, namely metal 
ores, minerals, etc115,167–169 (EC 2016). 

Ec
o

n
o

m
ic

 

su
p

p
ly

 s
id

e 
ef

fe
ct

s 

[-2]   ☺☺☺ ★★★ [+2/-2]   ☺☺☺ ★★★ [+2/-2]   ☺☺☺ ★★★ 

Negative macroeconomic effects in upstream 
sectors due to reduced energy demand 
103,115,129,133,135,166. 

Positive and negative macroeconomic effects in 
upstream sectors due to the realization of the energy 
efficiency measures103,115,129,133,135,166. 

Positive and negative macroeconomic effects in upstream 
sectors due to the promotion of RES and clean energy 
fuels103,115,129,133,135,166. 
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Table S4: Human wellbeing and demand-side mitigation strategies in food sector 

 Food waste Reduce over-consumption Animal free protein  

Fo
o

d
 

[+1]     [+1]     [+1]    

Reducing food loss and waste increases food 
availability and can potentially increase food 
security; though distributional problems need to 
be overcome as well71,170–173. There is a high 
agreement and evidence that reducing food loss 
and waste in the agrifood sector is crucial for 
climate mitigation and wellbeing particularly in the 
developed world. Roughly, 20-40% of food that is 
produced is estimated to be lost to waste before it 
reaches the market or wasted by households174,175 
(Godfray et al. 2012). The energy embodied in 
wasted food is estimated at ~36 EJ/yr and during 
2010–2016 the global food loss and waste  was 8–
10% of total GHG emissions (Mbow et al. 2019).

The, technical mitigation potential of dietary changes by 
2050 range from 2.7–6.4 GtCO2-eq yr-1 for different diets, 
part of which to be achieved through reduced 
overconsumption, and the rest mainly through reduced 
consumption of animal source food. The economic 
potential of such solutions is lower, ranging from 1.8–3.4 
GtCO2-eq yr-1 at prices of 20–100 USD tCO2, with caloric 
costs up to 190 kcal per person per day (Mbow et al. 2019). 
Similar to reduced food waste, additional food available 
through reduced over-consumption can contribute to 
reducing food insecurity, if distributional challenges are 
addressed.



W
at

e
r 

[+2]     [+1/-1]     [+2]    

reducing food waste reduces embodied water 
losses171,176 and water pollution 

Depends on substitution effects; policies targeting 
reduction of over-consumption focus on high-caloric 
foods177,178. These are often combined in food-based 
dietary recommendations (FBDGs) with recommendations 
to increased consumption of low-caloric (and healthier) 
products179,180. Though the impact on climate, water and air 
pollutants should reflected in ‘healthy sustainable diets181, 
these are often not yet considered in national FBDGs182, 
thus the effect of reduction of over-consumption remains 
inconclusive.   

Higher blue and green water footprints of animal source food 
as compared to plant based food allow significant reduction of 
water use183, e.g. for vegan diets and diets consuming low-food 
chain products70,184.  

A
ir

 

[+2]     [+1/-1]     [+3]    

reduced food demand avoids emissions of air and 
water pollutants in food production, transport, 
processing, distribution and waste 
managment176,185. 

see water. Livestock products are responsible for most agricultural NH3 
and CH4 emissions; precursors of PM2.5 and tropospheric 
ozone186–188. 
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[+2]     [+3]    [+3]    

Food waste increases risk of contamination with 
pathogenic microorganisms; there is a trade-off 
between through better food planning (=reducing 
health risk) and avoiding food waste by wasting 
less/eating more (in most cases neutral to health, 
might in some cases have negative health effect); 
indirect health effect reduced air and water 
pollution through avoided food supply & waste 
management189. 

Over-consumption is one of the major cause of the obesity 
pandemic and of non-communicable diseases190,191. 
Reducing US food overconsumption, especially meat, would 
lead to both health and environmental benefits192. In the 
US, healthy food choices -- higher fruit and vegetable 
consumption -- are positively correlated with 
wellbeing193,194.   

Healthy diets are characterized by low consumption of meat, in 
particular red meat, with increased consumption of nuts, fruits, 
vegetables and legumes; however, the changes needed differ 
greatly by region174,195. Furthermore, livestock systems are 
associated with occurrence of Antimicrobial resistance196,197; 
and the potential risk of zoonotic diseases198.  

Sa
n

it
at

io
n

 

[+1]     [+1]      [+1]    

Food waste increases risk of contamination with 
pathogenic microorganisms199,200. 

Reducing junk foods and overconsumption would have 
positive impacts on Australia's environmental footprint and 
reduce waste201. 

Reduce diary and animal industry residues.  

En
er

gy
 [+1]     [+1/-1]    

 
      

Reduced energy needs in food supply, preparation 
& waste management176,202. 

see water.   

Sh
el
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M
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[+1]     [+1/-1]         

Less transport of food both within supply chain 
and for shopping end users. 

see water.   
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 [+1]    

 
      [-1]    

Food sharing is proposed as a measure to reduce 
food waste63,203,204 and requires communication. 

  information on how to 'use' animal free diets (recipes, what is 
healthy) not equally available (in the transition period); 
guidance on healthy plant-based diets largely missing182. 

So
ci

al
 p
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te

ct
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n
 [-

1/+1] 

   [+2]    [+3]    

Food banks & donations to reduce food waste are 
an important social protection measure in some 
countries. On the negative side, this does reflect 
austerity measures and the on-going breakdown of 
social security nets205–208. 

Reducing US food overconsumption, especially meat, would 
lead to both health and environmental benefits192. In the 
US, healthy food choices -- higher fruit and vegetable 
consumption -- are positively correlated with 
wellbeing193,194. Reducing junk foods and overconsumption 
would have positive impacts on Australia's environmental 
footprint201. 

Sustainable vegetarian diets are better for both human health 
and planetary health209,210.  Meat increases the risks of chronic 
ill health, colorectal cancer and cardiovascular disease211. 
Improved health helps people to manage their socio-economic 
risks; conversely, non-communicable diseases harm social 
protection212–216. 

P
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n

 

[+1]     [+2]    [+1]    

Reducing food waste in the US requires attention 
to specific contexts, social and behavioural factors, 
motivations, values, skills and preferences217. 
Reducing food waste can link to wellbeing, 
inclusiveness, and urban resilience218. In 
Singapore, ecologies of participation help explain 
transition motivations219. 

 Community-led interventions to reduce over-consumption 
and other health inequities can increase local control and 
socio-political impetus for improvements220. Traditional and 
community food systems also promise health (obesity-
reduction), environmental, economic and social 
benefits221,222. Dietary norms are strongly influenced by 
social context223. 

Interest in meat-free diets is socially-mediated and is growing 
quickly224. Diet shifts away from meat maybe understood as 
politicized and related to social identity225,226 and as reflecting 
moral judgement227,228. In the US, vegans face social stigma229. 
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 [+1]    

 
      [-1]    

Food sharing arrangements (e.g. food banks, soup 
kitchens) can be actively designed to improve 
social cohesion, and are one strategy to reduce 
food waste.   

  Dietary shift requires a transformation of society - today large 
resistance against it; 'healthy food' as status symbol in the 
transition period; social divides around alternative diets could 
be exploited.  
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 [+1]     [0/+1]     [+1]    

indirect positive effects if positive impact on food 
security are realized. 

unclear/slightly positive outlook; reducing 
overconsumption is likely opposed by vested interests in 
the food sector, leading to conflict; but successful 
reductions would tackle several underlying social problems, 
such as obesity and social class divisions.  

unclear/slightly positive outlook; reducing overconsumption is 
likely opposed by vested interests in the food sector, leading to 
conflict; but successful reductions would tackle several 
underlying social problems, such as obesity and social class 
divisions.  

Ec
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[+1]         [+2/0]     
Depending on the cost of food waste reduction, 
household income can increase (less purchases) or 
slightly decrease230. Indirect savings through 
environmental and health benefits189.  

  Shifted demand could also increase demand for new products 
with possibly high profit margins.  
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[-1]     [+1/-2]     [-2]    

Reduced demand for food might lead to a reduced 

demand for agricultural supply230; however there 

might be opportunities for smart packaging or 

food processing industries valorising food 

waste231,232. 

Reduced over-consumption might lead to a substitution 

effect with increased consumption of healthier products 

that partly compensates for reduced demand, or 

consumption of re-formulated products177,233. 

Cattle and meat industry will witness a decrease in demand. 

Opportunity to produce higher value low-carbon meat.  
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Table S5: Human wellbeing and demand-side mitigation strategies in land transport sector 
 Teleworking & online 

education system 
Non-motorized transport  Shared mobility Evs 

Fo
o

d
 

[+1]   ☺ ★★ [+2]   ☺ ★★ [+1]   ☺ ★★ [+1]   ☺☺ ★★★ 

Food service delivery mediated through 
mobile applications have increased 
rapidly globally between 2015-2020. 
Most major countries have at least one 
major Online Provider for food delivery 
showing unyielding growth rates 
(Statista,2019).This may be tampering 
with family values, dine-out culture, case 
in India (Shentil et al 2020). Built 
environment plays significant role 
connected with eating behavior and 
practice234.  

Active travel and healthy diets tend to 
cluster235,236. The causal mechanism is not 
clear237. 

Food availability, food security by crowd-
shipping services; see Le (2019) Sharing 
economy introduces new dynamics into the 
food service transaction and the food-service 
market change has implications for 
restaurants and the workforce238. 

Pedelec’s expand mobility options for those with low 
and medium fitness. Increased physical activity in turn 

is statistically correlated with healthier diets 235,236. 
 

W
at

e
r 

    [+1]   ☺ ★★            

  Walking and use of non-motorized 
transport to fetch water a public health 
problem for many, especially women, in 
the poor regions239. Alternative 
decentralized water treatment systems is 
a means of achieving rapid health gains 
among vulnerable populations in rapidly 
growing urban and peri-urban slums240. 

    

A
ir

 

[+3]   ☺☺☺ ★★
★★ 

[+1]  

 
☺☺☺ ★★★★

★ 

[+3]   ☺☺☺ ★★
★ 

[+2]   ☺☺
☺ 

★★★★ 

Same as health. Reduced transportation 
needs -> reduced congestion and 
emissions. Teleworking improve traffic 
condition and air quality241. 

Reduced congestion and emissions242. 
NMT solely give small CO2 emission 
reduction243–245. Combination with shared 
mobility/sharing system will improve air 
quality (PM 2.5) and public health246. 

Considerable emissions reductions and hence 
air quality improvements possible (see 
following tabs), but some potential for 
rebound effect as latent mobility demand 
increases. Tirachini, 2019 

Potential to eliminate particulate emissions 
from combustion (but not brakes, tire 
wear)247,248.  
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[+2]   ☺☺☺ ★★

★★ 

[+3]  

 
☺☺☺ ★★★★

★ 

[+2]   ☺☺☺ ★★
★★ 

[+1]   ☺☺
☺ 

★★★★ 

It has mix influence: "+2" for reduce 
commuting and (mico) trips > reduce 
emissions > increase public health; while 
"-1" for tendency of less physical activity 
which increase prevalence for 
cardiovascular diseases and obesity.  
Video formats are key requirements for 
COVID-19 and health provisioning249. 

increase physical activity > increase health 
level  while less air pollution, better 
quality of life250,251; Combination of 
cycling & shared mobility/sharing system 
(bike sharing) will improve air quality (PM 
2.5) and public health246. 

Considerably reduce emissions via less energy 
consumption, therefore increase public 
health. While it could have a negative impact 
on physical activity (e.g. less walking). In 
combination with EVs or Autonomous Vehicle 
will improve public health252. 

It very much depends on the implementation, 
the impact could be +1 or +2 (in combination 
with other policies). Nature Conservation and 
Nuclear Safety (BMU) report; Buekers et al. 
(2014); Requia et al. (2018); House et al. (2019). 
Combination with Shared Mobility (Ride 
Sharing, Ride Splitting) will improve public 
health252. 

Sa
n

it
at

io
n

 

               [+1]   ☺☺
☺ 

★★★★ 

      Sanitation vehicles with electric drive train 
reduce noise pollution in early morning hours, 
in addition to reducing GHG emissions253.   

En
er

gy
 

[+2]   ☺☺☺ ★★
★★ 

[+2]  

 
☺☺☺ ★★★★ [+1]   ☺☺☺ ★★

★ 

[+3]   ☺☺
☺ 

★★★★ 

Walking is highly energy efficient. 
Improving Non-motorized transport 
facilities will increase modal share of 
NMT and reduce fuel consumption and 
GHG emissions. Combination of NMT 
infrastructures together with 
improvement of Public Transport System 
will give maximum benefits for modal 
share, energy consumption and GHG 
emissions254.  

Walking is highly energy efficient. 
Improving Non-motorized transport 
facilities will increase modal share of NMT 
and reduce fuel consumption and GHG 
emissions. Combination of NMT 
infrastructures together with 
improvement of Public Transport System 
will give maximum benefits for modal 
share, energy consumption and GHG 
emissions254.  

Shared cycling, shared e-scooters and shared 
pooled mobility are more energy efficient 
than ICEs. Ride sourcing (Uber, Lyft) are more 
energy intensive than ICEs77 (ITF, 2020). 

Much more energy efficient that ICEs, key 
opportunity to reduce primary energy while 
keeping useful energy constant86,255 

Sh
el

te
r 

[+1]   ☺ ★★                       

Potential to de-link housing competition 
from job availability in dense urban areas, 
hence increasing affordability/access to 
shelter, but no known studies 
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[+2]   ☺☺☺ ★★
★★ 

[+3]  

 
☺☺☺ ★★★★

★ 

[+2]   ☺☺☺ ★★
★★ 

[+2]   ☺☺
☺ 

★★★★ 

Energy reduction from less travel, 
including less congestion and less stress 
on roads256,257.  Overall savings are 
significant but modest. Accessibility gain 
to work (convenience, time savings). 
Travel time saved for more pleasurable 
activities. 

Walking is an active mode of travel. 
Improving space use in terms of mode 
choice. A large number of car trips are 
less than 5 km and could be easily 
replaced by NMT (cycling), cycling 
use much less space than car and cyclists 
tend to be happier than other transport 
users258. Combination with sharing system 
(bike sharing) and electric-bike 
can remove barrier of elderly people for 
cycling longer distance and rides uphill259. 
Combination with improvement of public 
transport facilities will bring maximum 
benefit on the mobility (access to public 
transport & safety issues)254. 

Shared mobility offers notable convenience 
effects260–262. 

Another mobility option; higher air quality for 
traffic participants. Combined with Autonomous 
vehicle and shared mobility will increase the 
impact260–262. 

Ed
u

ca
ti

o
n

 

[-1]   ☺ ★★
★ 

[+1]  

 
☺☺☺ ★★★★            

An experiment of university students 
indicates that live education leads to 
slightly larger average test scores than 
online education263,264. 

all behavioural changes relates to 
education. The walkability could improve 
safety issue of school travel. Safe Route to 
School 
(SRTS) to promote active school travel 
(AST) through the improvement of 
infrastructure and non-infrastructures 
was common and famous265. The other 
example of intervention, walking school 
bus 
(WSB), was a promising intervention in 
short and long term in urban low-income 
elementary school students266. 
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 [+2]   ☺☺☺ ★★
★★ 

[+3]   ☺☺ ★★★ [+1]   ☺☺ ★★
★ 

       

Facilitate interaction with distant 
communities and long-distance family 
interactions267. 

Perceived walkability is positively related 
to neighbourhood social environment but 
neighbourhood socio-economic factors 
should be considered in walkability 
studies268. Walking enables more face to 
face contact than for example car driving 

Shared mobility as a way to also share 
information and values269. 

  

So
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n
 

[+1]   ☺☺ ★★
★★ 

[+1]  

 
☺☺ ★★★★ [+2]   ☺☺ ★★

★ 

[+3]   ☺☺
☺ 

★★★★★ 

IoT and digital commons represent 
key platforms for information (also eco-
chambers of information) exchange, offer 
an open marked of alternatives for 
consumption e.g. (consumer) assisting 
decisions in the private and public 
spheres, and create new spaces for social 
and political interaction270,271. 

Urban street reclaiming for non-
motorized transport can make cities safer 
for children272, and has high potential for 
health-promoting transport in less-
developed countries273,274. However, due 
to policy failures, most victims of road 
accidents are non-motorized transport 
users275–277. 

Shared mobility can fill gaps and extend the 
reach of public transport to connect low-
income people with jobs and other 
opportunities278 and increase quality of life 
for seniors279. Shared mobility may reduce 
and shorten trips and increase efficiency280 as 
well as user control281. 

The widespread adoption of EVs has the 
potential to substantially reduce greenhouse 
gas and other emissions, plus associated health 
impacts and damages282,283. 
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[+2]   ☺☺☺ ★★
★★ 

[+1]   ☺ ★★ [+1]   ☺☺ ★★
★ 

[+2]   ☺☺ ★★★ 

On daily basis less interaction with office 
mates however, Teleworkers able to 
develop greater social support 
relationships with some other 
teleworkers, while at the same time 
allowing them to distance themselves 
from negative work relationships284.  

Walkable design solutions and hence 
require participation and may also foster 
it. Majority of pedestrians, cyclists, public 
transit and even car users would prefer a 
redistribution of road space and 
investment in favour of active transport. 

Private car sharing require and foster local 
participation.  

Demands for decentralized renewable energy 
systems controlled at the local level are 
emerging in democratic energy transition 
politics285,286. EV adoption in the US is linked to 
progressive political identity287. Energy 
transitions follow paths driven by policies, 
technology development, and markets288. 
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[-1/+1]  ☺☺ ★★
★★ 

[+2]  

 
☺☺☺ ★★★★ [-1/+1]  ☺☺☺ ★★

★ 

       

Teleworking leads to reduced number of 
car crashes289.  
Teleworkers are less aware of ergonomic 
and health safety issues compared to 
office workers290.  

Safety and Security are important aspect 
on the decision to walk or not291–293. 

Platform security is a concern294, particularly 
in the case of ridesourcing295. Shared pooled 
mobility is comparatively safe, and shared 
cycling is also safe from assault. Increases 
road safety by taking cars from the roads296.  
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n
 [+2]   ☺☺☺ ★★

★★ 

[+2]  

 
☺☺ ★★★ [-1/+1]  ☺☺☺ ★★

★★ 

       

Reduced demand for cars. Teleworking 
may have positive implications on 
productivity of creative tasks but negative 
implications on productivity of dull 
tasks297,298.  

More social cohesion in more walkable 
neighborhoods299 (Wood et al 2009). 

Local shared mobility  can help to build and 
sustain communities269, but in many cases 
also create instability due to competition with 
regular taxis or regular paratransit drivers276.   
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[+2]   ☺☺ ★★
★ 

[+2]   ☺ ★★ [-1]   ☺☺☺ ★★
★★ 

    

Data sovereignty and data protection and 
security, as well as inclusivity, 
accessibility, net neutrality, resilience and 
robustness of digital and digitalized 
infrastructures are key requirements. // 
Inequality of internet service provision 
will make teleworking possible for some 
types of work. Equal and affordable 
access to internet services will define 
political possibilities. 

Same as social cohesion Shared mobility is seen as force of disruption 
in the automobile industry, possibly 
associated with slowdown in vehicle sales 
growth300. Even as overall revenue grows300, 
tomorrows highly paid jobs will differ from 
today’s, making the speed of change a 
relevant issue. Potential conflicts with regular 
taxis or paratransit drivers in developing 
countries276.  
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 [+2]   ☺☺☺ ★★

★ 

[+2]   ☺☺ ★★★ [+2]   ☺☺☺ ★★
★★ 

[+2]   ☺☺
☺ 

★★★★ 

Spatial and social-group-specific 
differences 
in access to digital services (internet), 
differences in skills for dealing with ICT 
,for the spread of telecommuting and for 
receiving economic benefits of 
digitalization301,302. 

Active travel infrastructure is associated, 
in most cases, with increased local 
business activities303–305.  

Large additional economic service-oriented 
turnover expected300.  
 

Similar to the concept of #M4.  
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            [+2]   ☺☺☺ ★★
★★ 

[-1]   ☺ ★★ 

    Material demand reduction86,306–308.  Material for EVs are heavier and more carbon 
intensive306–309,309–312. 



Demand-side solutions to climate change mitigation consistent with high levels of wellbeing 

 

22 

 

Ec
o

n
o

m
ic

 s
u

p
p

ly
 s

id
e 

ef
fe

ct
s 

[+1]   ☺☺☺ ★★
★★ 

[+1]   ☺☺ ★★★ [-2]   ☺☺☺ ★★
★★
★ 

[+1]   ☺☺ ★★★ 

spatial and social-group-specific 
differences in access to digital services  
(internet), differences in skills for dealing 
with ICT ,for the spread of telecommuting 
and for receiving economic benefits of 
digitalization 301,302. 

Walking increases creativity and improve 
productivity313; less car dependence may 
reduce monetary turnover for repairing 
and providing for new streets and 
automobile infrastructure 

Reduced demand for private cars, may have 
negative impact on the existing public 
transport system260,314. 

Although the adoption of electric vehicles are 
accelerating, it may not be clear that purchasing 
an electric vehicle is advantageous from an 
economic or environmental perspective315; 
diesel and ICE engines are more labor intensive 
than electric engines. 

 

  

https://doi.org/10.1037/a0036577
https://doi.org/10.1037/a0036577
https://doi.org/10.1037/a0036577
https://doi.org/10.1037/a0036577
https://doi.org/10.1037/a0036577
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Table S6: Human wellbeing and demand-side mitigation strategies in urban sector 
 Compact city Circular and shared economy  

Systems approach in urban policy and 
practice 

Nature based solutions 

Fo
o

d
 

[+2/-1]   ☺☺ ★★★ [+2]   ☺☺
☺ 

★★★
★ 

[+1]   ☺☺ ★★★ [+2]   ☺☺ ★★★ 

Mix effects. land use and land availability  
perspective; protecting agricultural land  
(which also has positive impact on food 
security and E stability) (+2) / increase 
transport (in contrast to local production) (-
1) ; Creutzig (2016), Wake (2019), Azunre et 
al (2019), Yuan (2019), Anabtawi (2018), Gu 
et al (2019) 

Community gardens that support 
sustainable food production and 
consumption, urban food sharing including 
sharing seeds, redistribution of food to the 
needy, food banks, shared kitchens, shared 
dining deliver substantial environmental 
benefits including avoided foodwaste to 
landfills (Munz and Cohen, 2016) (Davies & 
Legg, 2018) 

Integrating urban agriculture can improve food 
access and security316 ; Bisello (2018); 
Integrating rural land use optimization, 
changing urban dietary structure, and reduce 
food waste in cities can all contribute to overall 
food security Gu et al (2019)  / land use mix, 
connectivity, and accessibility > IPCC-AR5-Ch12   

Sustainable urban agriculture can enhance 
local food production317 Petit-Boix (2018); 
Pauliuk (2018). Green infrastructure help 
biodiversity restoration and thus help 
pollinator health, contributing to longer term 
food security (Hall et al 2017). 

W
at

e
r 

[+1]   ☺ ★★ [+1]   ☺☺ ★★★ [+2]   ☺☺
☺ 

★★★ [+1/-1]   ☺☺
☺ 

★★★★
★ 

Compact urban form that limits urban 
expansion in combination with both 
behavioural and structural shifts for 
reducing water demand, including rainwater 
harvesting, can reduce energy usage for 
water demands and CO2 emissions as well as 
the water stress of urban areas on 24 local 
and/or distant reservoirs (James et al. 2018; 
Lam et al. 2018; Xu et al. 2018a). Negligible 
effect of densification on residential water 
demand318. 

Likely large potential for rainwater 
harvesting via building design , as well as low 
water use devices and behaviours.. A circular 
economy approach for water could enable 
efficient use of water and enhance the city's 
water security319. (Slys, 2009) 

Similar to food, potential to integrate "water-
energy-food" nexus in urban sites320 the nexus 
approach allows for simultaneous planning to 
reduce energy and water footprint321 (Wang 
and Chen, 2017) Urbanization and urban air 
pollution both found to exacerbate  heavy 
rainfall and thus flood risk in cities. Therefore, 
urban water management need to be 
considered through a systems approach 
considering these interlinkages322. 

Water-energy-food nexus. E.g. integrating 
food production with rainwater harvesting / 
waste water flows / water recycling schemes 
on shared urban spaces such as rooftops, 
parks323,324 UNESCO, 2018); Lwasa et al. 
2015. Support storm water management325 
(Mcphearson et al., 2015); Urban blue 
infrastructure enhances water quality and 
security; trade-off with choice of tree species 
especially in water scarce cities; Sponge city 
initiative in China reduces urban flood risk 
(Chan et al 2018) 
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A
ir

 
[+2/-1]   ☺☺

☺ 

★★★ [+2]   ☺☺
☺ 

★★★ [+2]   ☺☺
☺ 

★★★ [+3/-1]   ☺☺
☺ 

★★★★ 

There is evidence of improved air quality 
avoided deaths from reduced air pollution, 
especially when accompanied by 
appropriate transit policies326–328. However, 
some studies show low or no clear impact of 
compact urban development on air 
quality329,330; Compactness if not 
accompanied by transit can add to 
congestion and poor air quality  

Considerable emissions reductions and 
hence air quality improvements possible 
(see following tabs), but some potential for 
rebound effect as latent mobility demand 
increases Tirachini, 2019. 

Same as health - integrated urban planning 
supporting air quality; Co-benefits between 
climate mitigation and air pollution reduction25.  
Systemic (district) solutions to heating and 
cooling needs, as well as logistic needs can 
reduce overall air pollution54,331. 

Urban tree planting can provide significant 
air quality benefits332–334 (De la Sota et al. 
2019). Choice of species matters- some 
species could produce wind dispersed pollen 
and gases that cause photochemical 
reactions335,336.Through reduced urban heat 
island effect, urban green surfaces also 
reduce photochemical smog. incl. ozone 
concentration337. 

H
ea

lt
h

 

[+3/-1]   ☺☺
☺ 

★★★
★ 

[+2]   ☺☺ ★★★ [+3]   ☺☺ ★★★ [+3]   ☺☺
☺ 

★★★★
★ 

Compact cities that support a modal shift 
away from private motor vehicles towards 
walking, cycling, and low-emission public 
transport326. This modal shift to active 
transport secured cleaner air, benefitting 
public health Savacool (2020); Newman 
(1989); Creutzig (2016); Urge (2018) 
Woodcock (2009); Balbus (2014). Trade-offs 
include the marginal health costs of 
transport air pollution338 , noise stress 
(Madza Adli, 2017). 

 

Health impact via less outdoor air pollution 
and improved indoor environmental 
conditions (Savacool, 2020);  combine ICT, e-
mobility could create sustainable urban 
spaces, thus a better quality of life including 
health and social cohesion (EU SCIS project, 
2017); energy retrofit on urban regeneration 
mentioned in several project reports339 
(Bisello (2018).  
Indirectly from avoided air pollution and 
noise from manufacturing and construction. 
Health benefits from shared urban food 
systems340; Significant reduction in energy 
use and material usage > air pollutant 
emissions reduction and therefore increase 
public health (Urge (2018));  increase leisure 
and social quality times; health benefits 
from improved diets (Christis et al., 2019) 

Sustainable positive health outcomes in the 
urban context require a systems approach that 
integrates perspectives from urban planning > 
Bai (2016); Roux (2015); Tozan (2015);  Bai 
(2012); Urge (2018);  A better access to 
healthier food, improved air quality and waste 
management 

Space for more physical activity for urban 
residents (Raymond et al., 2017). Health 
benefits including reduced cardiovascular 
morbidity, improved mental health341,342, 
higher birth weight (within 100 m)343 and 
from reduced air pollution and access to 
green spaces344,345 (Bellamy et al., 2017).  
Overall, urban greenery has significant 
impact on increased life expectancy (Jonker 
et al 2014) 

Sa
n

it
at

io
n

 

[+1]   ☺ ★★        [+1]   ☺☺ ★★★ [+1]   ☺☺
☺ 

★★★ 

 

 

  by designing and operation of infrastructure to 
secure sanitation, control infiltration and storm 
water runoff; Circular economy unlocks a rich 
cycle of biological, and renewable, resources 
that can be used and reused continuously which 
usually being lost and often causing harm. 

nature-based sanitation solutions can be 
implemented into wastewater treatment 
facilities (UNESCO 2018) 
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Circular Sanitation Economy could significantly 
speed up the pace of change and the scale 
needed to achieve SDG 6: Universal access to 
adequate and equitable sanitation and hygiene; 
The safe management of Toilet Resources is 
critical to creating sustainable and resilient 
sanitation systems for all346. 

En
er

gy
 

[+3/-1]   ☺☺
☺ 

★★★
★★ 

[+3]   ☺☺
☺ 

★★★ [+3]   ☺☺
☺ 

★★★ [+3]   ☺☺ ★★★ 

Energy use from housing and mobility is 
reduced in more compact cities (Borck and 
Brueckner, 2016; Creutzig, 2014; Creutzig et 
al, 2015) fewer emissions from transport 
due to shorter distances may be 
counteracted with more urban heat island 
effect. Supports integration of renewables; 
high density development reduces energy 
for piped water and sanitation infrastructure 
but increases energy consumption for 
pumping water to high rise buildings347; 
compact cities could increase the urban heat 
island effect348. 

Energy co-ops can enhance the generation 
and use of renewable energy in cities349, 
Sharing economy as a business model for 
energy storage (Lombardi and schwabe 
2017). 

Local production of renewable energy350 
Kaamen and Suntar (2016). Joint car and bike 
sharing significantly reduces energy 
consumption and needs (Becker et al, 2020). 
Considerable reducing in energy use for building 
construction by material use reduction (Lucon 
et al 2014). Occupant’s behaviour can save up 
to 10-25% of energy consumption in residential 
buildings, and 5-30% in commercial buildings 
(Zhang et al 2018). 

Reduced urban heat island  effect from urban 
greenery as well as building shading by green 
walls, roofs,  can result in significantly 
reduced cooling energy consumption351. 
Dense urban greenery can reduce night-time 
urban cooling and thus heating needs in 
heating season352 (Simpson 1998). 
 

Sh
el

te
r 

[-1]   ☺☺
☺ 

★★★
★★ 

[+2/-1]   ☺ ★★★ [+2]   ☺☺ ★★★ [+1/-1]   ☺☺ ★★★ 

Densification projects can be detrimental for 
housing affordability, as urban regeneration 
(e.g. establishing walkable districts, 
constructing dense urban apartments) is 
often associated with gentrification353–355; 
Higher land values and housing costs356. 

Shared spaces/low income housing provide 
affordable shelter. Trade-off: Shared hostels 
impacted local hotel industry357,358. 
Prioritising retrofits rather than new urban 
construction, reusing construction materials, 
especially cement, in building and 
infrastructure construction is fundamental 
to a circular economy2,359.  

Integrated buildings design / urban policy may 
improve shelter quality, but could be 
detrimental for affordability. Reductions in 
building cost/material use potentially increasing 
affordability, access (Lucon et al 2014). 

In coastal areas, natural mangroves can act 
as bioshields protecting residential property 
(Feagin et al., 2010) 
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M
o

b
ili

ty
 

[+3]   ☺☺
☺ 

★★★
★★ 

[+3]   ☺☺
☺ 

★★★
★★ 

[+3]   ☺☺ ★★★ [+1]   ☺☺ ★★★ 

Compact cities a) reduce the distance 
needed to drive; b) enable modal shift to 
public transit (require high ridership) and 
cycling (requires shorter distances). They 
may also increase congestion (unclear 
results)338 (Creutzig, 2014). Denser, mixed 
use, and compact environments can provide 
benefits and offset effects of VMT and 
energy consumption, but also found that 12 
such built environments can offset such 
benefits due to the fact that congestion 
often occurs in denser 13 urban areas. The 
study also found that population density and 
mixed use have only limited effects on 14 
commuting trip distance, but for non-
commuting trips, mixed use and street 
connectivity are associated 15 with shorter 
VMT Ding et al. (2017a). 
 

Shared mobility  (ride sharing) is among the 
most promising urban strategies  to address 
congestion, parking challenges, frees up 
road space for more safe bicycle 
infrastructure79,80.  
Shared vehicle (without ride sharing) use 
makes mobility more flexible without having 
to rely on available parking and being tied to 
vehicle location. Simultaneously, it saves 
substantial embodied emissions through 
reduced needs for automobiles and parking 
infrastructures. 

Joint car and bike sharing significantly reduces 
energy consumption and needs (Becker et al, 
2020) and improves transport efficiency360.  

Shaded pathways can enhance shift to 
walking and cycling361. 

Ed
u

ca
ti

o
n

 

[+1]   ☺☺
☺ 

★★★
★★ 

[+1]   ☺☺
☺ 

★★★
★ 

       [+2]   ☺☺
☺ 

★★★★ 

Compact cities increase access to the 
schools and educational facilities362. 

Participants in food exchange programme 
gained new knowledge340; community 
school gardens integrated into school 
curricula can deliver education and health 
benefits to children363. Widespread use of 
shared mobility substantially increases the 
inclusivity of cities, including access to 
education80. 

  Schools, universities and urban forests can 
enhance knowledge regarding nature, 
ecosystems functions and biodiversity364–366.  
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C
o

m
m

u
n

ic
at

io
n

 
[+1/-1]   ☺☺ ★★★ [+1]   ☺☺

☺ 

★★★
★ 

[+1]   ☺ ★★        

Mixed effects. Design of public spaces is 
important (Raman, 2010) 

Shared housing (e.g. shared kitchens), 
improves communication between 
neighbours, or co-inhabitants, though design 
issues, and the predisposition of inhabitants 
are important (Baum, 1986). People with 
dementia benefit from shared living 
arrangements. Shared urban spaces enhance 
virtual and physical communication among 
urban communities340. Widespread use of 
shared mobility substantially increases the 
inclusivity of cities, including communication 
among its citizens, ability to form 
communities80 

A systems approach can translate into improved 
communication at urban level, e.g. via urban-
scale smart mobility systems that improve 
accessibility also for the disadvantaged (De, 
Sikarwar and Kumar, 2018). RE integration with 
smart city systems can enhance the potential of 
ICT. Food and appliances sharing system build 
on social group communication, both requiring 
this and fostering it. 
 
 
 

  

So
ci

al
 p

ro
te

ct
io

n
 

 

[+2]   ☺ ★★ [+1]   ☺☺ ★★★ [-1]   ☺ ★★ [+2]    ☺☺
☺ 

★★ 

Potentially greater access to amenities 
supporting social protection (health, 
education, green spaces, community 
spaces). These benefits could potentially 
also be offset by the gentrification and 
commercialisation of dense urban areas. 
References unknown. Safer urban 
environments (OECD, 2018) Streets that 
have kiosks, shops, etc. , more frequently 
found in compact cities, have "eyes on the 
street", and thus provide an element of the 
building of social capital (Jacobs, 2016) 

Food sharing and re-distribution to the 
needy can enhance food security and  act as 
a social protection strategy340,367,368. 
Widespread use of shared mobility 
substantially increases the inclusivity of 
cities, including the access to services and 
infrastructures to build community and 
social services80. 

Ambitious mitigation and adaptation plans 
could benefit private interests resulting in 
adverse effects on the urban poor Chu 2016; 
Mehta et al. 2019 

Nature based solutions offer opportunities 
for greater interaction; spaces for shared 
activities, events, etc, improve societal 
health and well-being324 (Bellamy et al., 
2017)  
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P
ar

ti
ci

p
at

io
n

 
[+1]   ☺ ★★ [+1]   ☺☺

☺ 

★★★ [+1]   ☺☺ ★★★ [+3]   ☺ ★★ 

The built environment (walkability) has a 
small but significant positive effect on social 
capital (Wood et al., 2009) (see also social 
cohesion) 

Systems approach that engages public 
participation and developed solutions can 
enhance participation (Bai et al.,2018) 
Widespread use of shared mobility 
substantially increases the inclusivity of 
cities, including access to active participation 
opportunities80. 

Participation itself can realize system-wide 
solution, such as well-designed cable car 
systems in Medellin369.  

Many solutions are bottom-up 
(participatory)324,370,371. 

P
er

so
n

al
 S

ec
u

ri
ty

 

 

[+1]   ☺☺
☺ 

★★★
★ 

[+2]   ☺☺
☺ 

★★★
★ 

[+2]   ☺ ★ [+1]    ☺ ★★★ 

Compact and dense cities could enhance 
citizens safety356; Compact and optimally 
designed cities enhance energy efficiency, 
and through this alleviate poverty372. 

Sustainable urban planning, particularly with 
nature-based solutions has a positive impact 
and contributes to urban resilience, human 
well-being, economic stability and physical 
security > H2020 report (2015) ;  it also 
address the societal challenges of climate 
change, natural disasters, food and water 
security, human health and well-being, and 
economic and social development  > Bush 
(2019); Cohen-Shacham (2016); EC (2015) 

The system approach in urban planning and 
policies have a direct influence on spatial 
segregation of society and in the perception of 
urban security by citizens.  Therefore enhance 
citizens and sources security, for example by 
creating safe and healthy places, urban crime 
and violence reduces > Saaty (2017) 

In pandemics such as in COVID19, urban 
parks can provide access to safe exercise and 
safe leisure such as walking with pets or 
meeting friends373.  

So
ci

al
 c

o
h

es
io

n
 

[+1]   ☺☺
☺ 

★★★
★★ 

[+1]   ☺☺ ★★ [+1]   ☺ ★★ [+2/-2]   ☺☺
☺ 

★★★ 

Access to recreation, amenities, education, 
jobs and opportunities for social interaction. 
Dense cities have small networks but 
stronger ties (Raman, 2010) 

Shared spaces for interaction such as 
libraries, recycling cafes, community gardens 
and shared public spaces can offer 
opportunities for bringing communities 
together (Munz and Cohen, 2016). Many 
solutions are bottom-up and improve 
cohesion; sense of belonging main 
motivation to participate in sharing 
economy (Hawlitschek et al, 2016). 
Widespread use of shared mobility 
substantially increases the inclusivity of 
cities, including social cohesion80. 

By involving, in different ways, more people in 
the management and decision making about 
green spaces additional, more socio-cultural 
benefits can be unlocked (Andersson, 2018) See 
also communication and participation 

Synergy: provide spaces for social 
engagement; improve well-being (Bellamy et 
al, 2017) greening strategies, upgrading and 
urban revitalization as primarily market-
driven endeavours targeting middle class and 
higher income groups sometimes at the 
expense of less privileged residents. Rise in 
property prices could lead to further 
gentrification (Raymond et al., 2017) (Hasse 
et al., 2017); uneven distribution of costs and 
benefits (Bush & Doyon, 2019) 
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b
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        [+1]   ☺ ★★               

  Similar link to social cohesion - sharing 
economy fostering social cohesion and 
hence political stability 
 
 

    

Ec
o

n
o

m
ic

 s
ta

b
ili

ty
 

[+1]   ☺☺
☺ 

★★★
★ 

[+2]   ☺ ★★ [+1]   ☺☺ ★★ [+3]   ☺☺
☺ 

★★★★ 

Compact cities can foster regional economic 
growth, affect its economic activities. 
Improved productivity, better access to jobs 
through reduced travel distances356. Higher 
densities and close proximity of a larger 
population would mean that local 
businesses become more viable (Jenks, 
2019, and enabled higher levels of energy 
efficiency help alleviate poverty372. 

Economic benefit for those receiving the 
redistributed food. Green jobs from urban 
start-ups, avoided costs340. Local economic 
opportunities through urban start-ups 
((Munz and Cohen, 2016). Not enough 
evidence to show these benefits will be 
sustained 

System approach poses an ability to deal with 
large number of interacting variables and 
relations.  > direct and indirect positive impacts 
> address disaster risk reduction, urban poverty 
reduction and urban resilience > enhance 
economic stability. Systems approach entails 
creating demand and opportunities for 
entrepreneurship and business and civil society 
engagement316; this strategy can address a 
variety of societal challenges in sustainable 
ways, with the potential to contribute to green 
growth, 'future-proofing' society, fostering 
citizen well-being, providing business 
opportunities  > H2020 report (2015) 

has high positive impact on economic 
stability; see Ghisellini er al (2016), Esposito 
et al (2017), Esposito et al (2018), Tomey et 
al (2016) , ....  

M
at

e
ri

al
 p

ro
vi

si
o

n
 [+1]   ☺ ★★ [+3]   ☺☺

☺ 

★★★ [+3]   ☺☺
☺ 

★★★★★ [+1]   ☺ ★★ 

Compact cities use land and resources 
efficiently (Fertner and Große 2016) but 
there isn't enough evidence on material use  
 
 
 

Reduced material needs from higher 
recycling and reuse374 (Cohen & Munoz, 
2016)(Kumar and Baskar 2015) ; Urban 
organic waste can be recycled and reused in 
many  urban applications, including as 
fertilisers375. 

Integrated and efficient infrastructure reduces 
material from avoided infrastructure and better 
efficiency ; Policy on green procurement  and 
changing industrial development policy may 
change  the type and quantity of material 
provision  as well as GHG emission of the 
city376,377. 

Urban parks, gardens,  green infrastructure 
can provide bio-based materials for various 
uses, including wood for construction, 
firewood, compost for fertilisation,  etc375. 
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Ec
o

n
o

m
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 s
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p
p
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 s

id
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ef
fe

ct
s [+1/-2]   ☺☺ ★★★ [-1]   ☺☺

☺ 

★★★
★ 

[+2/-2]   ☺☺ ★★ [+1]   ☺☺ ★★ 

Reduced demand for cars. Makes public 
transport viable; positive and negative 
effects on real estate sector; typically 
compact cities are productive for street-level 
business and in particular for service-
oriented domains where in-person meetings 
are important (law, notary services, etc.)378–

381; Improves labour productivity54 

Reduced demand for primary material input 
(at the urban scale, net effects positive 
because recycling is more labour and 
technology intensive).   
Retrofitting rather than new construction 
has substantial net positive impacts on 
employment (Urge-Vorsatz et al 2010)  

Impacts on centralised energy supply but higher 
opportunities for integrating renewables316. 

NBS may provide new opportunities for 
landscape planners and implementing 
agencies324,351,370. 
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Table S7: Human wellbeing and demand-side mitigation strategies in industry sector 
 Using less material by design Product life extension Energy Efficiency Circular economy  

Fo
o

d
 

[+2]   ☺
☺ 

★★ [+2]   ☺☺ ★★ [+2]   ☺☺ ★★ [+2]   ☺☺ ★★★ 

More material efficient design of 
packaging > less waste food; more 
efficient fertilizer application > more 
food production (per unit of 
material)86. 

Extending the life of food products, 
through better packaging, refrigeration, 
genetic improvement > increased 
provision of food. Can cause increases in 
food loss and wastes and energy 
consumption in for 
storage/refrigeration86.  

Increased energy efficiency in food processing 

supply chains, increase food production (per 
energy input) 382,383.  

More circular material and food systems (i.e. 
recycled packing, composting of food) > 
improved system provision of food86. 

W
at

e
r 

[+2]   ☺
☺ 

★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ 

More material efficient design of water 
infrastructure > increased access to 
water (per unit of material) 86. 

Long-life water infrastructure > increased 
access to water86. 

Increased energy efficiency in pumping and 
treating of water > increased water access86. 

Increased reuse/recycling/cascading of water 
(to avoid single use) > recyclable bottles > 
recycled water infrastructure > improved 
more water provision86. 

A
ir

 

[+3]   ☺
☺ 

★★★ [+3]   ☺☺ ★★★ [+3]   ☺☺ ★★★ [+3]   ☺☺ ★★★ 

Less overall material demand > 
reduced industrial non-GHG emissions 
> air quality improvements86. 

Less overall material demand > reduced 
industrial non-GHG emissions > air quality 
improvements86. 

More energy efficient material production > 
reduced industrial non-GHG emissions > air 
quality improvements86. 

More circular material systems > less overall 
material demand > reduced industrial non-
GHG emissions > air quality improvements86. 

H
ea

lt
h

 

[+2]   ☺
☺ 

★★ [+2]   ☺☺ ★★ [+1]   ☺☺ ★★ [+1]   ☺☺ ★★ 

More materially efficient of medical 
equipment and consumables > 
increased health provision (per unit of 
material) 86. 

Longer life medical product design > 
increased health provision (per unit 
material)86. 

More energy efficient production of medical 
equipment and services > increased health 
provision86. 

More circular materials systems for medical 
equipment and services > increased health 
provision (per unit of material) 86. 
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 [+2]   ☺
☺ 

★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ 

More materially efficient design of 
sanitation infrastructure > increased 
access to sanitation (per unit of 
material) 86. 

Longer life sanitation infrastructure > 
increased access to sanitation (per unit of 
material) 86. 

More energy efficient sanitation infrastructure > 
increased access to sanitation86.  

More recovery of nutrients from sewage > 
recycling of sanitation infrastructure > 
increased access to sanitation (per unit of 
material) 86. 

En
er

gy
 

[+3]   ☺
☺ 

★★★★ [+3]   ☺☺ ★★★★ [+3]   ☺☺ ★★★★ [+3]   ☺☺ ★★★★ 

More efficient designs > less materials 
> less industrial energy required > 
increased energy access (per unit of 
material)86,87,306,308.  

Longer life energy designs > less materials 
> less industrial energy required > 
increased energy access (per unit of 
material86,87,306,308. 

Improved efficiency of energy system > more 
services delivered (per input of energy) > 
increased energy access86,87,306,308,384,385.  

More circular material systems > less 
materials > less industrial energy required > 
increased energy access (per unit of 
material)86,386,387.  

Sh
el

te
r 

[+2]   ☺
☺ 

★★★★ [+2]   ☺☺ ★★★★ [+2]   ☺☺ ★★★★ [+2]   ☺☺ ★★★★ 

Better, more material efficient design 
of shelters > more shelter provision 
(per unit of material)86,87,306–308.  

Longer lasting shelters > more shelter 
provision (per unit of material)86,87,306–308. 

More energy efficient manufacture of shelter > 
more shelter provision (per unit of material)86.  

More circular material systems for shelters > 
more shelter provision (per unit of 
material)86,307.  

M
o

b
ili

ty
 

[+2]   ☺
☺ 

★★★★ [+2]   ☺☺ ★★★★ [+2]   ☺☺ ★★★★ [+2]   ☺☺ ★★★★ 

Lightweight vehicles > more mobility 
(per fuel use and unit materials) 
86,87,306–308. 

Longer life vehicles > more mobility (per 
unit material) 86,87,306–308. 

More energy efficient manufacture of vehicles 
and mobility infrastructure > increased mobility 
provision86. 

More circular material systems > more 
mobility (per unit material)86,307. 

Ed
u

ca
ti

o
n

 

[+1]   ☺
☺ 

★★ [+1]   ☺☺ ★★ [+1]   ☺☺ ★★ [+1]   ☺☺ ★★ 

Less materials used to deliver 
education infrastructure and buildings 
> increase education facilities (per 
material use) 86. 

Less materials used to deliver education 
infrastructure and buildings > increase 
education facilities (per material use)86. 

Less energy used to deliver education 
infrastructure and buildings > increase 
education facilities86. 

More circular materials systems > reuse of 
materials in education buildings > increase 
education facilities (per material use)86. 
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C
o

m
m

u
n

ic
at

io
n

 [+2]   ☺
☺ 

★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ 

Less materials used in communication 
infrastructure > increased rollout of 
communication (per material use)86. 

Longer life communication infrastructure 
> increased rollout of communication (per 
material use)86. 

More energy efficient manufacture of 
communication infrastructure > increased 
rollout of communication86. 

Increased reuse and recycling of materials 
used in communication infrastructure > 
increased rollout of communication (per 
material use) 86. 

So
ci

al
 p

ro
te

ct
io

n
 [+1]   ☺

☺ 

★★ [+1]   ☺☺ ★★ [+2]   ☺☺☺ ★★★★ [+1]   ☺☺ ★★ 

Better product design > increased sales 
> more social protection86. 

Longer life, higher quality products > more 
profits > more social protection86. 

Energy efficiency has human health benefits, 
and these are greater for low-income 
people86,153,388,389.  

More circular product designs > increased 
sales > more social protection86. 

P
ar

ti
ci

p
at

io
n

 

[+1]   ☺
☺ 

★★★ [-1]   ☺☺
☺ 

★★★★ [+2]   ☺☺ ★★★ [+1]   ☺☺ ★★★ 

Mix results: While public acceptability 
is high for resource-efficient products.  
In practice, findings for electronic 
devices also showed strong 
preferences for products with the 
highest perceived quality, which are 
more resource intensive by 
design390,391.  

Extended producer responsibility and buy-
backs tend not to be popular with 
consumers or producers; policy packages 
are proposed as a way to address 
this86,392–395 (Yoon and Jang 2006).  

Energy democracy movements advance the 
transition away from fossil fuels, which 
democratically link social justice with energy 
innovation through a mix of policies396–398. 

Circular fashion, based on participatory 
eco/re-design and consumer meaning-making 
in expanded value-creation and sharing, is 
proposed as a way to reduce material 
throughput in clothing399. In electronics and 
other sectors too, consumers are ready for 
product take-back, design for disassembly, 
Extended Producer Responsibility, and 
remanufacturing86,400–402.  

P
er

so
n

al
 S

ec
u

ri
ty

 [+1]   ☺
☺ 

★★ [+1]   ☺☺ ★★ [+1]   ☺☺ ★★ [+2]   ☺☺ ★★ 

Increased material efficiency > 
reducing energy demand, reducing the 
emissions and other environmental 
impacts of industry, therefore 
increases national resource security86 
(Allwood et al, 2013). 

Extended lifecycle of materials > 
enhanced resource security86. 

Energy efficient production of materials > 
enhanced resource security 

Increased circularity of materials > enhanced 
resource security86. 
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So
ci

al
 c

o
h

e
si

o
n

 [+1]   ☺
☺ 

★★ [+1]   ☺☺ ★★        [+1]   ☺☺ ★★ 

Participatory design of products > 
better match to consumer needs86. 

Participatory design of products > better 
match to consumer needs86. 

  Participatory design of products > better 
match to consumer needs86. 

P
o

lit
ic

al
 s

ta
b

ili
ty

 [+1]   ☺
☺ 

★★ [+1]   ☺☺ ★★ [+1]   ☺☺ ★★        

material efficiency > reducing energy 
demand, reducing the emissions and 
other environmental impacts of 
industry, therefore increases national 
resource security86 (Allwood et al, 
2013,  IEA report)  

Extended lifecycle of materials > 
enhanced resource security86. 

Energy efficient production of materials > 
enhanced resource security86.  

  

Ec
o

n
o

m
ic

 s
ta

b
ili

ty
 [+2]   ☺

☺ 

★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ [+2]   ☺☺ ★★★ 

Better product design > competitive 
advantages > more sales86,403 
(Bleischwitz, 2010). 

Better product design > competitive 
advangtages > more sales5 (Bleischwitz, 
2010). 

More energy efficient production of materials 
and manufacturer of products > competitive 
advangtages > more sales5. 

More circular product designs > competitive 
advangtages > more sales5. 

M
at

e
ri

al
 p

ro
vi

si
o

n
 

[+3]   ☺
☺ 

★★ [+3]   ☺☺ ★★ [+2]   ☺☺ ★★ [+3]   ☺☺ ★★ 

Better, material efficient designs > 
increased provision of services derived 
from materials86,87,87,88,306–308,404,405.  

Better, longer life product designs > 
increased provision of services derived 
from materials86,306,308,87,307,406,405,404.  

Energy efficiency and material efficiency are 
interrelated in industrial plants, often 
inversely86,384,385,407,408.  

Better, more circular product designs > 
increased provision of services derived from 
materials86,386,387,404,405,409–413.  
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Ec
o

n
o

m
ic

 s
u

p
p

ly
 s

id
e 

ef
fe

ct
s 

[-2]   ☺
☺ 

★★ [-2]  ☺☺ ★★ [-2]  ☺☺ ★★ [-2]  ☺☺ ★★ 

Reduced demand for primary energy > 

loss in rents of resource owners; 
reduced demand of energy intensive 
products > loss in demand for some 
incumbent industry and related 
perception bias (status quo, loss 
aversion) hindering changes in 
business models. For medium-term 
positive effects see > economic 
stability86,403. 

Reduced demand for primary energy > 
loss in rents of resource owners; reduced 
demand of energy intensive products > 
loss in demand for some incumbent 
industry and related perception bias 
(status quo, loss aversion) hindering 
changes in business models. For medium-
term positive effects see > economic 
stability86,403. 

Reduced demand for primary energy > loss in 
rents of resource owners; reduced demand of 
energy intensive products > loss in demand for 
some incumbent industry and related 
perception bias (status quo, loss aversion) 
hindering changes in business models. For 
medium-term positive effects see > economic 
stability86,403. 

 Reduced demand for primary energy > loss in 

rents of resource owners; reduced demand of 
energy intensive products > loss in demand 
for some incumbent industry and related 
perception bias (status quo, loss aversion) 
hindering changes in business models. For 
medium-term positive effects see > economic 
stability86,403. 
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