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Supplementary Notes 21 

Supplementary Note 1 Previous studies on multi-omics integration 22 

Recent study 1  evaluated 14 single-cell batch-effect correction/integration methods, showing that 23 

Harmony 2, LIGER 3, and Seurat3.0 4 are the recommended methods for batch integration in 24 

general. Thus, we compare bindSC with these three available state-of-the-art methods.  25 

Harmony 26 

Harmony 2 uses an iterative clustering approach to align cells from different batches. The algorithm 27 

first combines the batches and projects the data into a dimensionally reduced space using PCA. It 28 

then uses an iterative procedure to remove the multi-dataset specific effects. In our analysis, we 29 

ran Harmony within the Seurat3.0 based on the guide 30 

(http://htmlpreview.github.io/?https://github.com/immunogenomics/harmony/blob/master/docs/S31 

euratV3.html).  32 

Seurat3.0 33 

Seurat 4 uses CCA to first compute the linear combinations of genes with the maximum correlation 34 

between batches then adopts mutual nearest neighbor (MNN) to align the cells between datasets 35 

based on  anchor cells identified. In our analysis, we used the Seurat package version 3.0 in the R 36 

language environment to perform multi-omics integration. Adhering to the suggested integration 37 

workflow (https://satijalab.org/seurat/v3.2/atacseq_integration_vignette.html).  38 

LIGER 39 

LIGER 3 uses integrative non-negative matrix factorization (iNMF) to first learn a low-40 

dimensional space where each gene is characterized by two sets of factors. The first set contains 41 

dataset-specific factors, and the second contains shared factors. The shared factor space is then 42 

used to identify similar cell types across datasets by first constructing a shared factor neighborhood 43 
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graph to connect cells with similar factor loading patterns. Joint clusters are then identified using 44 

the Louvain community detection. Thereafter, the factor loading quantiles are normalized using 45 

the largest data batch as a reference to achieve batch-correction. In our work, we followed the 46 

LIGER documentation  47 

(http://htmlpreview.github.io/?https://github.com/MacoskoLab/liger/blob/master/vignettes/Integr48 

ating_scRNA_and_scATAC_data.html). For preprocessing, we used the LIGER preprocessing 49 

functions, where we first selected genes with high variance. We then performed iNMF-based 50 

factorization using an alternating least squares algorithm, followed by data alignment using joint 51 

clustering and quantile alignment. 52 

 53 

Supplementary Note 2 Evaluation of peak-gene correlations based on pseudo-cell profiles 54 

On the DEX-treated lung adenocarcinoma (A549) dataset, we ran bindSC to derived co-55 

embeddings. The shared nearest neighbor (SNN) graph was constructed by calculating the l-56 

nearest neighbors (l = 20 by default) based on the Euclidean distance of L2-normalized co-57 

embedding coordinates. The modularity optimization technique Leiden algorithm was used to 58 

group cells into interconnected clusters (termed meta-cluster) based on constructed SNN graph 59 

(resolution = 0.5). The Leiden algorithm was performed again on each cluster with a higher 60 

resolution (= 2) to further generate pseudo-cells. Finally, we got 206 pseudo-cells which included 61 

a median of 27 cells from scRNA-seq and 16 cells scATAC-seq dataset (Supplementary Fig. 6e). 62 

We observed only one cell that was modality specific (scRNA-seq) and removed it for downstream 63 

analysis. The RNA-seq and ATAC-seq profiles of each pseudo-cell were aggregated respectively. 64 

In this way, each pseudo-cell had paired gene expression and chromatin accessibility profiles. The 65 

same strategy was used to construct pseudo-cell profiles for Seurat, LIGER, and Harmony. For 66 
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Seurat, LIGER, and Harmony, 41/198, 1/89, and 15/142 modality specific pseudo-cells were 67 

removed, respectively. A high proportion of modality-specific pseudo-cells indicates that two 68 

modalities were not well aligned in co-embeddings. 69 

 70 

We then explored peak-gene correlation based on pseudo-cell profiles from each method. For each 71 

peak-gene pair, Spearman rank correlation coefficients (SRCC) between a normalized ATAC peak 72 

level and a gene expression levels of all the pseudo-cells were calculated. There are 4,759 genes 73 

and 24,953 peaks in the peak-gene correlation matrix. The SRCC of each peak-gene pair calculated 74 

based on 1,429 co-assayed cell profiles was used as the gold standard including 1,836,974 cis 75 

peak-gene pairs and 118.7 million trans peak-gene pairs. The overall concordance between each 76 

method and the gold-standard was further quantified using a single SRCC across all peak-gene 77 

pairs (Fig. 3c). In most cases, the correlation of peak-gene may include many false positive and 78 

indirect targets. We therefore focused on peak-gene pairs that were supported by Hi-C data from 79 

an independent study 5. There were 585 trans peak-gene pairs associated with the top 200 NR3C1 80 

target binding genes identified. Among these trans peak-gene pairs, bindSC has the best agreement 81 

with that from co-assayed cell profiles among all methods (Supplementary Fig. 5). 82 

 83 

To explore TF-gene correlation at the pseudo-cell level, we obtained motif-based TF activity 84 

matrix calculated based on peak profiles using ChromVAR 6. The final TF activity matrix included 85 

profiles for 386 TFs. Pseudo-cell level TF activity was obtained by aggregating cell profiles in 86 

each pseudo-cell. The SRCC was calculated for each TF-gene pair on pseudo-cell level. Overall, 87 

SRCC was 0.67 for bindSC and less than 0.59 for other methods (Fig. 3c).  The SRCC of TF-gene 88 
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pairs was higher than that from peak-gene pairs partly due to the fact that motif-based TF activity 89 

was derived from genome-wide motif regions and it was less noisy than single peak region.  90 

 91 

Supplementary Note 3 Joint profiling of chromatin accessibility and transcription in DEX-92 

treated A549 cells   93 

Besides using the DEX-treated A549 cell dataset as the gold standard for method performance 94 

evaluation, we performed downstream analysis to show how bindSC improved previous studies 95 

by integrating transcriptomic and epigenomic datasets. Joint clustering module in bindSC defined 96 

5 clusters (Supplementary Fig. 6a). Cells from the two technologies were well mixed together 97 

within each cluster. This classification result was in good concordance with the treatment time: 98 

cluster 1 consists of cells from mostly 0-hour (92%), and clusters 3-5 include cells from 1 and 3 99 

hours (> 99%). Clusters 2 included cells from multiple time points and may represent transitional 100 

states (Supplementary Fig. 7b). The list of transcription factors (TFs) that are associated with the 101 

joint chromatin accessibility and gene expression changes and their activity levels across states 102 

can be derived at pseudo-cell resolution, and so can the genes differentially expressed in each 103 

cluster (Supplementary Fig. 7d). Such co-embedding yielded higher granularity in delineating 104 

cell states and associated TFs than did embeddings derived from only one modality or based on 105 

the treatment times.  106 

 107 

Supplementary Note 4 Integrating single cell epigenomic data with single cell transcriptomic 108 

data on the mouse skin cell dataset 109 

We examined the performance of bindSC in integrating the scRNA-seq and scATAC-seq data 110 

derived from mouse skin tissue. This dataset was generated using SHARE-seq 7 which included 111 
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34,774 cells that have joint profiles of RNA and ATAC profiles. The final ATAC-seq matrix (i.e., 112 

Y) includes 25,594 cells on 74,161 peaks after quality control (including removing cells with less 113 

than 350 genes expressed; peaks that exist in less than 500 cells). In addition, 4,894 genes were 114 

identified that were highly variable in both gene expression and gene activity profiles (i.e., both X 115 

and Z includes 25,594 cells on 4,894 genes). For this evaluation, we only focused on the third 116 

metric (i.e., anchoring accuracy) that represents the chance for the two instances of a co-assayed 117 

cell to appear from the co-embeddings. The dimensionality E was set to 15 for bindSC. BindSC 118 

achieved substantially shorter anchoring distance than the other methods (Supplementary Fig. 7).   119 
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Supplementary Figure/Table Legends 137 

Fig. S1 Implementation of bindSC. Bi-CCA iteration procedure (a). Implementation of divide-and-138 

conquer SVD in bi-CCA for large matrix SVD decomposition (b). 139 

 140 

Fig. S2  Simulation settings. Simulation of gene score matrix Z (a). Each row in X denotes a gene (feature) 141 

and each column a cell. MR: misalignment rate; SNR: Signal-Noise-Ratio. Previous methods including 142 

CCA, Seurat, LIGER, and Harmony take X and Z as input assuming that cell alignment is unknown (b). 143 

bindSC takes two parts as input: 1) X and Z with cell alignment unknown; 2) X and Z with feature alignment 144 

unknown (c).  145 

 146 

Fig. S3 Benchmarking bindSC performance on simulation datasets. Comparison of bindSC to CCA, 147 

Seurat, LIGER, and Harmony based on Silhouette score and alignment mixing score (a). The dataset 148 

contains 1,000 genes and 1,000 cells equally distributed in 3 cell types. Signal-to-noise ratio (SNR) was set 149 

at 0. X-axes denote the misalignment rates (MR) between features in the two datasets, which ranges from 150 

0 to 1. The features between two datasets have perfect match if MR = 0 and are unrelated if MR = 1. UMAP 151 

views of the co-embeddings generated by bindSC, CCA, Seurat, LIGER, and Harmony (b). From top to 152 

bottom are results with MR = 0.1, 0.5, and 0.9, respectively. Each point denotes one cell that is colored 153 

based on its true cell type label (red, green, or cyan). 154 

 155 

 156 

Fig. S4 Benchmarking bindSC performance on simulation datasets. Comparison of bindSC to CCA, 157 

Seurat, LIGER, and Harmony based on Silhouette score and alignment mixing score (a). The dataset 158 

contains 1,000 genes and 1,000 cells equally distributed in 3 cell types. Signal-to-noise ratio (SNR) was set 159 

at 0.5. X-axes denote the misalignment rates (MR) between features in the two datasets, which ranges from 160 

0 to 1. The features between two datasets have perfect match if MR = 0 and are unrelated if MR = 1. UMAP 161 
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views of the co-embeddings generated by bindSC, CCA, Seurat, LIGER, and Harmony (b). From top to 162 

bottom are results with MR = 0.1, 0.5, and 0.9, respectively. Each point denotes one cell that is colored 163 

based on its true cell type label (red, green, or cyan). 164 

 165 

 166 

Fig. S5 Estimation of trans peak-gene regulatory elements supported by the Hi-C data. We selected 167 

the top 200 NR3C1 target genes based on co-assayed cell profiles and identified 585 trans peak-gene 168 

regulatory elements that were supported by the published Hi-C data 5.  X-axes are the SRCCs of peak-gene 169 

pairs estimated from the co-assayed cells, which serve as the gold standard, while Y-axes are the SRCCs 170 

estimated from pseudo-cells generated by each method. The overall concordance between X and Y are 171 

further quantified using a single SRCC shown on the up-left corner of each subfigure. Also, the peak-gene 172 

pair CFLAR@chr2:217,704,437-201,770,992 is highlighted in each subfigure.  Pearson’s correlation was 173 

performed to produce the coefficients (R) and the P values. 174 

 175 

Fig. S6 Joint profiling of gene expression and chromatin accessibility data at the pseudo-cell 176 

resolution on the A549 lung cancer cell-line. UMAPs of cells coloring by cluster IDs obtained from 177 

unsupervised clustering (meta-cluster) in the bindSC co-embedding (a). Proportion of cells from the 3 178 

treatment times in each of the meta-cluster (b). Histogram showing the number of cells in each pseudo-cell 179 

(c). Heatmap showing known genes and TFs associated with glucocorticoid receptor (GR) activation 180 

process (d). Each row is one gene/TF and each column is one pseudo cell, grouped/colored by cluster ID. 181 

Scatter plot showing the number of cells derived from the scRNA-seq and the scATAC-seq data for each 182 

pseudo-cell (e). Each dot denotes one pseudo-cell and the dot size denotes number of cells included in it. 183 

 184 

Fig. S7 Integrating single-cell RNA-seq and ATAC-seq data of a mouse skin cell atlas. UMAP of the 185 

mouse skin cells before performing integration, colored by clusters deriving from unsupervised clustering 186 
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of the RNA data and the ATAC data, respectively (a).  Anchoring distances achieved by bindSC, Seurat, 187 

LIGER and Harmony (b).UMAP of cells in the multiomics co-embeddings generated by bindSC (c), Seurat 188 

(d), LIGER (e), and Harmony (f), respectively. For each method, the left panel shows cells from the RNA-189 

seq data and the right panel shows cells from the ATAC-seq data.           190 

 191 

Fig. S8 Cell type annotation for cells in the mouse retina cell atlas. In the heatmap, X-axes denote cluster 192 

IDs in the RNA clusters, while Y-axes denotes known retinal cell-type-specific marker genes for the AC, 193 

BC, cone, HC, RGC, rod, and RPC cells, respectively. The color gradient in each dot denotes the expression 194 

level and the dot size denotes percentage of cells that express the gene.   195 

 196 

Fig. S9 UMAP visualization of mouse retina cells in the in silico co-embeddings generated by Seurat, 197 

LIGER, and Harmony. From top to bottom are the results for Seurat (a), LIGER (b), and Harmony (c) 198 

respectively. The left panel shows cells from the RNA-seq data. The right panel shows cells from the 199 

ATAC-seq data. Cells were colored based on cell types identified in Supplementary Fig. 8. The oval 200 

regions were zoomed in Fig. 4 g-j.  201 

 202 

Fig. S10 Integrating 10x Visium spatial transcriptomics data with SMART-Seq2 scRNA-seq data 203 

from mouse frontal cortex cells.  Schematic representation of data used for integration (a). Histology 204 

image of mouse frontal cortex overlaying with cells from the 10x Visium technology (b). UMAP view of 205 

the RNA expression of the 1,072 spots in the 10x Visium data (c). UMAP view of the transcriptomes of 206 

14,249 frontal cortex cells produced by SMART-Seq2 technology (d). Cell-type labels in (d) are derived 207 

from the published SMART-Seq2 dataset.   208 

 209 

Fig. S11 Performance of four methods on integrating spatially resolved transcriptomic (ST) data with 210 

dissociated scRNA-seq data from mouse frontal cortex cells. Related to Fig. 5a. UMAP of cells from 211 
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mouse frontal cortex datasets, separated by sequencing technology with ST on the top panel and scRNA-212 

seq data on the bottom panel (a). Cell-type labels are consistent with those from Supplementary Fig. 10c-213 

d. Comparison of cell-type classification based on Silhouette scores (b). Comparison of dataset alignment 214 

based on alignment mixing scores (c). Gene expression profiles of three Lamp5-related marker genes Lsp1, 215 

Npy2r, and Dock5 from the scRNA-seq data (d) and the ST data (e).  216 

 217 

Fig. S12 Cell types mapped by Seurat onto mouse brain histology images. 218 

 219 

Fig. S13 Cell types mapped by LIGER onto mouse brain histology images. 220 

 221 

Fig. S14 Cell types mapped by Harmony onto mouse brain histology images. 222 

 223 

Fig. S15 Performance of three methods on integration of transcriptomic and proteomic data. The 224 

cluster colors for each modality are consistent with those in Fig. 6.  225 

 226 

Table S1 Summary of datasets evaluated in this study. Also listed are the key parameters for running 227 

bindSC, Seurat, LIGER, and Harmony on each dataset. 228 

 229 

Table S2  Simulation results with 5,000 cells.  230 

 231 

Table S3  Simulation results with 10,000 cells. 232 


