Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1. Further histological evidence showing marked crypt apoptosis

and increased lymphocyte infiltration in CPI-induced colitis mice

(A) Marked crypt apoptosis and (B) lymphocyte infiltration of the lamina propria in mice

treated with combination anti-CTLA/anti-PD-1 therapy and FMT.
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Supplementary Figure 2. The intestinal microbiota regulates susceptibility to immune

checkpoint inhibitor-induced colitis

(A) Number of Siglec F* eosinophils and (B) representative flow cytometry contour plots
showing neutrophils (Gr-1* SiglecF) and eosinophils (Gr-1- SiglecF*) (pre-gated on live
CD45* CD11b") in the lamina propria of the colon in wildtype Balb/C mice without treatment
(control, n=6), treatment with combination anti-CTLA4/anti-PD-1 (CPI, n=3), treatment with

faecal microbiota (FMT, n=13) and mice treated with both CPlI and FMT (n=54). (C)



Representative flow cytometry contour plots and the overall ratio of infiltrating monocytes
(Ly6C* MHCII), transitioning monocytes (Ly6C* MHCII*) and resident macrophages (Ly6C-
MHCII*) (pre-gated on live CD45" CD11b* Gr-1" SiglecF") present in the lamina propria of
wildtype control mice (n=6), mice with only CPI treatment (n=6), mice given only FMT (n=6)
and mice treated with both CPl and FMT (n=6). (D) Colon mass, spleen mass and the
percentage weight change between untreated C56BL/6 mice (n=8) and C56BL/6 mice treated

with both CPIl and FMT (n=8). ** P <0.005 with two-sided Mann-Whitney U Test.
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Supplementary Figure 3: Faecal microbiota transplantation alters the community
composition of the intestinal microbiota

(A) Alpha diversity (Shannon diversity index) of the microbiota between untreated control
Balb/C WT (n=6) and Balb/C WT treated with FMT (n=6). (B) Non-metric dimensional scaling
plot showing the beta diversity of the microbiota from untreated control Balb/C WT (n=6) and

Balb/C WT treated with FMT (n=6). (C) Phylum level relative abundance profiles for untreated



control Balb/C WT (n=6) and Balb/C WT treated with FMT (n=6). (D) Extended error bar plot,
with bacterial family changes statistically assessed by White’s non-parametric t-test with
Benjamini-Hochberg correction, using threshold of differences between mean proportions >1%
between untreated control Balb/C WT (n=6) and Balb/C WT treated with FMT (n=6). (E)
Extended error bar plot, with bacterial genus statistically significant changes measured by
White’s non-parametric t-test with Benjamini-Hochberg correction, using threshold of

differences between mean proportions >1% between untreated control Balb/C WT (n=6) and

Balb/C WT treated with FMT (n=6).
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Supplementary Figure 4: Gene expression changes in the colon of WT mice following
FMT

RNA was extracted from the distal colon of WT mice following gavage with a pro-
inflammatory microbiota, harvested from TRUC mice and RNA sequencing performed. (A)
DEGs (FDR<0.05) in the colon of WT mice following FMT (n=3) in comparison with control
mice (n=4). (B) The only 3 mechanistic networks associated with the gene expression changes
occurring in FMT recipients in comparison with control mice were merged to form a single

network (IPA, QIAGEN).
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Supplementary Figure 5: Causal network analysis of the most enriched pathway

identified in the colon of WT mice following FMT+CPI

(A) Network analysis showing the causal networks associated with the gene expression

changes occurring in mice treated with FMT+CPI in comparison to control mice and merged
to show one single network.
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Supplementary Figure 6: Network analysis of Ifng interactions with other differentially

expressed genes in WT mice following FMT+CPI

(A) Network analysis of annotated Ifng interactions with CPI-induced colitis DEGs showed
effects on many biological processes, such as antigen presentation, oxidative stress, chemokine

induction, JAK/STAT signalling, and proteasome activation.
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Supplementary Figure 7: Link between transcriptional features of CPI-induced colitis in

human and mouse

(A) GSEA results for the mouse homologs of the most significantly up-regulated genes in colon
biopsies from patients affected by CPIl-induced colitis. 32 human genes significantly up-
regulated in CPI-induced colitis (log fold change > 1 and FDR < 0.05) were identified through
differential expression analysis of a previously published dataset focusing on the nCounter
PanCancer Immune Profiling Panel. The gene signature consisted of all their 39 mouse
homologs expressed in WT mice (n=4) and in mice treated with FMT and anti-CTLA4/anti-
PD-1 combination therapy (n=3). The mouse genes were ranked based on the estimated
expression log fold changes between these conditions, using the control as reference. NES:

Normalised Enrichment Score, P: P-value of the gene set enrichment test.
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Supplementary Figure 8: Single cell RNA-seq analysis of different immune

compartments reveals that IFNy is a key cytokine in CPI-induced colitis

(A) Heatmap of normalised gene expression levels of different surface markers across the 27
lymphocyte populations identified in the control samples (n=3) used in this study. (B) Violin
plots of normalised gene expression levels of different transcription factors, Kkinases,

chemokine receptors and chemokines in the T cells, B cells and ILC clusters.
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Supplementary Figure 9: Cytotoxic profile by flow cytometry of CD4* and CD8* T-cells

(A) Heatmap of cytokine and chemokine expression shown by log: fold changes between CPI-
induced colitis (n=3) and control samples (n=4) in colonic ILC clusters. (B) Dot plots from
flow cytometry data showing the proportions of IFNy, granzyme B and perforin producing
CD4"and (C) CD8* T cells in WT mice (n=16) and in mice treated with FMT and CPI (n=16).
Representative flow cytometry histograms showing the percentage of IFNy and granzyme B

expressing CD3" CD127* cells in mice with CPI-induced colitis (n=16) and control mice

(n=16).
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Supplementary Figure 10: Canonical pathways activated in 1fng” CD4* and CD8* T cells

(A) Canonical pathways activated (Z-score >1) in Ifng* CD4" and (B) CD8* T cells in CPI

colitis (n=3) vs controls (n=4).
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Supplementary Figure 11: Violin plots showing expression of different checkpoint genes

in the CD4* and CD8* T cell clusters from the single cell RNA-seq dataset

(A) Violin plots showing the expression levels of checkpoint genes across CD4* and CD8* T

cell clusters in mice with CPI-induced colitis.
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Supplementary Figure 12: CD90" CD4* and CD8* show increased polyfunctional

cytotoxic cytokines in CPI-induced colitis

(A) Summary statistics showing intracellular IFNy/TNFa in CD4* and CD8* T cells in the
colon in mice treated FMT+CPI. Cells were stimulated with PMA/ionomycin *** P< 0.001

two sided Mann-Whitney U test.
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Supplementary Figure 13: IFNy* CD4* and CD8* T cells have increased expression of

cytotoxic genes

(A) Bar graph of expression levels of significantly expressed cytotoxic, cytokines and
chemokines genes in IFNy* CD4* T cell clusters and (B) CD8* T cell clusters compared to

IFNy clusters.
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Supplementary Figure 14: CD8* T cells remain unaffected by blockade or deletion of

IL23

(A) Representative flow cytometry plot and (B) percentage of IFNy*/TNFa* CD8" T cells from
CPI-colitis mice treated with an isotype control (n=7) or an IL-23 blocking antibody (n=8). (C)
Representative flow cytometry plot and (D) percentage of IFNy*/TNFoa* CD8* T cells from

CPI-colitis treated wildtype mice (n=8) or 11237 mice (n=12).



