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In this supplemental material, we explain in detail the derivation and fitting of the

tight-binding model to density functional theory calculations; the role of the spin Berry

curvature in the spin Hall conductivity of MoTe2; the implementation of such model in

1



Landauer-Büttiker calculations to extract the spin diffusion length and the spin Hall angle;

the implementation of the model in Kubo-Bastin calculations to also extract the spin Hall

angle; the relation between the (persistent) spin textures and the spin diffusion lengths; extra

results showing the spin relaxation of in-gap states and the comparison between 1Td-MoTe2

and 1T′-MoTe2; and the use of the Bloch spin diffusion equations to measure the canted spin

Hall effect in a nonlocal transport experiment.

Ab-initio calculations and tight-binding model

Density functional theory (DFT) calculations of transition metal dichalcogenide (TMD)

monolayers 1Td-MoTe2 and 1Td-WTe2 were performed using the VASP package.1–3 De-

tails of the simulations can be found in previous works.4–6 From the DFT calculations, a

tight-binding model was interpolated in the Wannier basis via Wannier907 and applied for

calculating the spin texture.

To construct our 4-band real space tight binding model, we begin by elaborating a 4-

band k · p model based on the symmetries of 1T′ and 1Td TMDs. Both phases present a

mirror symmetry operation in the yz plane (Mx) but only 1T′ has inversion symmetry I.

We consider the point group symmetry C2h of the 1T′ phase and additional terms are added

to reduce it to the 1Td phase. The irreducible representations (irreps) of some states at Γ

in 1Td-MoTe2 are shown in Fig. 1c. For the C2h point group, we choose two irreducible

representations for the py (Bu) valence band and dyz (Ag) conduction band.8 This allows

Table 1: Character table for the point group C2h.

C2x i σh (Mx)
Ag +1 +1 +1
Bu -1 -1 +1
Au +1 -1 -1
Bg -1 +1 -1
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Figure 1: (a) Comparison of band structure of monolayer 1Td-WTe2 obtained from DFT
(blue) and 4-bands tight-binding model (red). (b) Same as in (a) but for 1Td-MoTe2. (c)
DFT band structure of monolayer 1Td-MoTe2 and the irreducible representation of states
near Γ.
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us to assign τz as the inversion operator (I) for this basis. The parabolic conduction and

valence bands can be expressed as mpk
2τ0 + (mdk

2 + δ) τz, where mp − md and mp + md

are effective masses of py and dyz, and δ is the strength of band inversion at Γ. Away from

Γ, any generic k points have the time-reversal T = iσyK symmetry, where T 2 = −1 for

a spinor. Note that we adopt τα and σα Pauli matrices for the orbital and spin degrees of

freedom, with α = x, y, z. At kx = 0, states have the mirror symmetry Mx = iσx ⊗ τ0; at

ky = 0, states have the rotational symmetry C2x = IMx = iσx ⊗ τz. By considering these

symmetries, the Hamiltonian with additional symmetry-allowed terms up to first order in k

reads,

Hkp(kx, ky) = mpk
2τ0 +

(
mdk

2 + δ
)
τz + βkyσ0 ⊗ τy

+Λxkyσx ⊗ τx + Λykxσy ⊗ τx + Λzkxσz ⊗ τx

+ησ0 ⊗ τx, (1)

where the third term ∝ β in the first line gives the crystalline anisotropy between x and

y. Terms Λα in the second line are the spin-orbit coupling (SOC) for spin-α, and the last

term breaks the inversion symmetry, describing in this way either 1T′ (η = 0) or 1Td (η 6= 0).

To mapHkp into a rectangular lattice, the k vectors are restored back to periodic functions

via the expansions sin (k) ≈ k + O (k3) and cos (k) ≈ 1 − k2/2 + O(k4). Using sin(k) =(
eik − e−ik

)
/2i and cos(k) =

(
eik + e−ik

)
/2, the tight-binding model can be written down

according to the phase Ceik·a, where a = axx̂+ayŷ is the nearest hopping vector which also
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equates to the lattice constant in this case:

Hk(kx, ky) = mp [4− 2cos (kxax)− 2cos (kyay)] τ0 + (md [4− 2cos (kxax)− 2cos (kyay)] + δ) τz

+Λxsin (kyay)σx ⊗ τx + Λysin (kxax)σy ⊗ τx + Λzsin (kxax)σz ⊗ τx

+βsin (kyay)σ0 ⊗ τy + ησ0 ⊗ τx (2)

In the second quantization representation, Hk becomes

H =
∑
i,s

(∆ + 4md + δ)c†i,sci,s −
∑
〈ij〉,s

(mp +md)c
†
i,scj,s

+
∑
i,s

(∆− 4md − δ)d†i,sdi,s −
∑
〈ij〉,s

(mp −md)d
†
i,sdj,s

−
∑
〈ij〉,s

β

2
(l̂ij · ŷ) c†i,sdj,s +

∑
i,s

ηc†i,sdi,s

−
∑
〈ij〉

∑
ss′

i

2
(Λss′ × l̂ij) · (ŷ + ẑ)c†i,sdj,s′ . (3)

Here, c†i,s(ci,s) and d†i,s(di,s) are the creation (annihilation) operators of an electron in the pz

and dyz orbitals at the i-th position with spin s. The symbol 〈i, j〉 denotes the summation

over the nearest-neighbors of site i, with l̂ij being a unit vector connecting the site i with its

nearest neighbor in j and ŷ (ẑ) is a unit vector pointing to the y (z) direction. The spin-orbit

coupling terms are included in Λss′ = (Λxσx,−Λyσy,Λzσz). Finally, ∆ is a constant energy

shift (also absorbing the factor 4mp from Eq. (2)) to match the Fermi level from the DFT

results.

Next, we fit Eq. (2) to the DFT calculations. This fit includes not only the band

dispersion, but the spin splitting and importantly, the spin texture. The bands and spin

splitting comparison for 1Td-WTe2 can be seen in Fig. 1a. Because the main goal is to

carry out large-scale simulations of realistic geometries, the size of our model needs to be
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small, and as a consequence, the agreement between the tight-binding and DFT is not

perfect throughout the Brillouin zone. However, we favor the fit to the energies relevant for

transport, that is, in the vicinity of the Fermi level at the bottom of the conduction band.

In this energy window, both the band dispersion and spin splitting are correctly reproduced,

as shown in the zommed-in view of Fig. 1a. We note that our model does not capture the

topmost valence band, but rather the second topmost band. However, such topmost valence

band (with irreducible representation Bg) is not important to reproduce the band inversion

and nontrivial topology, as we need bands with opposite parity at Γ to that end9 (see Fig.

1c). Thus, as long as we restrict ourselves to energies in the conduction band near the

Fermi level, our 4-band model is sufficient. Furthermore, we show in Fig. 1b the comparison

between our model and the DFT bands of 1Td-MoTe2. In this case, the topmost valence band

does cross the Fermi level near Γ in addition to the appearance of a small electron pocket at

the Y point also crossing the Fermi level. Nevertheless, the hole pocket at Γ and the electron

pocket at Y present a very small Fermi surface and thus it is expected that the conduction

band states along the Γ−X path dominate in transport properties. In this work, we chose to

focus on MoTe2 given the recent experimental findings concerning the canted spin Hall effect

in this material,5,10 but similar qualitatively results can be expected for WTe2 given that

our model applies to both compounds. We note that the Fermi level crossing of the topmost

valence band shown in the DFT results does not invalidate the results originating from our

4-band model since the absence or presence of a band gap in 1Td-MoTe2 monolayers is still

a controversial issue both in DFT calculations (results are very sensitive to the functional

and lattice parameters)8,11–13 and in experiments,14–18 and even if the gap is closed, it can

be opened using strain engineering.19

The values of the parameters of the tight binding are also chosen so as to fit the spin

texture. The spin texture for spin α at a given energy E is calculated as 〈k|σαf(ε(k)−E)|k〉,

where f(ε(k)−E) is a broadening function centered at E, in this case chosen to be a derivative
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of the Fermi-Dirac distribution at temperature T = 300 K. To corroborate the validity of

our model, we show the spin texture calculated with the 4-band model and DFT for two

distinct energies: at the Fermi level and near the bottom of the conduction band (E = −100

meV). The results are shown in Figs. 2 and 3, where we present the spin texture for the two

conduction bands of MoTe2. For all cases, our tight-binding correctly reproduces the DFT

features, namely, a spin texture pointing mainly along y and z with opposite signs for each

of the bands. The values of the fitted parameters for 1Td-MoTe2 are listed in Table 2.

TB TB-DFT

Con1

Con2

CB1

CB2

DFT

Figure 2: Spin texture of 1Td-MoTe2 monolayer at the Fermi level (E = 0) computed with
the tight-binding model (left) and DFT (right) for the two conduction bands (CB1, CB2).

Table 2: DFT-fitted parameters for the 1Td-MoTe2 4-band tight-binding model (units in
meV).

mp md δ β η Λx Λy Λz ∆
-67.1 -417.0 415.3 432.3 5.4 94.8 159.2 -89.6 -467.8
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Figure 3: Spin texture of 1Td-MoTe2 monolayer at E = −100 meV computed with the
tight-binding model (left) and DFT (right) for the two conduction bands (CB1, CB2).
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Remarks on the spin Berry curvature

The monolayer nature of TMDs and their nontrivial band topology are both important in-

gredients for the existence of a large and unconventional spin Hall effect (SHE). Specific

symmetry reductions with respect to that of the 3D bulk form of these crystals are essential

conditions for the existence of non-zero elements of the spin Hall conductivity (SHC) ten-

sor, σαij, beyond the conventional one, i.e. σzxy and its cyclic permutations; such symmetry

reduction is ensured in the monolayers we consider. This constraint is explicitly illustrated

in Fig. 5 of reference5 which compares the SHC calculated for a 3D bulk crystal and for a

5-layer slab.

In this sense, having a mono- or few-layer slab is a necessary condition to observe the

anomalous SHC components irrespective of the underlying nontrivial band topology (in

contrast to the conventional component σzxy which is finite in the 3D bulk as well). But it is

not a sufficient condition because the magnitude of the SHC, when allowed, is determined by

the so-called spin Berry curvature (SBC). The essential topological aspect here arises from

the band inversion that occurs at the Γ point, as illustrated in the schematic of Fig. 4.

While the spin-orbit coupling lifts the degeneracy at the Q points where the inverted pair

of bands intersect, the regions near Q retain locally large spin Berry curvatures (SBCs). The

SBC associated with band n corresponds to the quantity:

Ωα
n,ij(k) = −2Im

∑
n′ 6=n

〈nk|Ĵαi |n′k〉〈nk|v̂j|n′k〉
(Enk − En′k)2

, (4)

where Ĵαi represents the i-th component of the spin current operator with spins polarized

along α, v̂j is j-th component of the velocity operator and Enk is the energy of the state

|nk〉. The SBC gives the k- and band-projected SHC up to a constant prefactor:
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Figure 4: Illustration of the band inversion at the Γ point and the emergence of the electron
pockets at Q and Q′ as a result of degeneracy lifting by SOC. The symbols “+” and “-” refer
to the parity eigenvalues at Γ. See Fig. 1 for the actual DFT bandstructure of MoTe2 and
WTe2.

σαij = e~
∫
BZ

dk

(2π)3

∑
n

fnkΩk
n,ij(k), (5)

with e being the electron’s charge and fnk the electron distribution function. In Fig. 5

below, we show a k-resolved map of the quantity under the integral of Eq. 5, that is

∑
n

fnkΩk
n,ij(k), (6)

generated with Eq. (2) and with the same parameters used for Fig. 1 in the main manuscript.

For definiteness, we look here specifically at the case relevant for the anomalous component

σyxy of the SHC. Each panel of Fig. 5 shows the k-resolved SBC in the vicinity of the Q point

in the Brillouin zone, at two representative values of Fermi energy: the ground-state EF we

obtain in DFT and very near the bottom of the two conduction bands (E = −100 meV).

The important observation to make is that, as conveyed by the color scale, the magnitude of

the SBC increases when E approaches the bottom of the conduction pockets (the magnitude

is higher in the right plot). This is even better illustrated in Fig. 6, where we show the same
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quantity, but as a function of energy along a cut with ky = 0. It can be clearly seen that the

magnitude of the SBC is maximal at the bottom of the conduction pockets and decreases

relatively quickly to zero when we increase the energy. We refer to this behavior as SBC

hotspots associated with the band minima.

Figure 5: Momentum-resolved spin Berry curvature, defined in Eq. (6) above, near the Q
point in the Brillouin zone, at two representative values of Fermi energy: the ground-state
EF (left) and very near the bottom of the two conduction bands, E = −100 meV (right).

Now, the existence and qualitative behavior of this SBC is itself a byproduct of the under-

lying band inversion at the Γ point that is also responsible for the nontrivial band topology.

This is because the opposite parity of the inverted bands (cf. Fig. 4) makes these monolayers

either fully or close into the 2D topological insulator state (quantum spin Hall insulator, or

QSHI), as first predicted by Qian et al.8 and recently confirmed experimentally in the case

of WTe2.
20–24 Whether a robust QSHI state is realized or not depends on the magnitude of

the SOC, specifically whether the SOC is strong enough to open a full gap, as illustrated in

the central panel of Fig. 4. As in this manuscript we consider the situation where EF lies

in the conduction band, the quantum spin Hall state is not itself under consideration and

is, in fact, immaterial for our results and conclusions, which reflect the behavior expected

in either of the two cases labeled “weak” and “strong” SOC in Fig. 4. Nevertheless, the

influence of the underlying band inversion and the lifting of degeneracy at the band-crossing
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points caused by the SOC is, of course, present and influences the character of the Bloch

eigenstates over a significant range of energies around the avoided band crossing. Since the

electron pockets at Q are a direct result of this degeneracy lifting, and since EF is naturally

placed in this range of energies, the spintronic response of this system can take maximal

advantage of the local hotspots of SBC that we see near the Q pockets in Fig. 6. A brief

way to state this on more general grounds is this: in the absence of SOC, we would have EF

slightly above Dirac cones located at the Q points; the Dirac cones acquire a finite mass/gap

as a result of the finite SOC; concomitantly, a finite (spin) Berry curvature appears which

is maximal near the Dirac gap.

We can, in fact, see a direct and practical manifestation of this in the inset of Fig. 3 of the

manuscript, which shows the energy dependence of the spin Hall angle (directly proportional

to the SHC, and hence to the SBC): the spin Hall angle increases monotonically as E moves

towards the bottom of the conduction band. Consequently, if we note that the band inversion

and its associated nontrivial topology is an “accidental” feature of this class of systems - not

dictated by crystalline symmetry but by the particular magnitude of physical parameters -,

we reach the conclusion that symmetry conditions (in particular those specific to mono- or

few-layer slabs) and nontrivial topology are equally important: while the first is necessary,

the existence and robustness of the second determines the large magnitudes and energy

dependence observed for σyxy.

Landauer-Büttiker simulations

Two-terminal calculations

To study spin transport in a experimentally relevant regime, we perform Landauer-Büttiker

calculations in a system where the charge and spin transport is diffusive. To do so, we add
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Figure 6: Superimposing the total spin Berry curvature (see Eq. (6) above; color scale) onto
the TB-effective band dispersion. It progressively diminishes when moving away from the
local extrema at the Q points.

Anderson disorder to the Hamiltonian in Eq. (3) to model inhomogeneities in real samples

HA =
∑
i

Uic
†
i,sci,s +

∑
i

Uid
†
i,sdi,s, (7)

where Ui is a potential added at each position i with values randomly chosen from a uniform

distribution with range Ui ∈ [−U/2, U/2]. We note that both orbitals present the same Ui

for a given i, that is, this disorder is diagonal in both spin and orbital space.

The effect of the Anderson disorder is to produce elastic scattering giving rise to a finite

mean free path le. The first step toward performing realistic spin transport simulations is

to obtain le, so that our system sizes can be larger than le. To that end, we use the Kwant

package25 to implement the real-space tight-binding (Eq. (3)) on a rectangular lattice and

calculate the two-terminal conductance (G2T ). We use the DFT values ax = 3.4607 Å and

ay = 6.3066 Å for the lattice parameters, where ax and ay are the lattice constants along

the x and y direction, respectively. Unless stated otherwise, we chose the x axis as the

semi-infinte transport direction. Therefore, our system (also denoted device or scattering

region hereafter) has a finite width w and length L as indicated in Fig. 7. We attach

two semiinfinite leads at x = 0 and x = L, and model them with the same real-space tight-

13



binding, but without Anderson disorder. To extract the mean free path, we need to calculate

how G2T decays with length, and fit the diffusive part of the decay to26

G2T =
e2

h

Mle
x
. (8)

Here, M is the number of modes or subbands present at energy E due to the finite size

along the y direction. We note that this equation is equivalent to G2T = σw
x

, where σ

is the electrical conductivity. These equations are only valid when transport is diffusive,

but in a quasi-1-dimensional (1D) system achieving diffusive regime may be complicated as

the transport may change quickly from ballistic to localized. Nevertheless, an easy way to

visualize that is by plotting the electrical conductivity σ = G2T x
w

versus channel length and

observe when its magnitude remains constant (see Fig. 8).

L

w
y

x

Figure 7: Schematics of the two-terminal device modeled with Eq. (3).

The mean free path will depend on U , but also on the energy, and we need to chose a

wide enough device (le << w) so the system behaves more like a two-dimensional system.

In addition, we found that upon varying the value of U , the mean free path varied much

strongly than the spin diffusion length (see section below). This fixed our device lengths L

on the order of the spin relaxation, and we had to tune U to achieve mean free paths much

shorter than L. In this way, we can achieve diffusive transport for both charge (le << L)

and spin. To that end, we use U = 2 eV and w = 50 nm.

In Fig. 8, we plot the length dependence of the two-terminal conductance and conductiv-

ity for two representative energies: E = 0 and E = −105 meV. As seen from the conductivity
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plateaus and shaded regions, only the lengths between 25 and 55 nm are diffusive for the

case E = 0, and between 45 and 90 nm for E = −105 meV. For all energies studied (see

Table 3 and insets in Figs. 2 and 3 in the main text), the lengths at which the transport is

diffusive varied slightly, but in general ranged from a few tens of nanometers to around 100

nm. In Table 3, we report the mean free paths for all energies studied, as well as the number

of modes M , the conductivity σ and the charge diffusion coefficient Dc. The conductivity is

extracted by fitting with the formula G2T = σw
x

, and the diffusion coefficient by Dc = 1
2
vF le,

where vF is the averaged Fermi velocity of all modes at that energy extracted from the band

structure of the semiinfinite lead.25,27 For energies E ≤ −95 meV, there are not many modes

M and therefore we removed the contact resistance h
e2M

from G2T to account properly for

the bulk values of σ and le.

Figure 8: Two-terminal conductance G2T (top) and electrical conductivity σ (bottom) as a
function of channel length, L, of 1Td-MoTe2 at E = 0 (left) and E = −105 meV (right).
Dashed, red lines are fits with Eq. (8). Shaded, gray regions denote the lengths at which
the transport is diffusive, as shown by the conductivity plateaus.
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Table 3: Values of the mean free path (le), number of modes in the system (M), electrical
conductivity (σ) and diffusion coefficient (Dc) for different values of energy E (with respect
to the Fermi level). The states at E = −140 meV lie in the bulk gap and arise due to the
nontrivial band inversion of our model.

E (meV) le (nm) M σ (e2/h) Dc (cm2/s)
30 0.88 64 1.12 0.9
0 1.02 54 1.10 1.2

-30 1.55 42 1.30 1.5
-60 1.89 32 1.21 1.6
-80 3.00 22 1.32 2.3
-95 4.50 14 1.25 2.5
-100 6.90 10 1.38 3.4
-105 10.8 6 1.30 4.5
-110 15 4 1.20 4.8
-140 50 2 2 17

Nonlocal spin valve and spin diffusion equation

Here we explain the implementation details of a nonlocal spin valve as well as the equation

to fit the length dependence of the nonlocal resistance. To simulate a nonlocal spin valve

with Landauer-Büttiker formalism, we need to add two extra semiinfinite leads on top to

the two-terminal device described above (see Fig. 9). These two extra leads should model

ferromagnetic leads, and to do so we incorporate a spin-dependent hopping between such

electrodes and our system t⊥ = 1
2
t(σ0 + κσα). Here, t is the interface hopping, σ0 the

identity matrix and κ = [−1, 1] is the degree of polarization. Next, to calculate the nonlocal

resistance in such a device, we compute the conductance matrix G28 and solve the linear

system of equations I = GV , with I and V being vectors describing the current and voltage

conditions at each lead. As in experiments, we set up the current to flow between lead 2 to

1, while keeping leads 3 and 4 floating; thus the vector reads I = (−Iα0 , Iα0 , 0, 0), where Iα0 is

the injected spin-polarized current. Since the voltage at the lead 1 is grounded, the voltage

vector becomes V = (0, V2, V3, V4), with Vi=2,3,4 being the unknown voltages at leads 2, 3 and

4, respectively. In this manner, the nonlocal resistance becomes Rα
nl = (V3−V4)/Iα0 . Further
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details can be found in a recent publication by some of us.27

2

1

3

4

Ll1 l2

wy

x s1 s2

Figure 9: Schematics of the nonlocal spin valve. Black (red) regions denote the device
(leads). Leads 2 and 3 are ferromagnetic. Depending on the mean free path and the range
of diffusive transport (gray regions in Fig. 8), different values of l1, L and l2 were chosen.
l1 ranged between 20 and 50 nm, while L + l2 varied between 70 and 150 nm. w, s1 and s2
were kept constant throughout, with values of 50 nm, 1 nm and 1 nm, respectively.

To evaluate the length dependence of Rα
nl, we need to solve the one-dimensional spin

diffusion equation:29–34

∂sα

∂x
=

1

λαs
sα, (9)

where sα is the spin accumulation or density along the α axis and λαs is the spin diffusion

length for spins pointing along α. One then has Rα
nl = sα

−2eIα0
, with −e the electron charge.

Typically, this equation is solved by assuming that the spin accumulation has totally relaxed

when reaching lead 4 (see Fig. 9). However, if this is not the case, neglecting such spin

accumulation at leads 1 and 4 will underestimate the spin diffusion length.27 To avoid this

possibility, we will use a more complete formula that takes into account the effect of leads 1

and 4 in solving Eq. (9):27

Rα
nl =

PiPdλ
α
s

2wσ

[β cosh(l1/λ
α
s ) + 4 sinh(l1/λ

α
s )] · [β cosh

(
L−l
λαs

)
− 4 sinh

(
L−l
λαs

)
]

[4β cosh
(
l1+l
λαs

)
+ (8 + β2/2) sinh

(
l1+l
λαs

)
]

. (10)

Here, l = L+ l2 and β = wσRc
λαs

, with Rc being the contact resistance between lead 1 and the

system and between lead 4 and the system (they are assumed the same).
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Spin Hall effect and spin accumulation

In this section we derive an expression connecting the spin accumulation at the edges (x = 0

and x = w) of the device described in Fig. 10a, with the spin Hall angle; and then adapt it

to fit the spin accumulation obtained in Kwant.25 We note that in this case, we drive current

along the y direction, in contrast to the previous calculations. This is because we want the

spin transport to be along x, so the obtained spin diffusion lengths from the nonlocal spin

valve can be taken into account. To start, let us cast the constitutive relations for the charge

Jc and spin Jα
s current densities

Jc = (σ − σ αsH)E − eDc∇nc

Jα
s = σ αsHE − eD

α

s ∇sα, (11)

where E the electric field, σ the electrical conductivity tensor which due to time-reversal

symmetry is diagonal

σij = δijσii, (12)

nc the charge density in units of inverse of area, Dc the charge diffusion tensor which is

proportional to the conductivity by the Einstein’s relations, D
α

s the spin diffusion tensor

which we assume to be the same as the charge Dc because we consider diffusive transport

(thus we drop the superscript α), and σαsH the spin Hall conductivity tensor

σ αsH =

 0 σαxy

σαyx 0

 (13)

where the matrix element σαij represents the formation of a spin current flowing along the

i = x, y direction with spins polarized in α = x, y, z due to a charge current flowing along

j = x, y. The difference in the sign of the spin Hall conductivity in the charge and spin
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equations (Eq. 11) is a consequence of Onsager’s relations, while the absence of diagonal

elements in the spin conductivity originates from time-reversal symmetry.

L
𝑱"#

𝑱$

wx = 0 x = w
x

y

(b)(a)

Figure 10: (a) Schematics of the device geometry. Grey (white) regions depict the semiinfinite
leads (scattering region). (b) Calculated spin accumulation sα=x,y,z in a device with width
50 nm and length 100 nm. Red (blue) color denotes positive (negative) values of the spin
accumulation.

In our device configuration, charge current is mostly driven by the electric field Jc,y ≈

σyyEy, and although there is an additional contribution coming from the inverse spin Hall

effect, it is a second order effect which we will neglect. Since there is only charge current

along the y direction, we will drop the y index henceforth. Likewise, the absence of diagonal

terms in the spin Hall conductivity imposes that Jc and Jα
s are perpendicular to each other.

This allows us to focus only in a single element of the spin diffusion tensor (Ds)xx → Ds

and the spin Hall conductivity σ αsH → σ αxy. The spin density or accumulation, sα, can be

computed by combining Eq. (11) with the continuity equation

∇ · Jα
s = −e s

α

ταs
, (14)

leading to the following diffusion equation

∇2sα =
sα

λαs
2 , (15)
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where we have introduced a spin relaxation time ταs for describing the spin relaxation pro-

cesses, which is related to the spin diffusion length by λαs
2 ≡ Dsτ

α
s . In our case, the spin

density varies only along the x direction, therefore, a general solution for the diffusion equa-

tion is

sα(x) = Ae−x/λ
α
s +Bex/λ

α
s , (16)

which stills needs to be supplemented by the boundary conditions

Jα
s (x = 0) = 0, Jα

s (x = w) = 0, (17)

which by Eq. (11) implies

eDs
dsα

dx

∣∣∣∣
0,w

= θαxyJc (18)

at the edges, where we have introduced the spin Hall angle (SHA) θαxy ≡ σαxy/σyy. Using

these boundary conditions one finally finds the spin density

sα(x) = −
θαxyλ

α
s Jc

eDs

sinh
(
w−2x
2λαs

)
cosh

(
w

2λαs

) . (19)

This spin density has units of m−2 since Jc has units of A/m, λαs has units of m, Ds has

units of m2/s, e has units of Coulomb and θαxy is unitless. However, Kwant calculates the

spin accumulation response function locally at site i per unit bias voltage Vb at energy E:25

sαK,i(E) =
δsαi (E)

δVb
=

M∑
j

ψj†i (E)σαψ
j
i (E), (20)

thus having units of V−1. Here, ψji (E) is the wave function at energy E at site i, originating

from the incoming wave function of mode j of one of the leads; σα is the Pauli matrix and

M is the total number of modes at energy E. We note that in Eq. (19), θαxy, λ
α
s and Ds are
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also energy-dependent, but we drop the E dependence to keep the equations more compact.

In Fig. 10b, we show sαK,i(E = 0). We chose w = 50 nm and L = 100 nm so the

transport was diffusive for the most part for all energies studied. It is clearly seen that a

spin accumulation arises for spins in the y and z direction, but not in x. As commented

in the main text, the appearance of an unconventional in-plane component of the spin Hall

effect (sy) is rooted in the low symmetry of the layer group of 1T′ and 1Td TMDs.5 Since

Eq. (19) describes the spin accumulation along the x direction only, we now need to average

the y component of sαK,i(E):

sαK(x) =

∑N
i s

α
K,i(x, yi)

N
, (21)

where we have also dropped the E dependence for simplicity. Here, N is the number of sites

i along the y direction.

We can finally equate Eq. (19), embodying the spin transport parameters we are inter-

ested in, with the averaged simulation output, sαK(x). If A is the area of site i (corresponding

to the area of the rectangular unit cell in our case), we have:

sα(x)A = sαK(x)
Vb
2π
, (22)

with the factor 2π appearing naturally in the Landauer-Büttiker formalism.28,35 We can

relate the bias voltage to the current in the linear response regime by Ic = e2

h
TVb, where

T = MT is the two-terminal transmission function (with T the transmission probability per

mode) obtained from the two-terminal conductance of the device in Fig. 10a (G2T = e2

h
T ).

Together with Ic = wJc, we obtain:

sα(x)A = sαK(x)
Jc~w
e2T

. (23)
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By rearranging the terms and using Eq. (19), we finally arrive at:

sα(x)

Jc
= sαK(x)

~w
e2AT

= −
θαxyλ

α
s

eDs

sinh
(
w−2x
2λαs

)
cosh

(
w

2λαs

) , (24)

or alternatively:

sαK(x) = −θαxyλαs
eAT

Ds~w

sinh
(
w−2x
2λαs

)
cosh

(
w

2λαs

) , (25)

Hence, we find that we need to add the prefactor ~w
e2AT

(~ in units J·s) to the output of

Kwant to fit it to the solution of the spin drift-diffusion equations. To fit the spin Hall angle,

we also need the values of the spin diffusion coefficient and the spin diffusion lengths. The

former is taken as the value of Dc obtained from the two-terminal conductance (see values

in Table 3), as we consider diffusive transport, and the latter is taken from the nonlocal spin

valve simulations by fitting the nonlocal resistance to Eq. (10).

Kubo-Bastin calculations

In order to confirm the validity of our Landauer-Büttiker simulations, we also carry out

Kubo-Bastin calculations to obtain the bulk charge and spin Hall conductivities36 and thus

the SHA.

The spin Hall conductivity tensor was computed in the linear response regime by using

the Kubo-Bastin formula37

σαij = −2~Ω

∫ EF

−∞
dE Im

(
Tr

[
δ(E −H)Jαs,i

dG+

dE
Jj

])
, (26)

where Ω is the volume of the sample, Jj the j-th component of the current density operator

22



which is defined in a localized tight-binding basis by the following expression38

Jj =
ie

Ω~
[H,Rj], (27)

with Rj the jth-component of the position operator. The operator Jαs,i is the spin current

density operator which is defined in terms of the current density as Jαs,i ≡ {Ji, σα}/2, with

σα the α Pauli matrix. The spectral operators δ(E −H) and G+ ≡ limη→0 1/(E −H + iη)

are Dirac’s delta and retarded Green’s function, respectively.

The Green’s and Dirac’s delta functions in the Kubo-Bastin formula are approximated

numerically by using the Kernel Polynomial Method36,38,39 using 1000 Chebyshev expansion

moments, which is equivalent to a broadening of 10 meV for this particular system. The

calculations were performed on a system containing 4× 1000× 1000 orbitals.

(a) (b)

Figure 11: (a) Spin Hall angles as a function of energy for spins in y and in z. Solid lines with
circles and squares correspond to Landauer-Büttiker calculations as in the main text (θy,zxy ).
Solid (dashed) lines correspond to Kubo-Bastin calculations for θy,zxy (θy,zyx ). The positive
convention for the SHA is taken when the spin current flows to the right with respect to
the charge current (see Fig. 10a). (b) Ratio of charge (black) and spin Hall conductivities
(orange and blue).

Here, we compute the spin Hall angle defined as θαij ≡ σαij/σjj and compare it to the

values obtained with the Landauer-Büttiker calculations. We plot the values of the SHA
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as a function of the energy in Fig. 11a where a good agreement is clearly seen between

both quantum transport methodologies, supporting the validity of our results. Moreover, in

Fig. 11b we plot the ratios between the charge and spin Hall conductivities. On the one

hand, there is a slight charge transport anisotropy, with the charge conductivity along y

being a factor 1.2-1.6 of that of the charge conductivity along x in the energy range studied.

On the other hand, the spin Hall conductivity shows an almost isotropic behavior for both

spin components. These results imply that the SHA is also slightly anisotropic, with the

same factor of the ratio σyy/σxx, but nevertheless |θy,zxy | and |θy,zyx | have the same order of

magnitude.

The residual difference between the two methods seen in Fig. 11a is expected due to the

averaging over disorder realizations that is performed in LB calculations, in addition to a

smaller system size required in the LB case with respect to Kubo-Bastin because of a higher

computational cost. The LB calculations were performed for disordered systems with 22750

unit cells, while the Kubo-Bastin calculation of the SHC was performed on a clean system

with 106 unit cells.

Spin diffusion lengths and persistent spin texture

In general, the relaxation of spins is related to the spin texture of the eigenstates.33 In our

case, the spin texture of conducting electrons (see Figs. 2 and 3 and Fig. 1b in the main

text) present two key characteristics:

• The spins mainly lie on the yz plane because the projection along x is negligible, with

magnitudes obeying 〈sy〉E > 〈sz〉E � 〈sx〉E. That is, to a very good approximation, the

spins are canted along one direction in the yz plane. Moreover, the y and z projections

have opposite sign and the projection along x diminishes as E moves towards the

bottom of the conduction band.
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• The spin orientation is mostly unchanged throughout the whole Fermi contour. In

other words, when “traveling” along the Fermi contour, one sees an approximately

persistent spin texture (PST)40–42 with the above-stated canting of the spins. The

PST is not perfect because of the small but finite 〈sx〉E.

The first characteristic is an intrinsic quality of this system appearing due to the form of

the spin-orbit coupling in the Hamiltonian, which in turn is dictated by the symmetries of the

crystal (as explained in the derivation of the model in the first section of this supplemental

material). The relative direction between the y and z components of the spin texture is

related to the relative values of the SOC parameters Λy and Λz.

Most importantly, the second characteristic is crucial to understand the hierarchy we

observe for the spin relaxation lengths in the diffusive regime. It is convenient to reason in

terms of the natural spin quantization axis in this system, which is precisely that defined

by the canting direction of the PST. The (approximate) PST here implies an (approximate)

conservation of spin along the canting direction: if we describe the spin orientation with

reference to a rotated coordinate system where the z′ axis points along the canting direction,

the Hamiltonian is (approximately) diagonal with a SOC term proportional to the spin

Pauli matrix in that direction, σz′ . Consequently, when spins are injected collinear to that

direction, they enter the system as spin eigenstates. Moreover, the disorder potential, being

diagonal in the spin and orbital indices, does not change that - neither at the moment of

injection nor during the spin transport in the material -, with the implication that those

spins retain a large lifetime (in fact, if the PST were strictly exact, there would be no spin

relaxation at all for collinear injection). Conversely, maximum (faster) relaxation is expected

for spins injected perpendicularly to z′. The case of spins injected parallel to x is one such

case, for which we obtain only numerical noise in the nonlocal spin signal. Therefore, we

can correlate the trend in relaxation rate observed in the simulations with the injected spins’

projection along z′. Accordingly, the hierarchy λys > λzs is a natural reflection of that trend:
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spins injected along y have a slightly larger spin diffusion length than those spins injected

along z because the y direction lies ∼ 30 degrees away from z′ compared with ∼ 60 degrees

for the z direction. Furthermore, because the x component of the spin texture decreases

monotonically towards the band edge, the canting direction becomes more aligned with the

yz plane, resulting in the increase of both λys and λzs when E approaches the bottom of the

conduction band.

Spin diffusion length of topological edge states

In the main text, the spin diffusion lengths have been evaluated for energies in the conduction

band, and the values increase with decreasing energy towards the conduction band minimum.

Once the energy lies in the gap and the transport is mediated by the topological edge states

(see Fig. 12), the spin diffusion length is expected to diverge as these states are topologically

protected against non-magnetic disorder and they propagate ballistically without scattering.

Thus, we perform nonlocal transport calculations at energies in the gap (shown as dashed

lines in Fig. 12), namely E = −140 meV and E = −320 meV. The former corresponds to an

energy in the gap but relatively close to the conduction band, whereas the latter lies deep

in the gap.

Fig. 13 shows the length dependence of Rα
nl for spins injected with polarization along x, y

and z directions. For E = −140 meV (Fig. 13a), the behaviour is similar to that of energies

in the conduction band; the disorder is strong enough to perturb these edge states lying close

to the bulk bands and inducing spin relaxation. Nevertheless, we find spin diffusion lengths

much larger than those reported for the conduction band: λys = 156 nm and λzs = 56 nm. On

the other hand, for E = −320 meV, the nonlocal resistance presents a length-independent

value, which is characteristic of ballistic spin transport without spin relaxation.27
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Figure 12: Band structure of a 1Td-MoTe2 ribbon with finite width w = 50 nm in the y
direction. Orange bands depict the topological edge states. Horizontal dashed lines mark
the energies E = −140 meV and E = −320 meV.

(a) (b)

Figure 13: Rα
nl (solid line) as a function of channel length, L, for spins injected along x, y

and z for (a) E = −140 meV and (b) E = −320 meV. Error bars result from the averaging
of 50 disorder configurations. Dashed lines in (a) are fits to Eq. (10). The device lengths
are l1 = 100 nm, L + l2 = 350 nm whereas s1, s2, w and the Anderson disorder is kept the
same as in the calculations presented in the main text.
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1T′ and 1Td phases of MoTe2

In this section, we compute the nonlocal resistance and spin accumulations for 1T′-MoTe2.

This is obtained by using the same model (Eq. (3)) but setting η = 0. In this way, inversion

symmetry is now preserved, as it is in the 1T′ phase. All the other parameters, both from

the model and from the device geometry, are kept the same.

Figure 14: Band structure of a 1T′ −MoTe2 ribbon with finite width w = 50 nm in the y
direction. Orange bands depict the topological edge states.

We plot the band structure of a 50-nm-width ribbon in Fig. 14. Clearly, now the spin

splitting is absent, as the inversion symmetry is preserved. Except from that, all the other

features of the band structure are similar to those of 1Td-MoTe2. Next, we show in Fig.

15 the length dependence of the nonlocal resistance calculated in a nonlocal spin valve,

and compare it to the corresponding simulation performed in the 1Td phase. We focus on

two energies, one at the Fermi level E = 0 (Fig. 15a) and the other near the band edge

at E = −105 meV (Fig. 15b). The two phases present the same scaling of the nonlocal

resistance for both y and z polarization of injected spins. Finally, in Fig. 16 we compare the

spin accumulations arising due to the spin Hall effect between the two phases at these two

energies. The results indicate that the creation of spins along the sample width in 1T′-MoTe2

is similar to that in 1Td-MoTe2.
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(a) (b)

Figure 15: Rα
nl as a function of channel length, L, for spins injected along y and z for (a)

E = 0 and (b) E = 105 meV. Solid (dashed) lines correspond to a simulation of the Td (T′)
phase. Error bars result from the averaging of 150 disorder configurations.

(a) (b)

Figure 16: Spin accumulation as a function of position across the channel width of spins
along y and z for (a) E = 0 and (b) E = 105 meV. Solid (dashed) lines correspond to a
simulation of the Td (T′) phase. Error bars result from the averaging of 200 and 100 disorder
configurations for (a) and (b), respectively.
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Experimental setup for measuring the canted spin Hall

effect

In this section, we present the formulation to calculate the output voltage in a realistic non-

local device, allowing in this way the measurement of the canted SHE. The one-dimensional

steady-state Bloch diffusion equation is used to calculate the spin density s = (sx, sy, sz)

over the graphene channel and reaching the TMD,43,44 according to the experimental setup

described in the main text. In the presence of an external magnetic field B, the diffusion

equation reads:

Ds
d2s

dx2
+ γc s×B − τ−1s · s = 0. (28)

The three components of s describe the spin density projected along the corresponding

Cartesian axes. γc = 2µB/~ is the electron gyromagnetic ratio with µB the Bohr magneton

and τ−1s is a 3× 3 diagonal matrix containing the spin relaxation times in x, y and z.

Within this model, the spin transport in the device (schematic in Fig. 4, main text) is

characterized by simultaneous diffusive and precessional motion under a magnetic field that

is chosen to be either along the x or z direction. All the components of s are calculated at

any position and, therefore, the spin-current densities that generate the SHE. The solution

of Eq. (28) is adapted from Ref.43 When the TMD crystal is oriented in the configuration

shown in Fig 4a of the main text (configuration a), the spin current density with spins in

the yz plane, Jy,zs , generates a transverse charge current density, Jc, that is detected as a

RISHE = VISHE/I
y
0 due to the inverse SHE. Here, Iy0 is the injected current, which is polarized

along the direction of the ferromagnetic injector (y in this case, see insets in Fig. 4 in the

main text). If the TMD crystal is oriented in the configuration shown in Fig. 4b of the main

text (configuration b), Jc is generated by the spin current density with spins along z and x

directions (y in the TMD’s system of coordinates, which have been rotated with respect to
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those in Fig. 4a). In general, Jαs is,43

Jαs = |Jα
s | =

1

e lwR�

∫ x0+lw

x0

d sα(x)

dx
dx =

∆sα

e lwR�
, (29)

where sα(x) is given by Eq. (28) and ∆sα = sα(x0 + lw) − sα(x0). x0, lw, R� are the

distance of the TMD to the injector, the TMD width and its square resistance, respectively.

In the simulations presented in Fig. 4 of the main text, we use x0 = 3.9µm, lw = 1.6µm

and R� = 3.3 kΩ, and a spin polarization of the FM injector of 10%. Once the spin current

of each spin component is known, the generated charge current can be easily obtained given

that Jc = θαxy J
α
s and RSHE = Jc lwRa/I

y
0 . We note that here the relation between the charge

and spin current densities is opposite to that of Eq. (18) since we are dealing with the inverse

SHE, which is reciprocal to the SHE. In this way,

RSHE = θαxy c∆sα; with c =
Ra

eR�I
y
0

, (30)

with Ra the resistance of the TMD channel. The conversion efficiency is related to the spin

Hall angle, θαxy , which depends on the spin orientation, α. The total charge current density

is calculated from the independent contributions of Jz,ys .

In the configuration (a) with Bz, RSHE = −θyxy c∆sy, θyxy = 0.8. In an experiment the

sign depends on the voltage polarity. Here we choose that RSHE = |θyxy| c∆sy, which switches

the sign for θzxy. For Bx, RSHE = |θyxy| c∆sy−|θzxy| c∆sz, with θzxy = 0.5 and according to the

chosen polarity convention. For the configuration (b) with Bz, RSHE = |θyxy| c∆sy, and with

By, RSHE = −|θzxy| c∆sz. Note that here we are referring according to the TMD system of

coordinates (see Fig 4 (b) in the main text).

Finally, we present arguments that show that the spin current flowing in the graphene

channel will be absorbed by the TMD. The spin resistance of a material is defined as Rs =
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ρλs/A, ρ is the resistivity, λs is the spin relaxation length and A the cross area in which

the spins flow. An alternative to this definition in terms of the square resistance, is Rs =

R�λs/wN , where wN is the width of the non-magnetic material. In the device proposed, the

cross width where spins propagate is the same for graphene (g) and TMD. The ratio of the

graphene’s spin resistance and the TMD’s spin resistance reads as,

RTMD
s

Rg
s

=
RTMD

�

Rg
�

λTMD
s

λgs
(31)

Using reported values of Rg
� ≈ 2 kΩ44 and RTMD

� ≈ 3.3 kΩ for 1T’ MoTe2
45

RTMD
s

Rg
s
∼ λTMD

s

λgs
(32)

Comparing the calculated λys ≈ 30 nm with the typical λgs ≈ 1.6µm,44 we have that

RTMD
s ∼ 0.01Rg

s , and of the same order for λzs.
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