

Methods for

Multiplatform Analysis of Primary and Metastatic Breast Tumors from the AURORA US Network identifies microenvironment and epigenetics differences as drivers of metastasis

1 Clinical Summary

2 Samples from a total of 55 patients with metastatic breast cancer were the final data set of the
3 AURORA US cohort. Of these 55 women, 10 (18%) were of African American descent and 4
4 (7%) were of Hispanic ethnicity. Median age at initial breast cancer diagnosis was 49 years
5 (range: 25-76). Forty-nine patients (89%) initially presented with stage I-III breast cancer, of
6 which 19 (38%) received neoadjuvant systemic therapy, and six patients (10%) presented with de
7 novo metastatic disease. Ductal histology was most prevalent among the cohort (n=44, 80%); 7
8 patients (12%) were diagnosed with lobular or mixed lobular/ductal carcinoma. The distribution
9 of breast cancer receptor subtype per clinical testing at initial diagnosis was triple-negative, n=19
10 (34%); hormone receptor (HR)-positive/HER2-negative, n=17 (30%); HR-positive/HER2-
11 positive, n=6 (10%); HR-negative/HER2-positive, n=4 (7%); and unknown, n=9 (16%). In the
12 metastatic setting, patients received a median of 3 lines of systemic therapy (range: 0-20).
13 Metastatic samples from a total of 20 patients were collected at autopsy. Additional
14 clinicopathologic features are displayed in Supplementary table 1.

15

16 Pathology Review

17 Pathology quality control was performed on each tumor specimen and normal tissue specimen as
18 an initial QC step. Hematoxylin and Eosin (H&E) stained sections from each sample were
19 subjected to independent pathology review to confirm that the tumor specimen was histologically
20 consistent to the reported histology. The percent rumor nuclei, percent necrosis, and other
21 pathology annotations were also assessed. Tumor samples with >30% tumor nuclei, and normal
22 tissue with 0% tumor nuclei, were submitted for nucleic acid extraction. All H&E images are
23 also available and part of this data resource.

24

25

26 **AURORA Sample acquisition and Biospecimen Processing**

27 RNA and DNA were extracted from frozen tissues using a modification of the AllPrep
28 DNA/RNA kit (Qiagen). The flow-through from the Qiagen DNA column was processed using a
29 mirVana miRNA Isolation Kit (Ambion). RNA and DNA were extracted from FFPE solid
30 tissues using a modification of the AllPrep DNA/RNA FFPE kit (Qiagen). The flow-through
31 from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit (Ambion).
32 For cases in which whole blood or blood derivatives were received, DNA was extracted from
33 blood using the QiaAmp DNA Blood Midi kit (Qiagen). RNA samples were quantified by
34 measuring Abs260 with a UV spectrophotometer and DNA quantified by PicoGreen assay. DNA
35 specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight
36 fragments. A custom Sequenom SNP panel or the AmpFISTR Identifier (Applied Biosystems)
37 was utilized to verify that tumor DNA and germline DNA representing a case were derived from
38 the same patient. RNA was analyzed via the RNA6000 Nano assay (Agilent) for determination
39 of an RNA Integrity Number (RIN). Only cases yielding a minimum of 500ng of tumor DNA,
40 500ng of tumor RNA, and 500ng of germline DNA were included in this study. A minimum of
41 one QC qualified tumor sample and a QC qualified normal were required for a case to become
42 part of the study (n=55 total cases).

43

44 **RNA sequencing, gene expression data values and normalization**

45 Gene expression profiles from primary and metastatic tumors for AURORA dataset were
46 generated by RNA-sequencing using an Illumina HiSeq and a rRNA-depletion method. Briefly,
47 300-500ng total RNA was converted to RNAseq libraries using the TruSeq Stranded Total RNA
48 Library Prep Kit with Ribo-Zero Gold (Illumina) and sequenced on an Illumina HiSeq 2000 using
49 a 2x50bp configuration. Quality-control-passed reads were aligned to the human reference
50 CGRh38/hg38 genome using STAR¹. Transcript abundance estimates for each sample were
51 performed using Salmon², an expectation-maximization algorithm using the UCSC gene
52 definitions. Raw read counts for all RNAseq samples were normalized to a fixed upper quartile
53 (UQN)³. The raw reads files are available in dbGAP (submission in process)

54

55 **Gene expression analysis of RNAseq data and batch effect adjustments**

56 RNAseq UQN gene counts from 123 primary and metastatic tumors comprised of 35 FFPE and
57 88 Fresh Frozen (FF) RNA-sequenced tumor data were log2 transformed, genes were filtered for
58 those expressed in 70% of samples and zeros were returned to the empty values. In order to
59 improve the batch effect between the two data types (i.e. FFPE vs FF), we merged a second
60 dataset of 101 paired primary and metastatic tumors (UNC Rapid Autopsy donation Program
61 (RAP) cohort) comprised of 20 FFPE and 81 FF sequenced tumors. This second dataset was
62 partially previously published in 2018⁴, but some new samples were added and sequenced for the
63 present work, and many of the published samples were resequenced here using the rRNA-
64 depletion method (dbGAP phs002429). The RAP 101 samples of the present work were created
65 with the same RNA extraction, library preparation and sequencing protocol as are AURORA
66 samples, and represents a second data set of FFPE and FF samples that increases our sample size
67 for adjustments of FFPE vs FF effects; note that the RAP101 set is also a second data set of
68 primary tumor and metastasis pairs as well. The clinical information of the RAP101 dataset is
69 found in Supplementary table 2.

70 To address this systematic effect, we merged the raw read counts for all RNAseq samples of the
71 previously mentioned RAP 101 dataset with 123 samples of AUORA study (Level 1 data). These
72 counts were normalized using DESeq2-normalized counts (median of ratios method)⁵. Briefly,
73 we created DESeq2Dataset object and generated size factors using estimateSizeFactors()
74 function. Next, to retrieve the normalized counts matrix, we used the counts () function and add
75 the argument normalized=TRUE. After generating the normalized count matrix, genes with an
76 average expression less than 10 were filtered from the dataset. RNAseq normalized gene counts
77 from the 224 dataset was log2 transformed (Level 2 data). Next, we used the removeBatchEffect
78 () function from limma R package⁶ including both batches in the formula. Lastly, we subtracted
79 only the 123 samples from the AUORA study and used this normalized, log2 transformed and
80 batch corrected dataset for further RNAseq gene expression analysis (Level 3 data).

81 In order to minimize false positive results due to the normal tissue contamination generated by
82 normal brain (n=10), liver (n=8) or lung tissue (n=7), the most common sites of metastasis in this
83 study, we removed those genes whose expression was solely coming from these three tissue
84 sites. Specifically, we used supervised leaning to determine a normal brain, liver and lung
85 signature from comparing each normal tissue vs normal breast tissue (n=5) (Supplementary table

86 3, dbGAP accession number (submission in process) for AURORA and (phs002429) for RAP
87 and 9830). This normal tissue dataset was also created using the same RNA extraction, library
88 preparation and sequencing protocols. From normalized, filtered and median counts we
89 performed linear model (LM) regression using lme4⁷ and lmerTest⁸ R package given the
90 formula, Fit = lm(Genes~Normal site of site of metastasis/Breast normal) and p-values were
91 adjusted for multiple comparisons using the Holm-Bonferroni. We obtained the most significant
92 upregulated genes each normal tissue (FDR< 0.00001) from comparing each normal tissue vs
93 normal breast tissue (Brain vs. Breast, Liver vs. Breast and Lung vs. Breast); we took and
94 merged these 3 lists and identified 1900 genes as the distinctive upregulated genes of our
95 “normal tissue signature”. In order to build a second signature characteristic of breast primary
96 tumors, we did a second LM analysis between the 46 primary tumors from AURORA study and
97 the 5 normal breast tissue from the above-mentioned normal tissue cohort and we obtained 833
98 significant upregulated genes (FDR<0.01). Some of these genes were also present in the “normal
99 tissue signature” and thus we removed these common 449 genes from the “normal tissue
100 signature” list considering these genes not unique for normal tissues but also being important
101 markers for primary tumors in the AURORA cohort. Finally, the remaining 1451 genes of the
102 “normal tissue signature” (Supplementary table 3) were removed from the original normalized
103 and batch corrected gene expression data matrix of the 123 AURORA cohort (referred to
104 hereafter as the normalized, log2 transformed and batch corrected and normal-adjusted data, or
105 Level 4 RNAseq data).

106 *PAM50 subtype classification*

107 In order to better maintain methods with past intrinsic subtyping methods⁹⁻¹¹, for PAM50
108 subtype classification assignments we normalized the RNAseq data in a different way than
109 described immediately above, and that is based upon within data set row and column
110 standardizations. Briefly, RNAseq normalized gene counts from 123 primary and metastatic
111 tumors comprised of 35 FFPE and 88 Fresh Frozen (FF) RNA-sequenced tumor data were log2
112 transformed, genes were filtered for those expressed in 70% of samples and zeros were returned
113 to the empty values. To address the FFPE vs FF effects, we again used the AURORA and
114 RAP101 data sets as described above and made an adjustment for FFPE vs FF. Namely, using
115 only common genes between both datasets, we merged, row median centered and column
116 standardized separately FFPE and FF groups, where each gene was a row, and each sample was a

117 column. Next, we subtracted only the FFPE and FF normalized batches from AURORA study
118 only and used these values for ROC curve and Youden cut-off analysis for ER, PR, and HER2
119 status comparisons, which provide external validation that the adjustments do not adversely
120 affect the gene expression data using tests of correlation to the external clinical standards.
121 For PAM50 subtype classification we applied a HER2/ER subgroup-specific gene centering
122 method as described in the Supplemental Methods of Fernandez-Martinez et al.¹⁰. For applying
123 this subgroup-specific gene-centering method, we need the IHC status for all samples assayed by
124 RNAseq. 6% of primary tumors and 39% of metastatic samples did not have HER2 IHC
125 information, and 38% of metastatic samples were missing for ER status. “Profiled Primary
126 ER/HER2/PR columns of Supplementary table 2 were used for this analysis. We again used
127 ROC curve and Youden cut-off value for inferring protein clinical status using ESR1 and
128 ERBB2 gene expression data from all tumors, and we assigned ER and HER2 clinical status to
129 those samples that had missing clinical values using the mRNA surrogates. The ROC curve
130 analysis showed 0.92 value for ER status by ESR1 mRNA, and 0.86 for HER2 status using
131 ERBB2 mRNA. These new RNAseq inferred ER/PR/HER2 protein status were used for the
132 subgroup-specific gene centering method (“Inferred ER/PR/HER2 column of Supplementary
133 table 2). Finally, the gene expression values of the PAM50 genes using the UQN gene counts
134 were then normalized and then the PAM50 predictor¹² was applied using the provide centroids,
135 to assign subtype calls using correlation values for all primary tumors and metastases
136 (Supplementary table 2).

137 *Gene expression signatures*

138 For each batch corrected and adjusted for normal tissue gene expression data set/subset (Level 4
139 RNAseq data), we applied a collection of 747 gene expression modules (Supplementary table 3),
140 representing multiple biological pathways and cell types, to all primary and metastatic tumors.
141 701 signatures were obtained from 125 publications partially summarized previously¹³⁻¹⁵ and 48
142 Gene set enrichment analysis (GSEA) signatures published in the Molecular Signature
143 Database¹⁶. In detail, 1) 669 modules were calculated as the median value of each gene
144 expression value present in the signature for each sample of the set used; 2) 20 were the value of
145 a single gene; and 3) 57 named as “special modules” that used specific predetermined algorithms
146 previously described^{9,17-37} (in order to implement each modules, the methods detailed in the
147 original studies were followed as closely as possible).

148 Finally, we newly developed an immune metagene signature named “GP2 Immune-Metagene”,
149 signature which we developed to capture immune cells features as derived from the AURORA
150 data set. Briefly, we used TCGA gene expression data to calculate all our 747 module scores,
151 which was then used for hierarchical cluster analysis, and the resulting clusters of modules then
152 tested for significance of these groups of modules using SigClust³⁸. 56 Clusters with a p<0.001
153 were identified and 16 immune related signatures from cluster 51 were grouped as a new
154 “immune meta-signature” named GP2 Immune-Metagene signature (Supplementary table BB);
155 included within this group of immune clusters were signatures of Tcells, Bcells, Macrophages,
156 and Dendritic cells. Next, using our previously calculated 747 gene expression modules scores
157 from AURORA dataset we selected the 16 immune related signatures and calculated the mean of
158 these 16 signatures for each patient and called this new derived signature as “GP2 Immune
159 Metagene”.

160 *Merging UNC Rapid Autopsy donation Program (RAP), GEICAM/2009-03 ConvertHER trial
161 (GEICAM) and AURORA cohorts*

162 To create as large a data set as possible, we merged the data of the AURORA, RAP101, and 204
163 samples of GEICAM/2009-03 ConvertHER trial (GEICAM cohort)¹¹; this yielded a final cohort
164 of 428 tumors in total (158 patients with 159 primaries and 400 paired metastasis, 17 unpaired
165 primaries and 11 unpaired metastasis), summarized in Supplementary table 2. RNAseq-
166 Sequencing data of 204 GEICAM study were retrieved from dbGaP, accession number
167 phs001866, and the processed data in GEO (GSE147322).

168 Next, we corrected the technical bias detected between the gene expression of 259 FFPE and 169
169 Fresh frozen (FF) samples from 176 primary and 411 metastatic tumors. The raw counts of the
170 428 tumors were normalized using DESeq2-normalized counts (median of ratios method)⁵. We
171 created DESeq2Dataset object and generated size factors using estimateSizeFactors() function.
172 Next, to retrieve the normalized counts matrix, we used the counts() function and add the
173 argument normalized=TRUE. After generating the normalized count matrix, genes with an
174 average expression less than 10 were filtered from the dataset. RNAseq normalized gene counts
175 from the 428 tumors were log2 transformed. Next, we used the removeBatchEffect () function
176 from limma R package⁶ indicating FFPE or FF as batches in the formula (removeBatchEffect
177 (normlog2data, batch)). In order to minimize the false positive results due to the normal tissue

178 contamination we proceed as we did in AURORA dataset, 1451 genes of the “normal tissue
179 signature” (Supplementary table 3) were removed from the data matrix of the 428 AURORA-
180 RAP-GEICAM cohort to minimize the false positive results coming from normal tissue
181 contamination.

182 Next on the 3 data set combined data matrix, we calculated the gene signature score for each
183 module as described before, and we performed linear mixed model (LMM) using lmerTest and
184 lme4 R package to identify significantly changed modules between metastatic and primary
185 tumors. In the linear model we included the term “patient” as random effect or confounding
186 variable: Fit = lmer(Genes~ Met/Prim + (1|Patient) using all the primary and metastatic tumors
187 except the primaries identified as post-treatment primaries (patients who received neo-adjuvant
188 therapy prior to primary tumor collection). To avoid the possible confounding factor of intrinsic
189 molecular subtype in the subsequent analysis, we divided tumors into two datasets based upon
190 the subtype of the primary tumor from each pair: a “luminal set” comprising all Luminal A,
191 Luminal B and HER2E subtype patients and a “basal-like set” containing basal-like subtype
192 only; samples called normal-like in either the primary or metastatic tumors or post-treatment
193 primary tumors were removed from the analysis (column “Groups PAM50 Gene expression
194 analysis” from supplementary table 2). To identify significantly changed modules between brain
195 or liver and their corresponding primary tumors only the studied sites of metastasis versus the
196 corresponding primary pair were compared using the same lmer function. The significant
197 differentially expressed modules (FDR<0.05) were hierarchically clustered using
198 ComplexHeatmap R package. HeatmapAnnotation and Heatmap functions were used to show the
199 heatmap that was previously row ordered by primary and metastatic tumors and column ordered
200 by estimates or beta values. Differential gene expression modules analysis in the merged
201 AURORA-RAP-GEICAM set were performed in the same way than AURORA only. Multi-
202 metastatic samples derived from AURORA and RAP and single primary-tumor pairs derived
203 from GEICAM with PAM50 classification of Normal-like in primary or metastatic tumors and
204 post-treatment primary tumors were removed from the analysis. For the comparisons between
205 site of metastasis using the merged set, we performed SAM³⁹ analysis and the differentially
206 expressed modules (FDR=0) between 48 Liver metastasis vs 21 Brain metastasis, 48 Liver
207 metastasis vs 27 Lung metastasis, 48 Liver metastasis vs 27 Lung metastasis, 48 Liver metastasis

208 vs 38 LN metastasis, 21 Brain metastasis vs 38 LN metastasis and 27 Lung metastasis vs 21
209 Brain metastasis (Supplementary table 3).

210

211 **Statistical Methods**

212 For Linear Mixed Models/ Linear Mixed Effects Model and Linear Models analysis between
213 primary and metastatic tumors the lmerTest⁸ package summary includes coefficient table with
214 estimates and p-values for t-statistics using Satterthwaite's method. These p-values were adjusted
215 for multiple comparisons using the Holm-Bonferroni approach⁴⁰. Nonparametric, two-sided,
216 exact tests were used to make comparisons. A Mann-Whitney U test was used for comparisons
217 between different groups, and a Paired t-test was used for analyzing repeated measures within
218 the same groups. Correlations were measured using the Pearson or Spearman correlation
219 coefficient.

220

221 **TCGA RNAseq data**

222 We analyzed the breast cancer dataset from The Cancer Genome Atlas (TCGA) project profiled
223 using the Illumina HiSeq system. We included 1095 primary tumors and 97 adjacent non-
224 malignant tissues for developing the immune signature named “GP2 Immune-Metagene” and
225 761 primary tumors and 74 adjacent non-malignant tissues for the HLA-A methylated primary
226 tumors analysis and prognostic value of HLA-A. TCGA files were downloaded from Broad
227 GDAC Firehose: (https://gdac.broadinstitute.org/runs/stddata__latest/data/BRCA/20160128/gdac.broadinstitute.org_BRCA.Merge_rnaseq_illuminahiseq_rnaseq_unc_edu_Level_3_gene_expression_data.Level_3.2016012800.0.0.tar.gz).

230

231 **Array-based DNA methylation assay**

232 DNA methylation was evaluated using the Illumina HumanMethylationEPIC (EPIC) array
233 (Illumina, CA, USA). The EPIC platform analyzes the DNA methylation status of up to 863,904
234 CpG loci and 2,932 non-CpG cytosines, spanning gene-associated CpGs as well as a large
235 number of enhancer/regulatory CpGs in intergenic regions⁴¹. Briefly, DNA was quantified by
236 Qubit fluorimetry (Life Technologies) and 500ng of DNA from each sample was bisulfite-
237 converted using the Zymo EZ DNA Methylation Kit (Zymo Research, Irvine, CA USA)

238 following the manufacturer's protocol using the specified modifications for the Illumina
239 Infinium Methylation Assay. After conversion, all bisulfite reactions were cleaned using the
240 Zymo-Spin binding columns, and eluted in Tris buffer. Following elution, BS converted DNA
241 was processed through the EPIC array protocol. For FFPE samples, the entire BS converted
242 eluate was used as input for the Infinium HD FFPE DNA Restore kit, and processed through the
243 separate restoration workflow. To perform the assay, converted DNA was denatured with NaOH,
244 amplified, and hybridized to the EPIC bead chip. An extension reaction was performed using
245 fluorophore-labeled nucleotides per the manufacturer's protocol.

246

247 **DNA methylation data packages**

248 DNA methylation data were packaged into four levels as follows.

249 LEVEL 1: Level 1 data contain raw IDAT files (two per sample with the extensions _Grn.idat
250 and _Red.idat for the two color channels) as produced by the Illumina iScan system. The
251 mapping between IDAT file names and AURORA sample barcodes is provided in
252 Sample.mapping.tsv.

253 LEVEL 2: Level 2 data contain the signal intensities corresponding to methylated (M) and
254 unmethylated (U) alleles and detection P-values for each probe as extracted by the *readIDATpair*
255 function in the R package *SeSAMe* (<https://github.com/zwdzwd/sesame>) from the IDAT files.
256 The P-values are calculated using *pOOBAH* (P-value with Out-Of-Band probes for Array
257 Hybridization), which is based on empirical cumulative distribution function of the out-of-band
258 signal from all Type-I probes⁴².

259 LEVEL 3: Level 3 data contain β values defined as $S_M / (S_M + S_U)$ for each locus calculated using
260 the R package *SeSAMe*, where S_M and S_U represent signal intensities for methylated and
261 unmethylated allele. The raw signal intensities are first processed with background correction
262 and dye-bias correction. The background correction is based on the *noob* method⁴³. The dye-bias
263 is corrected using non-linear quantile interpolation-based method using the
264 *dyeBiasCorrTypeINorm* function⁴². β values are then computed using the *getBetas* function.
265 Probes with a detection P-value greater than 0.05 in a given sample are masked as NA. Whether
266 the probe is masked due to detection failure is recorded in an extra column
267 (Masked_by_Detection_P_value) to distinguish from experiment-independent masking of probes

268 (N=105,454) subject to cross-hybridization and genetic polymorphism. The experiment-
269 independent masking is based on the MASK_general column of the file named
270 EPIC.hg38.manifest.tsv (release 20180909) downloaded from
271 <http://zwdzwd.github.io/InfiniumAnnotation>⁴¹. From the same source, an additional file
272 (EPIC.hg38.manifest.gencode.v22.tsv) is also included to provide detailed annotation of
273 transcription association for each probe.

274 LEVEL 4: Level 4 data contain merged data matrix with β values across all samples. Probes
275 masked as NA concerning the probe design in Level 3 data are removed. Sixteen FFPE samples
276 that initially yielded low-quality data were rerun. The resulting two data sets values were merged
277 probe-wise by taking the mean β value. If data was masked in one of the runs, we took available
278 data from the other run.

279 *Nomenclature for control samples:*

280 We include several cell line control samples in each batch to allow for the evaluation of potential
281 batch effects and to facilitate correction of observed batch effects.
282 Control sample IDs that start with “VARI-Control-” can be interpreted as follows:
283 VARI-Control-[Batch number]-[Cell line name)-(DNA Isolate ID (A,B,...)]-[Assay Technical
284 Replicate (1,2,3...sequential across batches for the same DNA Isolate)].

285

286 **External DNA methylation data sets**

287 We processed additional normal tissue DNA methylation data from ENCODE⁴⁴ and GEO⁴⁵. We
288 collected raw IDAT files for 24 samples from seven tissue types, including adrenal gland (n=5),
289 liver (n=1), lung (n=4), ovary (n=2), skin (n=4), blood (n=6), and brain (n=2), that were
290 frequently represented as a site of metastasis. We generated β values using the R package
291 *SeSAMe* as described above for the AURORA samples. Further information on these data sets is
292 provided in Supplementary table 4.

293

294 **Global DNA hypermethylation analysis**

295 To examine cancer-associated DNA hypermethylation profiles, we first used DNA methylation
296 data from normal tissues to eliminate CpG sites that involved in tissue-specific methylation

297 (mean β value > 0.2 in any of the eight tissue types). We eliminated additional CpGs that were
298 significantly differentially methylated between FF and FFPE samples (t-test FDR-adjusted P-
299 value < 0.01 and absolute mean β -value difference > 0.25). For the heatmap analysis shown in
300 Fig.1c, we used 5,000 most variably methylated CpGs across tumors. The probes lacked
301 methylation in the normal tissues (N=146,385) and the subset (N=5,000) used in the heatmap are
302 listed in Supplementary table 4.

303

304 **Distal element DNA hypomethylation associated with metastasis**

305 We identified 152,211 CpGs in dELSs (distal enhancer-like signatures fall more than 2 kb from
306 the nearest TSS) defined by the ENCODE project⁴⁶. We then selected 19,607 CpGs that are
307 constitutively methylated across eight normal tissue types (mean β value > 0.8). Using the
308 19,607 CpGs sites, we fitted a probe-wise linear mixed-effects model with terms including
309 primary vs. metastasis, tumor purity, and patient (coded as a random effect) as implemented in
310 the R package *lme4*⁴⁷. P-values were estimated based on the Satterthwaite's approximation
311 method included in the *lmerTest* package in R⁴⁷, and adjusted for multiple testing using the
312 Benjamini–Hochberg approach⁴⁸. To examine transcription factors that bind to the CpG sites
313 hypomethylated in metastatic tumors, we analyzed 11,348 ChIP-seq data on 1,359 individual
314 DNA binding factors curated in the Cistrome Data Browser (DB)⁴⁹. The statistical significance
315 of enrichment for transcription factor binding sites among the hypomethylated CpGs was
316 determined using Fisher's exact test with 200bp regions centered on the target CpGs using the R
317 package *LOLA*⁵⁰. All CpGs on the array overlapping the dELSs were used as the background set.
318 P-values were adjusted for multiple comparisons using the Benjamini-Hochberg method.

319

320 **Putative *ESR1* and *FOXA1* Enhancer Target Genes Affected by Metastasis-Associated 321 DNA Hypomethylation**

322 We identified 47 significantly hypomethylated CpGs overlapping the binding sites for *ESR1* or
323 *FOXA1*. To investigate putative target genes affected by DNA hypomethylation, we first
324 collected 4,681 putative targets of either *ESR1* or *FOXA1* in breast cancers as predicted by
325 Cistrome Cancer⁵¹. We then considered at most ten nearest genes within 1,000kb upstream and
326 ten nearest genes within 1,000kb downstream from the affected CpG sites, resulting in a list of

327 121 potential target genes. Gene Ontology GO terms over-representation analysis was performed
328 using the *enrichGO* function with default parameters as implemented in the R package
329 *clusterProfiler*⁵².

330

331 **Identification of DNA hypermethylation associated with metastasis**

332 To identify CpG sites hypermethylated in metastatic tumors compared to primary tumors, we
333 used the 146,385 probes unmethylated in normal tissues defined above. We fitted a probe-wise
334 linear mixed-effects model with terms including primary vs. metastasis, tumor purity, and patient
335 (coded as a random effect) as implemented in the R package *lme4*⁷. P-values were estimated
336 based on the Satterthwaite's approximation method included in the *lmerTest* package⁸ in R and
337 adjusted for multiple testing using the Benjamini–Hochberg approach⁴⁰.

338 **CpG target analysis**

339 Probes located in the PcG target sites (Fig.5e, j, and o) were determined using H3K27me3 ChIP-
340 seq peaks on the H1 embryonic stem cells generated by the NIH Roadmap Epigenomics
341 Consortium⁵³. The broad peaks were downloaded using the R package AnnotaitonHub (ID:
342 AH28888).

343

344 **TCGA DNA methylation data**

345 We analyzed the breast cancer dataset from The Cancer Genome Atlas (TCGA) project,
346 including 761 primary tumors and 74 adjacent non-malignant tissues profiled using the Infinium
347 HumanMethylation450 (HM450) array. IDAT files were downloaded from the NCI Genomic
348 Data Commons (GDC) Legacy Archive (<https://portal.gdc.cancer.gov/legacy-archive>)⁵⁴, and
349 processed using openSeSAMe pipeline implemented in the R package SeSAMe⁴².

350

351 **DNA sequencing of tumor and normals**

352 Due to variable DNA quality, ranging from high (>2 kb; 131 samples) to medium (0.5-2 kb; 18
353 samples) and low (<0.5 kb; 44 samples), the 193 AURORA samples were binned into three
354 different batches. For each batch, library construction used the NEBNext UltraII FS DNA
355 Library Prep kit (New England Biolabs, Ipswich, MA) with a 15-minute enzymatic
356 fragmentation. Each library received a unique dual-indexed adapter (Integrated DNA

357 Technologies, Coralville IA) allowing for both low pass whole genome sequencing (WGS) and
358 multiplex hybrid capture enrichment. Libraries were pooled at 2-4 μ L, based on final library
359 quality and yield. To evaluate library representation dues to variable DNA quality, we performed
360 survey WGS sequencing for proper library balancing. The pooled libraries were concentrated
361 and diluted to 2.25nM for survey sequencing on the NovaSeq 6000.

362

363 Exome hybrid capture utilized the IDT xGen Exome Research Panel v1.0 enhanced with the
364 xGenCNV Backbone Panel-Tech Access (Integrated DNA Technologies, Coralville, IA). The
365 remaining pooled libraries were hybridized to this probe set according to the manufacturer's
366 protocol. The captured products were eluted following precipitation with streptavidin-labeled
367 magnetic beads, amplified by PCR and quantitated prior to dilution and preparatory flow cell
368 amplification for Illumina sequencing. Illumina paired-end sequencing (recipe: 151x17x8x151)
369 performed on the NovaSeq 6000 using the S4 flow cell configuration. For WGS, we targeted 5X
370 coverage, and for WES we aimed for an average unique, on-target sequencing coverage depth of
371 500X for the tumor and 250X for the matched normal tissue.

372

373 **Churchill Secondary Analysis for DNA sequencing**

374 The NCH-developed *Churchill* secondary-analysis pipeline⁵⁵ was used to process paired-end
375 read data for all samples, utilizing attached UMIs. Reads were aligned to reference genome
376 GRCh38.d1.vd1 via *bwa-mem*, with the resulting alignment deduplicated using GATK's (Picard)
377 *MarkDuplicates* and base scores recalibrated using GATK's *BaseRecalibrator* and *ApplyBQSR*.
378 Variant-calling was then performed on the final deduplicated, recalibrated BAMs. Germline
379 variants were called using GATK's *HaplotypeCaller*; somatic variants were called using
380 GATK's *Mutect2*, with the paired normal samples used to exclude germline variants, and
381 somatic variant filters from *Mutect2* were applied. Additionally, somatic variants from FFPE
382 sources were using corrected variant allele frequency, read start diversity, and unique read ends
383 as indicators of preservation-sourced artifacts. Descriptions of the specific filters can be found
384 below. All SNVs and INDELS were annotated via *SnpEff*, using the GDC.h38 GENCODE v22
385 database⁵⁶. To ensure samples were of usable quality, depth and breadth metrics were generated
386 by *mosdepth*⁵⁷, oxidation and insert size metrics were generated by GATK's

387 Collect*OxoGMetrics* and *CollectMultipleMetrics* tools, and sequence-usability (duplicate,
388 softclipping, mapq0, unaligned) metrics were generated via *samtools*⁵⁸ and custom scripts.

389

390 **FFPE Filtering**

391 *FFPE_filter_LMR_VAF_0.04*

392 Local Mismatch Rate Corrected Variant Allele Frequency below 4%. The local mismatch rate of
393 a variant is the number of mismatched bases in all reads aligned within a 10 bp window each side
394 of the position divided by the total number of bases aligned in this region. This value (LMR) is
395 subtracted from the VAF and if the result is below 4% the variant will be filtered.

396 *FFPE_filter_RSD*

397 Read start diversity filter. The number of unique start positions of all variant supporting reads are
398 counted (after soft trimming). For variants with over 15 supporting reads, at least 4 unique
399 starting positions are required to pass this filter. For variants with over 5 supporting reads, at
400 least 2 unique starting positions are required.

401 *FFPE_filter_URE*

402 Unique Nearest Read End filter. For all variant supporting reads, either the start position or the
403 end position, whichever is closest to the variant (after soft trimming) is recorded. For variants
404 with over 15 supporting reads, at least 4 unique positions are required to pass this filter. For
405 variants with over 5 supporting reads, at least 2 unique positions are required.

406

407 **CNV/LOH**

408 Copy-number changes and loss-of-heterozygosity events in WGS samples were detected using
409 GATK's *GermlineCNVCaller*⁵⁹, with the Churchill pipeline's final BAM alignments as input.
410 Intervals of 1000 bp were used to bin only SNVs found in gnomAD at a frequency of 0.01% or
411 greater. Germline CNV events were identified by comparing individual normal samples to a
412 panel-of-normals composed of all other germline normal samples. Somatic CNV events were
413 identified by comparing each somatic sample for a case to that case's paired germline normal.
414 Following this, CNV events were annotated with the symbols of genes they affected, producing
415 gene-specific copy-ratios.

416 Additionally, copy number derived from the raw denoised copy ratio signal were produced and
417 plotted across the HLA locus chr6:28,510,120-33,480,577. A smoothing factor was applied by

418 reducing the number of regions into bins by 50-fold and calculating the mean log2 value for each
419 bin. HLA-A/B/C/DRB5 genes were specifically noted for overlap with prominent deletions in
420 the region.

421

422 **Clonality and Tumor Purity**

423 Clonal variation within and among tumor samples was assessed using *superFreq*⁶⁰. Output BAM
424 alignments from the Churchill pipeline were filtered down to only unique reads overlapping a
425 probe-targeted region. The filtered alignments were then re-genotyped, using *VarScan2*⁶¹ to
426 identify the presence or absence of each of a case's variants in each of its samples. With these
427 inputs, *superFreq* assesses likely copy-number and loss-of-heterozygosity events in combination
428 with SNV and indels to generate the most likely substructure of clones for each sample. The
429 percent composition of tumor cells of all clones was totaled to determine the cellularity of each
430 sample. For each clone, variants in ClinVar- and COSMIC-listed genes are highlighted, as well
431 as mutations of likely-damaging types (frameshift and nonsense); these variants were then
432 queried in the VarSome database, with 'Pathogenic' and 'Likely Pathogenic' variants being
433 considered as potentially consequential clonal variation. Finally, to assess the relationship
434 between clonal diversification patterns and medically-relevant disease characteristics, population
435 genetics and ecological diversity metrics (Fst ⁶² and Shannon's H ⁶³, respectively) were calculated
436 from clone data via custom scripts.

437

438 **Neoantigen Prediction**

439 Somatic variants from samples where both DNA and RNA sequencing data were available were
440 evaluated as potential neotantigens using pVACseq, part of the pVACtools package⁶⁴. SNVs
441 and INDELS, after Mutect2 and FFPE filtering when appropriate, were combined with gene
442 expression data to identify and prioritize tumor-specific neoepitopes that are both expressed and
443 has a significantly increased binding affinity compared to the wild-type epitope in the context of
444 the subject's HLA class I alleles. pVACseq's recommended settings and parameters were used
445 for all neoantigen predictions within this cohort.

446

447 **Resources Table**

Resource / Deposited data	Source	Identifier
AURORA	dbGAP	Submission in progress
TCGA-BRCA mRNA-seq data	Broad GDAC Firehose; dbGAP	https://gdac.broadinstitute.org/runs/stddata_1atest/data/BRCA/20160128/ ; dbGaP accession phs000178
TCGA-BRCA DNA methylation data	NCI GDC	https://portal.gdc.cancer.gov/legacy-archive
UNC Tumor donation program (RAP and 9830)	dbGAP	phs002429
GEICAM/2009-03 ConvertHER trial (GEICAM cohort)	dbGAP; GEO	phs001866; GSE147322

448

449

450 **References for Supplemental Methods**

451

452 1 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21, doi:10.1093/bioinformatics/bts635 (2012).

453

454 2 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. *Nat Methods* **14**, 417-419, doi:10.1038/nmeth.4197 (2017).

455

456

457 3 Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. *BMC bioinformatics* **11**, 94 (2010).

458

459

460 4 Siegel, M. B. *et al.* Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. *J Clin Invest* **128**, 1371-1383, doi:10.1172/JCI96153 (2018).

461

462 5 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* **15**, 550, doi:10.1186/s13059-014-0550-8 (2014).

463

464

465 6 Ritchie, G. R. S., Dunham, I., Zeggini, E. & Flück, P. Functional annotation of noncoding sequence variants. *Nat Methods* **11**, doi:10.1038/nmeth.2832 (2014).

466

467 7 Douglas Bates, M. M., Ben Bolker, Steve Walker. Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software* **67**, doi:10.18637/jss.v067.i01 (2015).

468

469 8 Alexandra Kuznetsova, P. B. B., Rune H. B. Christensen. lmerTest Package: Tests in Linear Mixed Effects Models. *Journal of Statistical Software* **82**, doi:10.18637/jss.v082.i13 (2017).

470

471

472 9 Ciriello, G. *et al.* Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. *Cell* **163**, 506-519, doi:10.1016/j.cell.2015.09.033 (2015).

473

474 10 Fernandez-Martinez, A. *et al.* Survival, Pathologic Response, and Genomics in CALGB 40601 (Alliance), a Neoadjuvant Phase III Trial of Paclitaxel-Trastuzumab With or Without Lapatinib in HER2-Positive Breast Cancer. *J Clin Oncol*, JCO2001276, doi:10.1200/JCO.20.01276 (2020).

475

476

477

478 11 Garcia-Recio, S. *et al.* FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. *J Clin Invest*, doi:10.1172/JCI130323 (2020).

479

480 12 Parker, J. S. *et al.* Supervised risk predictor of breast cancer based on intrinsic subtypes. *J Clin Oncol* **27**, 1160-1167, doi:10.1200/JCO.2008.18.1370 (2009).

481

482 13 Fan, C. *et al.* Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. *BMC Med Genomics* **4**, doi:10.1186/1755-8794-4-3 (2011).

483

484

485 14 Gatz, M. L., Silva, G. O., Parker, J. S., Fan, C. & Perou, C. M. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. *Nat Genet* **46**, 1051-1059, doi:10.1038/ng.3073 (2014).

486

487

488 15 Garcia-Recio, S. *et al.* FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. *The Journal of Clinical Investigation* **130**, 4871-4887, doi:10.1172/JCI130323 (2020).

489

490

491 16 Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst* **1**, 417-425, doi:10.1016/j.cels.2015.12.004 (2015).

492

493 17 Broz, M. L. *et al.* Dissecting the Tumor Myeloid Compartment Reveals Rare Activating
494 Antigen-Presenting Cells Critical for T Cell Immunity. *Cancer Cell* **26**, 938,
495 doi:10.1016/j.ccr.2014.11.010 (2014).

496 18 Prat, A. *et al.* A PAM50-Based Chemoendocrine Score for Hormone Receptor-Positive
497 Breast Cancer with an Intermediate Risk of Relapse. *Clin Cancer Res* **23**, 3035-3044,
498 doi:10.1158/1078-0432.ccr-16-2092 (2017).

499 19 Prat, A. *et al.* Phenotypic and molecular characterization of the claudin-low intrinsic
500 subtype of breast cancer. *Breast Cancer Res* **12**, doi:10.1186/bcr2635 (2010).

501 20 Paik, S. *et al.* A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-
502 Negative Breast Cancer. *New England Journal of Medicine* **351**, 2817-2826,
503 doi:10.1056/NEJMoa041588 (2004).

504 21 D'Arcy, M. *et al.* Race-associated biological differences among Luminal A breast tumors.
505 *Breast cancer research and treatment* **152**, 437-448, doi:10.1007/s10549-015-3474-4
506 (2015).

507 22 Wilkerson, M. D. *et al.* Prediction of lung cancer histological types by RT-qPCR gene
508 expression in FFPE specimens. *The Journal of molecular diagnostics : JMD* **15**, 485-497,
509 doi:10.1016/j.jmoldx.2013.03.007 (2013).

510 23 Wilkerson, M. D. *et al.* Lung squamous cell carcinoma mRNA expression subtypes are
511 reproducible, clinically important, and correspond to normal cell types. *Clin Cancer Res*
512 **16**, 4864-4875, doi:10.1158/1078-0432.CCR-10-0199 (2010).

513 24 Minn, A. J. *et al.* Genes that mediate breast cancer metastasis to lung. *Nature* **436**, 518-
514 524, doi:10.1038/nature03799 (2005).

515 25 Wilkerson, M. D. *et al.* Differential pathogenesis of lung adenocarcinoma subtypes
516 involving sequence mutations, copy number, chromosomal instability, and methylation.
517 *PLoS one* **7**, e36530-e36530, doi:10.1371/journal.pone.0036530 (2012).

518 26 Chang, H. Y. *et al.* Robustness, scalability, and integration of a wound-response gene
519 expression signature in predicting breast cancer survival. *Proceedings of the National
520 Academy of Sciences of the United States of America* **102**, 3738-3743,
521 doi:10.1073/pnas.0409462102 (2005).

522 27 Huang, F. *et al.* Identification of candidate molecular markers predicting sensitivity in
523 solid tumors to dasatinib: rationale for patient selection. *Cancer Res* **67**, 2226-2238,
524 doi:10.1158/0008-5472.can-06-3633 (2007).

525 28 Chi, J.-T. *et al.* Gene expression programs in response to hypoxia: cell type specificity
526 and prognostic significance in human cancers. *PLoS medicine* **3**, e47-e47,
527 doi:10.1371/journal.pmed.0030047 (2006).

528 29 Liu, R. *et al.* The Prognostic Role of a Gene Signature from Tumorigenic Breast-Cancer
529 Cells. *New England Journal of Medicine* **356**, 217-226, doi:10.1056/NEJMoa063994
530 (2007).

531 30 van 't Veer, L. J. *et al.* Gene expression profiling predicts clinical outcome of breast
532 cancer. *Nature* **415**, 530, doi:10.1038/415530a

533 <https://www.nature.com/articles/415530a#supplementary-information> (2002).

534 31 Parker, J. S. *et al.* Supervised risk predictor of breast cancer based on intrinsic subtypes.
535 *Journal of clinical oncology : official journal of the American Society of Clinical
536 Oncology* **27**, 1160-1167, doi:10.1200/JCO.2008.18.1370 (2009).

537 32 Oh, D. S. *et al.* Estrogen-Regulated Genes Predict Survival in Hormone Receptor-
538 Positive Breast Cancers. *Journal of Clinical Oncology* **24**, 1656-1664,
539 doi:10.1200/jco.2005.03.2755 (2006).

540 33 Ciriello, G. *et al.* Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. *Cell* **163**, 506-519, doi:10.1016/j.cell.2015.09.033 (2015).

542 34 Troester, M. A. *et al.* Gene expression patterns associated with p53 status in breast
543 cancer. *BMC cancer* **6**, 276-276, doi:10.1186/1471-2407-6-276 (2006).

544 35 Saal, L. H. *et al.* Poor prognosis in carcinoma is associated with a gene expression
545 signature of aberrant PTEN tumor suppressor pathway activity. *Proceedings of the
546 National Academy of Sciences of the United States of America* **104**, 7564-7569,
547 doi:10.1073/pnas.0702507104 (2007).

548 36 Julka, P. K. *et al.* A phase II study of sequential neoadjuvant gemcitabine plus
549 doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast
550 cancer: prediction of response using molecular profiling. *Br J Cancer* **98**, 1327-1335,
551 doi:10.1038/sj.bjc.6604322 (2008).

552 37 Cancer Genome Atlas, N. Genomic Classification of Cutaneous Melanoma. *Cell* **161**,
553 1681-1696, doi:10.1016/j.cell.2015.05.044 (2015).

554 38 Liu, Y., Hayes, D. N., Nobel, A. & Marron, J. S. Statistical Significance of Clustering for
555 High Dimensional Low Sample Size Data. *Journal of the American Statistical
556 Association* **103** (2008).

557 39 Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to
558 the ionizing radiation response. *Proc Natl Acad Sci U S A* **98**, 5116-5121 (2001).

559 40 Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false
560 discovery rate in behavior genetics research. *Behavioural brain research* **125**, 279-284,
561 doi:10.1016/s0166-4328(01)00297-2 (2001).

562 41 Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization, annotation and
563 innovative use of Infinium DNA methylation BeadChip probes. *Nucleic Acids Res* **45**,
564 e22, doi:10.1093/nar/gkw967 (2017).

565 42 Zhou, W., Triche, T. J., Laird, P. W. & Shen, H. SeSAmE: reducing artifactual detection
566 of DNA methylation by Infinium BeadChips in genomic deletions. *Nucleic Acids Res* **46**,
567 e123, doi:10.1093/nar/gky691 (2018).

568 43 Triche, T. J., Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D.
569 Low-level processing of Illumina Infinium DNA Methylation BeadArrays. *Nucleic Acids
570 Res* **41**, e90, doi:10.1093/nar/gkt090 (2013).

571 44 Davis, C. A. *et al.* The Encyclopedia of DNA elements (ENCODE): data portal update.
572 *Nucleic Acids Res* **46**, D794-d801, doi:10.1093/nar/gkx1081 (2018).

573 45 Barrett, T. *et al.* NCBI GEO: archive for functional genomics data sets--update. *Nucleic
574 Acids Res* **41**, D991-995, doi:10.1093/nar/gks1193 (2013).

575 46 Consortium, E. P. *et al.* Expanded encyclopaedias of DNA elements in the human and
576 mouse genomes. *Nature* **583**, 699-710, doi:10.1038/s41586-020-2493-4 (2020).

577 47 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models
578 Using lme4. *Journal of Statistical Software* **67**, 1 - 48, doi:10.18637/jss.v067.i01 (2015).

579 48 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and
580 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B
581 (Methodological)* **57**, 289-300 (1995).

582 49 Zheng, R. *et al.* Cistrome Data Browser: expanded datasets and new tools for gene
583 regulatory analysis. *Nucleic Acids Res* **47**, D729-D735, doi:10.1093/nar/gky1094 (2019).

584 50 Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets and
585 regulatory elements in R and Bioconductor. *Bioinformatics* **32**, 587-589,
586 doi:10.1093/bioinformatics/btv612 (2016).

587 51 Mei, S. *et al.* Cistrome Cancer: A Web Resource for Integrative Gene Regulation
588 Modeling in Cancer. *Cancer Res* **77**, e19-e22, doi:10.1158/0008-5472.CAN-17-0327
589 (2017).

590 52 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing
591 biological themes among gene clusters. *Omics : a journal of integrative biology* **16**, 284-
592 287, doi:10.1089/omi.2011.0118 (2012).

593 53 Roadmap Epigenomics, C. *et al.* Integrative analysis of 111 reference human
594 epigenomes. *Nature* **518**, 317-330, doi:10.1038/nature14248 (2015).

595 54 Gao, G. F. *et al.* Before and After: Comparison of Legacy and Harmonized TCGA
596 Genomic Data Commons' Data. *Cell Syst* **9**, 24-34 e10, doi:10.1016/j.cels.2019.06.006
597 (2019).

598 55 Kelly, B. J. *et al.* Churchill: an ultra-fast, deterministic, highly scalable and balanced
599 parallelization strategy for the discovery of human genetic variation in clinical and
600 population-scale genomics. *Genome Biol* **16**, 6, doi:10.1186/s13059-014-0577-x (2015).

601 56 Harrow, J. *et al.* GENCODE: the reference human genome annotation for The ENCODE
602 Project. *Genome Res* **22**, 1760-1774, doi:10.1101/gr.135350.111 (2012).

603 57 Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and
604 exomes. *Bioinformatics* **34**, 867-868, doi:10.1093/bioinformatics/btx699 (2018).

605 58 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
606 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

607 59 McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for
608 analyzing next-generation DNA sequencing data. *Genome Res* **20**, 1297-1303,
609 doi:gr.107524.110 [pii]

610 10.1101/gr.107524.110 (2010).

611 60 Flensburg, C., Sargeant, T., Oshlack, A. & Majewski, I. J. SuperFreq: Integrated
612 mutation detection and clonal tracking in cancer. *PLoS Comput Biol* **16**, e1007603,
613 doi:10.1371/journal.pcbi.1007603 (2020).

614 61 Koboldt, D. C., Larson, D. E. & Wilson, R. K. Using VarScan 2 for Germline Variant
615 Calling and Somatic Mutation Detection. *Curr Protoc Bioinformatics* **44**, 15.14.11-17,
616 doi:10.1002/0471250953.bi1504s44 (2013).

617 62 Wright, S. The Interpretation of Population Structure by F-Statistics with Special Regard
618 to Systems of Mating. *Evolution* **19**, 395-420, doi:10.2307/2406450 (1965).

619 63 Shannon, C. E. The mathematical theory of communication. 1963. *MD Comput* **14**, 306-
620 317 (1997).

621 64 Hundal, J. *et al.* pVACtools: A Computational Toolkit to Identify and Visualize Cancer
622 Neoantigens. *Cancer Immunol Res* **8**, 409-420, doi:10.1158/2326-6066.CIR-19-0401
623 (2020).

624