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Methods for

Multiplatform Analysis of Primary and Metastatic Breast Tumors from the AURORA US
Network identifies microenvironment and epigenetics differences as drivers of metastasis

Clinical Summary

Samples from a total of 55 patients with metastatic breast cancer were the final data set of the
AURORA US cohort. Of these 55 women, 10 (18%) were of African American descent and 4
(7%) were of Hispanic ethnicity. Median age at initial breast cancer diagnosis was 49 years
(range: 25-76). Forty-nine patients (89%) initially presented with stage I-111 breast cancer, of
which 19 (38%) received neoadjuvant systemic therapy, and six patients (10%) presented with de
novo metastatic disease. Ductal histology was most prevalent among the cohort (n=44, 80%); 7
patients (12%) were diagnosed with lobular or mixed lobular/ductal carcinoma. The distribution
of breast cancer receptor subtype per clinical testing at initial diagnosis was triple-negative, n=19
(34%); hormone receptor (HR)-positive/HER2-negative, n=17 (30%); HR-positive/HER2-
positive, n=6 (10%); HR-negative/HER2-positive, n=4 (7%); and unknown, n=9 (16%). In the
metastatic setting, patients received a median of 3 lines of systemic therapy (range: 0-20).
Metastatic samples from a total of 20 patients were collected at autopsy. Additional

clinicopathologic features are displayed in Supplementary table 1.

Pathology Review

Pathology quality control was performed on each tumor specimen and normal tissue specimen as
an initial QC step. Hematoxylin and Eosin (H&E) stained sections from each sample were
subjected to independent pathology review to confirm that the tumor specimen was histologically
consistent to the reported histology. The percent rumor nuclei, percent necrosis, and other

pathology annotations were also assessed. Tumor samples with >30% tumor nuclei, and normal

tissue with 0% tumor nuclei, were submitted for nucleic acid extraction. All H&E images are

also available and part of this data resource.
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AURORA Sample acquisition and Biospecimen Processing

RNA and DNA were extracted from frozen tissues using a modification of the AllPrep
DNA/RNA kit (Qiagen). The flow-through from the Qiagen DNA column was processed using a
mirVana miRNA lIsolation Kit (Ambion). RNA and DNA were extracted from FFPE solid
tissues using a modification of the AllPrep DNA/RNA FFPE kit (Qiagen). The flow-through
from the Qiagen DNA column was processed using a mirVVana miRNA Isolation Kit (Ambion).
For cases in which whole blood or blood derivatives were received, DNA was extracted from
blood using the QiaAmp DNA Blood Midi kit (Qiagen). RNA samples were quantified by
measuring Abs260 with a UV spectrophotometer and DNA quantified by PicoGreen assay. DNA
specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight
fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler (Applied Biosystems)
was utilized to verify that tumor DNA and germline DNA representing a case were derived from
the same patient. RNA was analyzed via the RNA6000 Nano assay (Agilent) for determination
of an RNA Integrity Number (RIN). Only cases yielding a minimum of 500ng of tumor DNA,

500ng of tumor RNA, and 500nqg of germline DNA were included in this study. A minimum of

one QC qualified tumor sample and a QC qualified normal were required for a case to become

part of the study (n=>55 total cases).

RNA sequencing, gene expression data values and normalization

Gene expression profiles from primary and metastatic tumors for AURORA dataset were
generated by RNA-sequencing using an Illumina HiSeq and a rRNA-depletion method. Briefly,
300-500ng total RNA was converted to RNAseq libraries using the TruSeq Stranded Total RNA
Library Prep Kit with Ribo-Zero Gold (Illumina) and sequenced on an Illumina HiSeq 2000 using
a 2x50bp configuration. Quality-control-passed reads were aligned to the human reference
CGRh38/hg38 genome using STAR!. Transcript abundance estimates for each sample were
performed using Salmon? an expectation-maximization algorithm using the UCSC gene
definitions. Raw read counts for all RNAseq samples were normalized to a fixed upper quartile

(UQN)3. The raw reads files are available in dbGAP (submission in process)

Gene expression analysis of RNAseq data and batch effect adjustments
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RNAseq UQN gene counts from 123 primary and metastatic tumors comprised of 35 FFPE and
88 Fresh Frozen (FF) RNA-sequenced tumor data were log2 transformed, genes were filtered for
those expressed in 70% of samples and zeros were returned to the empty values. In order to
improve the batch effect between the two data types (i.e. FFPE vs FF), we merged a second
dataset of 101 paired primary and metastatic tumors (UNC Rapid Autopsy donation Program
(RAP) cohort) comprised of 20 FFPE and 81 FF sequenced tumors. This second dataset was
partially previously published in 2018*, but some new samples were added and sequenced for the
present work, and many of the published samples were resequenced here using the rRNA-
depletion method (dbGAP phs002429). The RAP 101 samples of the present work were created
with the same RNA extraction, library preparation and sequencing protocol as are AURORA
samples, and represents a second data set of FFPE and FF samples that increases our sample size
for adjustments of FFPE vs FF effects; note that the RAP101 set is also a second data set of
primary tumor and metastasis pairs as well. The clinical information of the RAP101 dataset is

found in Supplementary table 2.

To address this systematic effect, we merged the raw read counts for all RNAseq samples of the
previously mentioned RAP 101 dataset with 123 samples of AUORA study (Level 1 data). These
counts were normalized using DESeq2-normalized counts (median of ratios method)®. Briefly,
we created DESeg2Dataset object and generated size factors using estimateSizeFactors()
function. Next, to retrieve the normalized counts matrix, we used the counts () function and add
the argument normalized=TRUE. After generating the normalized count matrix, genes with an
average expression less than 10 were filtered from the dataset. RNAseq normalized gene counts
from the 224 dataset was log2 transformed (Level 2 data). Next, we used the removeBatchEffect
() function from limma R package® including both batches in the formula. Lastly, we subtracted
only the 123 samples from the AURORA study and used this normalized, log2 transformed and

batch corrected dataset for further RNAseq gene expression analysis (Level 3 data).

In order to minimize false positive results due to the normal tissue contamination generated by
normal brain (n=10), liver (n=8) or lung tissue (n=7), the most common sites of metastasis in this
study, we removed those genes whose expression was solely coming from these three tissue
sites. Specifically, we used supervised leaning to determine a normal brain, liver and lung

signature from comparing each normal tissue vs normal breast tissue (n=5) (Supplementary table
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3, dbGAP accession number (submission in process) for AURORA and (phs002429) for RAP
and 9830). This normal tissue dataset was also created using the same RNA extraction, library
preparation and sequencing protocols. From normalized, filtered and median counts we
performed linear model (LM) regression using Ime4” and ImerTest® R package given the
formula, Fit = Im(Genes~Normal site of site of metastasis/Breast normal) and p-values were
adjusted for multiple comparisons using the Holm-Bonferroni. We obtained the most significant
upregulated genes each normal tissue (FDR< 0.00001) from comparing each normal tissue vs
normal breast tissue (Brain vs. Breast, Liver vs. Breast and Lung vs. Breast); we took and
merged these 3 lists and identified 1900 genes as the distinctive upregulated genes of our
“normal tissue signature”. In order to build a second signature characteristic of breast primary
tumors, we did a second LM analysis between the 46 primary tumors from AURORA study and
the 5 normal breast tissue from the above-mentioned normal tissue cohort and we obtained 833
significant upregulated genes (FDR<0.01). Some of these genes were also present in the “normal
tissue signature” and thus we removed these common 449 genes from the “normal tissue
signature” list considering these genes not unique for normal tissues but also being important
markers for primary tumors in the AURORA cohort. Finally, the remaining 1451 genes of the
“normal tissue signature” (Supplementary table 3) were removed from the original normalized
and batch corrected gene expression data matrix of the 123 AURORA cohort (referred to
hereafter as the normalized, log2 transformed and batch corrected and normal-adjusted data, or
Level 4 RNAseq data).

PAMS50 subtype classification

In order to better maintain methods with past intrinsic subtyping methods®*?, for PAM50
subtype classification assignments we normalized the RNAseq data in a different way than
described immediately above, and that is based upon within data set row and column
standardizations. Briefly, RNAseq normalized gene counts from 123 primary and metastatic
tumors comprised of 35 FFPE and 88 Fresh Frozen (FF) RNA-sequenced tumor data were log2
transformed, genes were filtered for those expressed in 70% of samples and zeros were returned
to the empty values. To address the FFPE vs FF effects, we again used the AURORA and
RAP101 data sets as described above and made an adjustment for FFPE vs FF. Namely, using
only common genes between both datasets, we merged, row median centered and column

standardized separately FFPE and FF groups, where each gene was a row, and each sample was a

4
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column. Next, we subtracted only the FFPE and FF normalized batches from AURORA study
only and used these values for ROC curve and Youden cut-off analysis for ER, PR, and HER2
status comparisons, which provide external validation that the adjustments do not adversely
affect the gene expression data using tests of correlation to the external clinical standards.

For PAMS50 subtype classification we applied a HER2/ER subgroup-specific gene centering
method as described in the Supplemental Methods of Fernandez-Martinez et al.*°. For applying
this subgroup-specific gene-centering method, we need the IHC status for all samples assayed by
RNAseq. 6% of primary tumors and 39% of metastatic samples did not have HER2 IHC
information, and 38% of metastatic samples were missing for ER status. “Profiled Primary
ER/HER2/PR columns of Supplementary table 2 were used for this analysis. We again used
ROC curve and Youden cut-off value for inferring protein clinical status using ESR1 and
ERBB2 gene expression data from all tumors, and we assigned ER and HER2 clinical status to
those samples that had missing clinical values using the mMRNA surrogates. The ROC curve
analysis showed 0.92 value for ER status by ESR1 mRNA, and 0.86 for HER2 status using
ERBB2 mRNA. These new RNAseq inferred ER/PR/HER2 protein status were used for the
subgroup-specific gene centering method (“Inferred ER/PR/HER2 column of Supplementary
table 2). Finally, the gene expression values of the PAM50 genes using the UQN gene counts
were then normalized and then the PAMS50 predictor'? was applied using the provide centroids,
to assign subtype calls using correlation values for all primary tumors and metastases
(Supplementary table 2).

Gene expression signatures

For each batch corrected and adjusted for normal tissue gene expression data set/subset (Level 4
RNAseq data), we applied a collection of 747 gene expression modules (Supplementary table 3),
representing multiple biological pathways and cell types, to all primary and metastatic tumors.
701 signatures were obtained from 125 publications partially summarized previously *1° and 48
Gene set enrichment analysis (GSEA) signatures published in the Molecular Signature
Database'®. In detail, 1) 669 modules were calculated as the median value of each gene
expression value present in the signature for each sample of the set used; 2) 20 were the value of
a single gene; and 3) 57 named as “special modules” that used specific predetermined algorithms
previously described ®1-%7 (in order to implement each modules, the methods detailed in the

original studies were followed as closely as possible).

5
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Finally, we newly developed an immune metagene signature named “GP2 Immune-Metagene”,
signature which we developed to capture immune cells features as derived from the AURORA
data set. Briefly, we used TCGA gene expression data to calculate all our 747 module scores,
which was then used for hierarchical cluster analysis, and the resulting clusters of modules then
tested for significance of these groups of modules using SigClust®. 56 Clusters with a p<0.001
were identified and 16 immune related signatures from cluster 51 were grouped as a new
“immune meta-signature” named GP2 Immune-Metagene signature (Supplementary table BB);
included within this group of immune clusters were signatures of Tcells, Bcells, Macrophages,
and Dendritic cells. Next, using our previously calculated 747 gene expression modules scores
from AURORA dataset we selected the 16 immune related signatures and calculated the mean of
these 16 signatures for each patient and called this new derived signature as “GP2 Immune

Metagene”.

Merging UNC Rapid Autopsy donation Program (RAP), GEICAM/2009-03 ConvertHER trial
(GEICAM) and AURORA cohorts

To create as large a data set as possible, we merged the data of the AURORA, RAP101, and 204
samples of GEICAM/2009-03 ConvertHER trial (GEICAM cohort)!!; this yielded a final cohort
of 428 tumors in total (158 patients with 159 primaries and 400 paired metastasis, 17 unpaired
primaries and 11 unpaired metastasis), summarized in Supplementary table 2. RNAseq-
Sequencing data of 204 GEICAM study were retrieved from dbGaP, accession number
phs001866, and the processed data in GEO (GSE147322).

Next, we corrected the technical bias detected between the gene expression of 259 FFPE and 169
Fresh frozen (FF) samples from 176 primary and 411 metastatic tumors. The raw counts of the
428 tumors were normalized using DESeq2-normalized counts (median of ratios method)®. We
created DESeg2Dataset object and generated size factors using estimateSizeFactors() function.
Next, to retrieve the normalized counts matrix, we used the counts() function and add the
argument normalized=TRUE. After generating the normalized count matrix, genes with an
average expression less than 10 were filtered from the dataset. RNAseq normalized gene counts
from the 428 tumors were log2 transformed. Next, we used the removeBatchEffect () function
from limma R package® indicating FFPE or FF as batches in the formula (removeBatchEffect

(normlog2data, batch). In order to minimize the false positive results due to the normal tissue
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contamination we proceed as we did in AURORA dataset, 1451 genes of the “normal tissue
signature” (Supplementary table 3) were removed from the data matrix of the 428 AURORA-
RAP-GEICAM cohort to minimize the false positive results coming from normal tissue

contamination.

Next on the 3 data set combined data matrix, we calculated the gene signature score for each
module as described before, and we performed linear mixed model (LMM) using ImerTest and
Ime4 R package to identify significantly changed modules between metastatic and primary
tumors. In the linear model we included the term “patient” as random effect or cofounding
variable: Fit = Imer(Genes~ Met/Prim + (1|Patient) using all the primary and metastatic tumors
except the primaries identified as post-treatment primaries (patients who received neo-adjuvant
therapy prior to primary tumor collection). To avoid the possible confounding factor of intrinsic
molecular subtype in the subsequent analysis, we divided tumors into two datasets based upon
the subtype of the primary tumor from each pair: a “luminal set” comprising all Luminal A,
Luminal B and HER2E subtype patients and a “basal-like set” containing basal-like subtype
only; samples called normal-like in either the primary or metastatic tumors or post-treatment
primary tumors were removed from the analysis (column “Groups PAMS50 Gene expression
analysis” from supplementary table 2). To identify significantly changed modules between brain
or liver and their corresponding primary tumors only the studied sites of metastasis versus the
corresponding primary pair were compared using the same Imer function. The significant
differentially expressed modules (FDR<0.05) were hierarchically clustered using
ComplexHeatmap R package. HeatmapAnnotation and Heatmap functions were used to show the
heatmap that was previously row ordered by primary and metastatic tumors and column ordered
by estimates or beta values. Differential gene expression modules analysis in the merged
AURORA-RAP-GEICAM set were performed in the same way than AURORA only. Multi-
metastatic samples derived from AURORA and RAP and single primary-tumor pairs derived
from GEICAM with PAMS50 classification of Normal-like in primary or metastatic tumors and
post-treatment primary tumors were removed from the analysis. For the comparisons between
site of metastasis using the merged set, we performed SAM®® analysis and the differentially
expressed modules (FDR=0) between 48 Liver metastasis vs 21 Brain metastasis, 48 Liver

metastasis vs 27 Lung metastasis, 48 Liver metastasis vs 27 Lung metastasis, 48 Liver metastasis
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vs 38 LN metastasis, 21 Brain metastasis vs 38 LN metastasis and 27 Lung metastasis vs 21

Brain metastasis (Supplementary table 3).

Statistical Methods

For Linear Mixed Models/ Linear Mixed Effects Model and Linear Models analysis between
primary and metastatic tumors the ImerTest® package summary includes coefficient table with
estimates and p-values for t-statistics using Satterthwaite's method. These p-values were adjusted
for multiple comparisons using the Holm-Bonferroni approach®°. Nonparametric, two-sided,
exact tests were used to make comparisons. A Mann-Whitney U test was used for comparisons
between different groups, and a Paired t-test was used for analyzing repeated measures within
the same groups. Correlations were measured using the Pearson or Spearman correlation

coefficient.

TCGA RNAseq data

We analyzed the breast cancer dataset from The Cancer Genome Atlas (TCGA) project profiled
using the Illumina HiSeq system. We included 1095 primary tumors and 97 adjacent non-
malignant tissues for developing the immune signature named “GP2 Immune-Metagene” and
761 primary tumors and 74 adjacent non-malignant tissues for the HLA-A methylated primary
tumors analysis and prognostic value of HLA-A. TCGA files were downloaded from Broad
GDAC Firehose: (https://gdac.broadinstitute.org/runs/stddata__latest/data/BRCA/20160128/
“gdac.broadinstitute.org. BRCA.Merge rnaseq _illuminahiseq_rnaseq__unc_edu__Level 3 g
ene expression__data.Level 3.2016012800.0.0.tar.gz”).

Array-based DNA methylation assay

DNA methylation was evaluated using the lllumina HumanMethylationEPIC (EPIC) array
(Mumina, CA, USA). The EPIC platform analyzes the DNA methylation status of up to 863,904
CpG loci and 2,932 non-CpG cytosines, spanning gene-associated CpGs as well as a large
number of enhancer/regulatory CpGs in intergenic regions*.. Briefly, DNA was quantified by
Qubit fluorimetry (Life Technologies) and 500ng of DNA from each sample was bisulfite-
converted using the Zymo EZ DNA Methylation Kit (Zymo Research, Irvine, CA USA)
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following the manufacturer’s protocol using the specified modifications for the Illumina
Infinium Methylation Assay. After conversion, all bisulfite reactions were cleaned using the
Zymo-Spin binding columns, and eluted in Tris buffer. Following elution, BS converted DNA
was processed through the EPIC array protocol. For FFPE samples, the entire BS converted
eluate was used as input for the Infinium HD FFPE DNA Restore kit, and processed through the
separate restoration workflow. To perform the assay, converted DNA was denatured with NaOH,
amplified, and hybridized to the EPIC bead chip. An extension reaction was performed using

fluorophore-labeled nucleotides per the manufacturer’s protocol.

DNA methylation data packages

DNA methylation data were packaged into four levels as follows.

LEVEL 1: Level 1 data contain raw IDAT files (two per sample with the extensions _Grn.idat
and _Red.idat for the two color channels) as produced by the Illumina iScan system. The
mapping between IDAT file names and AURORA sample barcodes is provided in
Sample.mapping.tsv.

LEVEL 2: Level 2 data contain the signal intensities corresponding to methylated (M) and
unmethylated (U) alleles and detection P-values for each probe as extracted by the readIDATpair
function in the R package SeSAMe (https://github.com/zwdzwd/sesame) from the IDAT files.
The P-values are calculated using pPOOBAH (P-value with Out-Of-Band probes for Array
Hybridization), which is based on empirical cumulative distribution function of the out-of-band

signal from all Type-I probes*?.

LEVEL 3: Level 3 data contain 3 values defined as Sm /(Sm+Su) for each locus calculated using
the R package SeSAMe, where Sm and Su represent signal intensities for methylated and
unmethylated allele. The raw signal intensities are first processed with background correction
and dye-bias correction. The background correction is based on the noob method*®. The dye-bias
is corrected using non-linear quantile interpolation-based method using the
dyeBiasCorrTypelNorm function®. B values are then computed using the getBetas function.
Probes with a detection P-value greater than 0.05 in a given sample are masked as NA. Whether
the probe is masked due to detection failure is recorded in an extra column

(Masked_by_Detection_P_value) to distinguish from experiment-independent masking of probes
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(N=105,454) subject to cross-hybridization and genetic polymorphism. The experiment-
independent masking is based on the MASK_general column of the file named
EPIC.hg38.manifest.tsv (release 20180909) downloaded from
http://zwdzwd.github.io/InfiniumAnnotation*!. From the same source, an additional file
(EPIC.hg38.manifest.gencode.v22.tsv) is also included to provide detailed annotation of

transcription association for each probe.

LEVEL 4: Level 4 data contain merged data matrix with B values across all samples. Probes
masked as NA concerning the probe design in Level 3 data are removed. Sixteen FFPE samples
that initially yielded low-quality data were rerun. The resulting two data sets values were merged
probe-wise by taking the mean 3 value. If data was masked in one of the runs, we took available

data from the other run.

Nomenclature for control samples:

We include several cell line control samples in each batch to allow for the evaluation of potential
batch effects and to facilitate correction of observed batch effects.

Control sample IDs that start with “VARI-Control-” can be interpreted as follows:
VARI-Control-[Batch number]-[Cell line name)-(DNA lIsolate ID (A,B,..)]-[Assay Technical
Replicate (1,2,3...sequential across batches for the same DNA Isolate)].

External DNA methylation data sets

We processed additional normal tissue DNA methylation data from ENCODE** and GEO*. We
collected raw IDAT files for 24 samples from seven tissue types, including adrenal gland (n=5),
liver (n=1), lung (n=4), ovary (n=2), skin (n=4), blood (n=6), and brain (n=2), that were
frequently represented as a site of metastasis. We generated B values using the R package
SeSAMe as described above for the AURORA samples. Further information on these data sets is

provided in Supplementary table 4.

Global DNA hypermethylation analysis
To examine cancer-associated DNA hypermethylation profiles, we first used DNA methylation

data from normal tissues to eliminate CpG sites that involved in tissue-specific methylation

10
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(mean B value > 0.2 in any of the eight tissue types). We eliminated additional CpGs that were
significantly differentially methylated between FF and FFPE samples (t-test FDR-adjusted P-
value < 0.01 and absolute mean B-value difference > 0.25). For the heatmap analysis shown in
Fig.1c, we used 5,000 most variably methylated CpGs across tumors. The probes lacked
methylation in the normal tissues (N=146,385) and the subset (N=5,000) used in the heatmap are
listed in Supplementary table 4.

Distal element DNA hypomethylation associated with metastasis

We identified 152,211 CpGs in dELSs (distal enhancer-like signatures fall more than 2 kb from
the nearest TSS) defined by the ENCODE project*®. We then selected 19,607 CpGs that are
constitutively methylated across eight normal tissue types (mean 3 value > 0.8). Using the
19,607 CpGs sites, we fitted a probe-wise linear mixed-effects model with terms including
primary vs. metastasis, tumor purity, and patient (coded as a random effect) as implemented in
the R package /me4*”. P-values were estimated based on the Satterthwaite's approximation
method included in the ImerTest package in R*’, and adjusted for multiple testing using the
Benjamini—Hochberg approach*®. To examine transcription factors that bind to the CpG sites
hypomethylated in metastatic tumors, we analyzed 11,348 ChlIP-seq data on 1,359 individual
DNA binding factors curated in the Cistrome Data Browser (DB)*. The statistical significance
of enrichment for transcription factor binding sites among the hypomethylated CpGs was
determined using Fisher’s exact test with 200bp regions centered on the target CpGs using the R
package LOLA®. All CpGs on the array overlapping the dELSs were used as the background set.

P-values were adjusted for multiple comparisons using the Benjamini-Hochberg method.

Putative ESR1 and FOXA1 Enhancer Target Genes Affected by Metastasis-Associated
DNA Hypomethylation

We identified 47 significantly hypomethylated CpGs overlapping the binding sites for ESR1 or
FOXAL.To investigate putative target genes affected by DNA hypomethylation, we first
collected 4,681 putative targets of either ESRI or FOXAI in breast cancers as predicted by
Cistrome Cancer”'. We then considered at most ten nearest genes within 1,000kb upstream and
ten nearest genes within 1,000kb downstream from the affected CpG sites, resulting in a list of

11
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121 potential target genes. Gene Ontology GO terms over-representation analysis was performed
using the enrichGO function with default parameters as implemented in the R package

clusterProfiler 2.

Identification of DNA hypermethylation associated with metastasis

To identify CpG sites hypermethylated in metastatic tumors compared to primary tumors, we
used the 146,385 probes unmethylated in normal tissues defined above. We fitted a probe-wise
linear mixed-eftfects model with terms including primary vs. metastasis, tumor purity, and patient
(coded as a random effect) as implemented in the R package Ime4’. P-values were estimated
based on the Satterthwaite's approximation method included in the /merTest package® in R and

adjusted for multiple testing using the Benjamini—Hochberg approach*°.

CpG target analysis

Probes located in the PcG target sites (Fig.5e, j, and o) were determined using H3K27me3 ChlP-
seq peaks on the H1 embryonic stem cells generated by the NIH Roadmap Epigenomics
Consortium®. The broad peaks were downloaded using the R package AnnotaitonHub (ID:
AH28888).

TCGA DNA methylation data

We analyzed the breast cancer dataset from The Cancer Genome Atlas (TCGA) project,
including 761 primary tumors and 74 adjacent non-malignant tissues profiled using the Infinium
HumanMethylation450 (HM450) array. IDAT files were downloaded from the NCI Genomic
Data Commons (GDC) Legacy Archive (https://portal.gdc.cancer.gov/legacy-archive)®*, and
processed using openSeSAMe pipeline implemented in the R package SeSAMe*2.

DNA sequencing of tumor and normals

Due to variable DNA quality, ranging from high (>2 kb; 131 samples) to medium (0.5-2 kb; 18
samples) and low (<0.5 kb; 44 samples), the 193 AURORA samples were binned into three
different batches. For each batch, library construction used the NEBNext Ultrall FS DNA
Library Prep kit (New England Biolabs, Ipswich, MA) with a 15-minute enzymatic
fragmentation. Each library received a unique dual-indexed adapter (Integrated DNA

12
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Technologies, Coralville 1A) allowing for both low pass whole genome sequencing (WGS) and
multiplex hybrid capture enrichment. Libraries were pooled at 2-4uL, based on final library
quality and yield. To evaluate library representation dues to variable DNA quality, we performed
survey WGS sequencing for proper library balancing. The pooled libraries were concentrated

and diluted to 2.25nM for survey sequencing on the NovaSeq 6000.

Exome hybrid capture utilized the IDT xGen Exome Research Panel v1.0 enhanced with the
xGenCNV Backbone Panel-Tech Access (Integrated DNA Technologies, Coralville, I1A). The
remaining pooled libraries were hybridized to this probe set according to the manufacturer’s
protocol. The captured products were eluted following precipitation with streptavidin-labeled
magnetic beads, amplified by PCR and quantitated prior to dilution and preparatory flow cell
amplification for Illumina sequencing. Illumina paired-end sequencing (recipe: 151x17x8x151)
performed on the NovaSeq 6000 using the S4 flow cell configuration. For WGS, we targeted 5X
coverage, and for WES we aimed for an average unique, on-target sequencing coverage depth of

500X for the tumor and 250X for the matched normal tissue.

Churchill Secondary Analysis for DNA sequencing

The NCH-developed Churchill secondary-analysis pipeline® was used to process paired-end
read data for all samples, utilizing attached UMIs. Reads were aligned to reference genome
GRCh38.d1.vd1 via bwa-mem, with the resulting alignment deduplicated using GATK’s (Picard)
MarkDuplicates and base scores recalibrated using GATK’s BaseRecalibrator and ApplyBQSR.
Variant-calling was then performed on the final deduplicated, recalibrated BAMs. Germline
variants were called using GATK’s HaplotypeCaller; somatic variants were called using
GATK’s Mutect2, with the paired normal samples used to exclude germline variants, and
somatic variant filters from Mutect2 were applied. Additionally, somatic variants from FFPE
sources were using corrected variant allele frequency, read start diversity, and unique read ends
as indicators of preservation-sourced artifacts. Descriptions of the specific filters can be found
below. All SNVs and INDELSs were annotated via SnpEff, using the GDC.h38 GENCODE v22
database®®. To ensure samples were of usable quality, depth and breadth metrics were generated

by mosdepth®’, oxidation and insert size metrics were generated by GATK’s
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387  CollectOxoGMetrics and CollectMultipleMetrics tools, and sequence-usability (duplicate,

388  softclipping, mapq0, unaligned) metrics were generated via samtools®® and custom scripts.

389

390 FFPE Filtering

391  FFPE_filter LMR_VAF_0.04

392  Local Mismatch Rate Corrected Variant Allele Frequency below 4%. The local mismatch rate of
393  avariant is the number of mismatched bases in all reads aligned within a 10 bp window each side
394  of the position divided by the total number of bases aligned in this region. This value (LMR) is
395  subtracted from the VAF and if the result is below 4% the variant will be filtered.

396  FFPE_filter_RSD

397 Read start diversity filter. The number of unique start positions of all variant supporting reads are
398  counted (after soft trimming). For variants with over 15 supporting reads, at least 4 unique

399  starting positions are required to pass this filter. For variants with over 5 supporting reads, at
400 least 2 unique starting positions are required.

401  FFPE_filter URE

402  Unique Nearest Read End filter. For all variant supporting reads, either the start position or the
403  end position, whichever is closest to the variant (after soft trimming) is recorded. For variants
404  with over 15 supporting reads, at least 4 unique positions are required to pass this filter. For
405  variants with over 5 supporting reads, at least 2 unique positions are required.

406

407 CNV/LOH

408  Copy-number changes and loss-of-heterozygosity events in WGS samples were detected using
409  GATK’s GermlineCNVCaller®, with the Churchill pipeline’s final BAM alignments as input.
410 Intervals of 1000 bp were used to bin only SNVs found in gnomAD at a frequency of 0.01% or
411  greater. Germline CNV events were identified by comparing individual normal samples to a
412  panel-of-normals composed of all other germline normal samples. Somatic CNV events were
413  identified by comparing each somatic sample for a case to that case’s paired germline normal.
414  Following this, CNV events were annotated with the symbols of genes they affected, producing
415  gene-specific copy-ratios.

416  Additionally, copy number derived from the raw denoised copy ratio signal were produced and
417  plotted across the HLA locus chr6:28,510,120-33,480,577. A smoothing factor was applied by
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reducing the number of regions into bins by 50-fold and calculating the mean log2 value for each
bin. HLA-A/B/C/DRB5 genes were specifically noted for overlap with prominent deletions in
the region.

Clonality and Tumor Purity

Clonal variation within and among tumor samples was assessed using superFreg®. Output BAM
alignments from the Churchill pipeline were filtered down to only unique reads overlapping a
probe-targeted region. The filtered alignments were then re-genotyped, using Varscan2®* to
identify the presence or absence of each of a case’s variants in each of its samples. With these
inputs, superFreq assesses likely copy-number and loss-of-heterozygosity events in combination
with SNV and indels to generate the most likely substructure of clones for each sample. The
percent composition of tumor cells of all clones was totaled to determine the cellularity of each
sample. For each clone, variants in ClinVar- and COSMIC-listed genes are highlighted, as well
as mutations of likely-damaging types (frameshift and nonsense); these variants were then
queried in the VarSome database, with ‘Pathogenic’ and ‘Likely Pathogenic’ variants being
considered as potentially consequential clonal variation. Finally, to assess the relationship
between clonal diversification patterns and medically-relevant disease characteristics, population
genetics and ecological diversity metrics (Fst® and Shannon’s H®, respectively) were calculated

from clone data via custom scripts.

Neoantigen Prediction

Somatic variants from samples where both DNA and RNA sequencing data were available were
evaluated as potential neotantigens using pVACseq, part of the pVACtools package®. SNVs
and INDELSs, after Mutect2 and FFPE filtering when appropriate, were combined with gene
expression data to identify and prioritize tumor-specific neoepitopes that are both expressed and
has a significantly increased binding affinity compared to the wild-type epitope in the context of
the subject’s HLA class I alleles. pVACseq’s recommended settings and parameters were used

for all neoantigen predictions within this cohort.
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Resources Table

Resource / Deposited data Source Identifier
AURORA dbGAP Submission in
progress
https://gdac.broadinstit
Broad ute.org/runs/stddata__|
GDAC atest/data/BRCA/2016
TCGA-BRCA mRNA-seq data Firchose: | 0128/:
dbGAP dbGaP accession
phs000178
TCGA-BRCA DNA methylation data NCI GDC | Ntps://portal.gdc.canc
er.gov/legacy-archive
UNC Tumor donation program (RAP and 9830) dbGAP phs002429
. dbGAP; phs001866;
GEICAM/2009-03 ConvertHER trial (GEICAM cohort) GEO GSE147322
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