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Methods for 

Multiplatform Analysis of Primary and Metastatic Breast Tumors from the AURORA US 

Network identifies microenvironment and epigenetics differences as drivers of metastasis 

 

Clinical Summary  1 

Samples from a total of 55 patients with metastatic breast cancer were the final data set of the 2 

AURORA US cohort. Of these 55 women, 10 (18%) were of African American descent and 4 3 

(7%) were of Hispanic ethnicity. Median age at initial breast cancer diagnosis was 49 years 4 

(range: 25-76). Forty-nine patients (89%) initially presented with stage I-III breast cancer, of 5 

which 19 (38%) received neoadjuvant systemic therapy, and six patients (10%) presented with de 6 

novo metastatic disease. Ductal histology was most prevalent among the cohort (n=44, 80%); 7 7 

patients (12%) were diagnosed with lobular or mixed lobular/ductal carcinoma. The distribution 8 

of breast cancer receptor subtype per clinical testing at initial diagnosis was triple-negative, n=19 9 

(34%); hormone receptor (HR)-positive/HER2-negative, n=17 (30%); HR-positive/HER2-10 

positive, n=6 (10%); HR-negative/HER2-positive, n=4 (7%); and unknown, n=9 (16%). In the 11 

metastatic setting, patients received a median of 3 lines of systemic therapy (range: 0-20). 12 

Metastatic samples from a total of 20 patients were collected at autopsy. Additional 13 

clinicopathologic features are displayed in Supplementary table 1. 14 

 15 

Pathology Review 16 

Pathology quality control was performed on each tumor specimen and normal tissue specimen as 17 

an initial QC step. Hematoxylin and Eosin (H&E) stained sections from each sample were 18 

subjected to independent pathology review to confirm that the tumor specimen was histologically 19 

consistent to the reported histology. The percent rumor nuclei, percent necrosis, and other 20 

pathology annotations were also assessed. Tumor samples with ≥30% tumor nuclei, and normal 21 

tissue with 0% tumor nuclei, were submitted for nucleic acid extraction. All H&E images are 22 

also available and part of this data resource. 23 

 24 

 25 
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AURORA Sample acquisition and Biospecimen Processing  26 

RNA and DNA were extracted from frozen tissues using a modification of the AllPrep 27 

DNA/RNA kit (Qiagen). The flow-through from the Qiagen DNA column was processed using a 28 

mirVana miRNA Isolation Kit (Ambion). RNA and DNA were extracted from FFPE solid 29 

tissues using a modification of the AllPrep DNA/RNA FFPE kit (Qiagen). The flow-through 30 

from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). 31 

For cases in which whole blood or blood derivatives were received, DNA was extracted from 32 

blood using the QiaAmp DNA Blood Midi kit (Qiagen). RNA samples were quantified by 33 

measuring Abs260 with a UV spectrophotometer and DNA quantified by PicoGreen assay. DNA 34 

specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight 35 

fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler (Applied Biosystems) 36 

was utilized to verify that tumor DNA and germline DNA representing a case were derived from 37 

the same patient. RNA was analyzed via the RNA6000 Nano assay (Agilent) for determination 38 

of an RNA Integrity Number (RIN). Only cases yielding a minimum of 500ng of tumor DNA, 39 

500ng of tumor RNA, and 500ng of germline DNA were included in this study. A minimum of 40 

one QC qualified tumor sample and a QC qualified normal were required for a case to become 41 

part of the study (n=55 total cases). 42 

 43 

RNA sequencing, gene expression data values and normalization 44 

Gene expression profiles from primary and metastatic tumors for AURORA dataset were 45 

generated by RNA-sequencing using an Illumina HiSeq and a rRNA-depletion method. Briefly, 46 

300-500ng total RNA was converted to RNAseq libraries using the TruSeq Stranded Total RNA 47 

Library Prep Kit with Ribo-Zero Gold (Illumina) and sequenced on an Illumina HiSeq 2000 using 48 

a 2x50bp configuration. Quality-control-passed reads were aligned to the human reference 49 

CGRh38/hg38 genome using STAR1. Transcript abundance estimates for each sample were 50 

performed using Salmon2, an expectation-maximization algorithm using the UCSC gene 51 

definitions. Raw read counts for all RNAseq samples were normalized to a fixed upper quartile 52 

(UQN)3. The raw reads files are available in dbGAP (submission in process)  53 

 54 

Gene expression analysis of RNAseq data and batch effect adjustments 55 



 

3 
 

RNAseq UQN gene counts from 123 primary and metastatic tumors comprised of 35 FFPE and 56 

88 Fresh Frozen (FF) RNA-sequenced tumor data were log2 transformed, genes were filtered for 57 

those expressed in 70% of samples and zeros were returned to the empty values. In order to 58 

improve the batch effect between the two data types (i.e. FFPE vs FF), we merged a second 59 

dataset of 101 paired primary and metastatic tumors (UNC Rapid Autopsy donation Program 60 

(RAP) cohort) comprised of 20 FFPE and 81 FF sequenced tumors. This second dataset was 61 

partially previously published in 20184, but some new samples were added and sequenced for the 62 

present work, and many of the published samples were resequenced here using the rRNA-63 

depletion method (dbGAP phs002429). The RAP 101 samples of the present work were created 64 

with the same RNA extraction, library preparation and sequencing protocol as are AURORA 65 

samples, and represents a second data set of FFPE and FF samples that increases our sample size 66 

for adjustments of FFPE vs FF effects; note that the RAP101 set is also a second data set of 67 

primary tumor and metastasis pairs as well. The clinical information of the RAP101 dataset is 68 

found in Supplementary table 2.  69 

To address this systematic effect, we merged the raw read counts for all RNAseq samples of the 70 

previously mentioned RAP 101 dataset with 123 samples of AUORA study (Level 1 data). These 71 

counts were normalized using DESeq2-normalized counts (median of ratios method)5. Briefly, 72 

we created DESeq2Dataset object and generated size factors using estimateSizeFactors() 73 

function. Next, to retrieve the normalized counts matrix, we used the counts () function and add 74 

the argument normalized=TRUE. After generating the normalized count matrix, genes with an 75 

average expression less than 10 were filtered from the dataset. RNAseq normalized gene counts 76 

from the 224 dataset was log2 transformed (Level 2 data). Next, we used the removeBatchEffect 77 

() function from limma R package6 including both batches in the formula. Lastly, we subtracted 78 

only the 123 samples from the AURORA study and used this normalized, log2 transformed and 79 

batch corrected dataset for further RNAseq gene expression analysis (Level 3 data). 80 

In order to minimize false positive results due to the normal tissue contamination generated by 81 

normal brain (n=10), liver (n=8) or lung tissue (n=7), the most common sites of metastasis in this 82 

study, we removed those genes whose expression was solely coming from these three tissue 83 

sites. Specifically, we used supervised leaning to determine a normal brain, liver and lung 84 

signature from comparing each normal tissue vs normal breast tissue (n=5) (Supplementary table 85 
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3, dbGAP accession number (submission in process) for AURORA and (phs002429) for RAP 86 

and 9830). This normal tissue dataset was also created using the same RNA extraction, library 87 

preparation and sequencing protocols. From normalized, filtered and median counts we 88 

performed linear model (LM) regression using lme47 and lmerTest8 R package given the 89 

formula, Fit = lm(Genes~Normal site of site of metastasis/Breast normal) and p-values were 90 

adjusted for multiple comparisons using the Holm-Bonferroni. We obtained the most significant 91 

upregulated genes each normal tissue (FDR< 0.00001) from comparing each normal tissue vs 92 

normal breast tissue (Brain vs. Breast, Liver vs. Breast and Lung vs. Breast); we took and 93 

merged these 3 lists and identified 1900 genes as the distinctive upregulated genes of our 94 

“normal tissue signature”. In order to build a second signature characteristic of breast primary 95 

tumors, we did a second LM analysis between the 46 primary tumors from AURORA study and 96 

the 5 normal breast tissue from the above-mentioned normal tissue cohort and we obtained 833 97 

significant upregulated genes (FDR<0.01). Some of these genes were also present in the “normal 98 

tissue signature” and thus we removed these common 449 genes from the “normal tissue 99 

signature” list considering these genes not unique for normal tissues but also being important 100 

markers for primary tumors in the AURORA cohort. Finally, the remaining 1451 genes of the 101 

“normal tissue signature” (Supplementary table 3) were removed from the original normalized 102 

and batch corrected gene expression data matrix of the 123 AURORA cohort (referred to 103 

hereafter as the normalized, log2 transformed and batch corrected and normal-adjusted data, or 104 

Level 4 RNAseq data).  105 

PAM50 subtype classification 106 

In order to better maintain methods with past intrinsic subtyping methods9-11, for PAM50 107 

subtype classification assignments we normalized the RNAseq data in a different way than 108 

described immediately above, and that is based upon within data set row and column 109 

standardizations. Briefly, RNAseq normalized gene counts from 123 primary and metastatic 110 

tumors comprised of 35 FFPE and 88 Fresh Frozen (FF) RNA-sequenced tumor data were log2 111 

transformed, genes were filtered for those expressed in 70% of samples and zeros were returned 112 

to the empty values. To address the FFPE vs FF effects, we again used the AURORA and 113 

RAP101 data sets as described above and made an adjustment for FFPE vs FF. Namely, using 114 

only common genes between both datasets, we merged, row median centered and column 115 

standardized separately FFPE and FF groups, where each gene was a row, and each sample was a 116 
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column. Next, we subtracted only the FFPE and FF normalized batches from AURORA study 117 

only and used these values for ROC curve and Youden cut-off analysis for ER, PR, and HER2 118 

status comparisons, which provide external validation that the adjustments do not adversely 119 

affect the gene expression data using tests of correlation to the external clinical standards.  120 

For PAM50 subtype classification we applied a HER2/ER subgroup-specific gene centering 121 

method as described in the Supplemental Methods of Fernandez-Martinez et al.10. For applying 122 

this subgroup-specific gene-centering method, we need the IHC status for all samples assayed by 123 

RNAseq. 6% of primary tumors and 39% of metastatic samples did not have HER2 IHC 124 

information, and 38% of metastatic samples were missing for ER status. “Profiled Primary 125 

ER/HER2/PR columns of Supplementary table 2 were used for this analysis. We again used 126 

ROC curve and Youden cut-off value for inferring protein clinical status using ESR1 and 127 

ERBB2 gene expression data from all tumors, and we assigned ER and HER2 clinical status to 128 

those samples that had missing clinical values using the mRNA surrogates. The ROC curve 129 

analysis showed 0.92 value for ER status by ESR1 mRNA, and 0.86 for HER2 status using 130 

ERBB2 mRNA. These new RNAseq inferred ER/PR/HER2 protein status were used for the 131 

subgroup-specific gene centering method (“Inferred ER/PR/HER2 column of Supplementary 132 

table 2).  Finally, the gene expression values of the PAM50 genes using the UQN gene counts 133 

were then normalized and then the PAM50 predictor12 was applied using the provide centroids, 134 

to assign subtype calls using correlation values for all primary tumors and metastases 135 

(Supplementary table 2). 136 

Gene expression signatures  137 

For each batch corrected and adjusted for normal tissue gene expression data set/subset (Level 4 138 

RNAseq data), we applied a collection of 747 gene expression modules (Supplementary table 3), 139 

representing multiple biological pathways and cell types, to all primary and metastatic tumors. 140 

701 signatures were obtained from 125 publications partially summarized previously 13-15 and 48 141 

Gene set enrichment analysis (GSEA) signatures published in the Molecular Signature 142 

Database16. In detail, 1) 669 modules were calculated as the median value of each gene 143 

expression value present in the signature for each sample of the set used; 2) 20 were the value of 144 

a single gene; and 3) 57 named as “special modules” that used specific predetermined algorithms 145 

previously described 9,17-37 (in order to implement each modules, the methods detailed in the 146 

original studies were followed as closely as possible).  147 
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Finally, we newly developed an immune metagene signature named “GP2 Immune-Metagene”, 148 

signature which we developed to capture immune cells features as derived from the AURORA 149 

data set. Briefly, we used TCGA gene expression data to calculate all our 747 module scores, 150 

which was then used for hierarchical cluster analysis, and the resulting clusters of modules then 151 

tested for significance of these groups of modules using SigClust38. 56 Clusters with a p<0.001 152 

were identified and 16 immune related signatures from cluster 51 were grouped as a new 153 

“immune meta-signature” named GP2 Immune-Metagene signature (Supplementary table BB); 154 

included within this group of immune clusters were signatures of Tcells, Bcells, Macrophages, 155 

and Dendritic cells. Next, using our previously calculated 747 gene expression modules scores 156 

from AURORA dataset we selected the 16 immune related signatures and calculated the mean of 157 

these 16 signatures for each patient and called this new derived signature as “GP2 Immune 158 

Metagene”.  159 

Merging UNC Rapid Autopsy donation Program (RAP), GEICAM/2009-03 ConvertHER trial 160 

(GEICAM) and AURORA cohorts 161 

To create as large a data set as possible, we merged the data of the AURORA, RAP101, and 204 162 

samples of GEICAM/2009-03 ConvertHER trial (GEICAM cohort)11; this yielded a final cohort 163 

of 428 tumors in total (158 patients with 159 primaries and 400 paired metastasis, 17 unpaired 164 

primaries and 11 unpaired metastasis), summarized in Supplementary table 2. RNAseq-165 

Sequencing data of 204 GEICAM study were retrieved from dbGaP, accession number 166 

phs001866, and the processed data in GEO (GSE147322).   167 

Next, we corrected the technical bias detected between the gene expression of 259 FFPE and 169 168 

Fresh frozen (FF) samples from 176 primary and 411 metastatic tumors. The raw counts of the 169 

428 tumors were normalized using DESeq2-normalized counts (median of ratios method)5. We 170 

created DESeq2Dataset object and generated size factors using estimateSizeFactors() function. 171 

Next, to retrieve the normalized counts matrix, we used the counts() function and add the 172 

argument normalized=TRUE. After generating the normalized count matrix, genes with an 173 

average expression less than 10 were filtered from the dataset. RNAseq normalized gene counts 174 

from the 428 tumors were log2 transformed. Next, we used the removeBatchEffect () function 175 

from limma R package6 indicating FFPE or FF as batches in the formula (removeBatchEffect 176 

(normlog2data, batch). In order to minimize the false positive results due to the normal tissue 177 
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contamination we proceed as we did in AURORA dataset, 1451 genes of the “normal tissue 178 

signature” (Supplementary table 3) were removed from the data matrix of the 428 AURORA-179 

RAP-GEICAM cohort to minimize the false positive results coming from normal tissue 180 

contamination.  181 

Next on the 3 data set combined data matrix, we calculated the gene signature score for each 182 

module as described before, and we performed linear mixed model (LMM) using lmerTest and 183 

lme4 R package to identify significantly changed modules between metastatic and primary 184 

tumors. In the linear model we included the term “patient” as random effect or cofounding 185 

variable: Fit = lmer(Genes~ Met/Prim + (1|Patient) using all the primary and metastatic tumors 186 

except the primaries identified as post-treatment primaries (patients who received neo-adjuvant 187 

therapy prior to primary tumor collection). To avoid the possible confounding factor of intrinsic 188 

molecular subtype in the subsequent analysis, we divided tumors into two datasets based upon 189 

the subtype of the primary tumor from each pair: a “luminal set” comprising all Luminal A, 190 

Luminal B and HER2E subtype patients and a “basal-like set” containing basal-like subtype 191 

only; samples called normal-like in either the primary or metastatic tumors or post-treatment 192 

primary tumors were removed from the analysis (column “Groups PAM50 Gene expression 193 

analysis” from supplementary table 2). To identify significantly changed modules between brain 194 

or liver and their corresponding primary tumors only the studied sites of metastasis versus the 195 

corresponding primary pair were compared using the same lmer function. The significant 196 

differentially expressed modules (FDR<0.05) were hierarchically clustered using 197 

ComplexHeatmap R package. HeatmapAnnotation and Heatmap functions were used to show the 198 

heatmap that was previously row ordered by primary and metastatic tumors and column ordered 199 

by estimates or beta values. Differential gene expression modules analysis in the merged 200 

AURORA-RAP-GEICAM set were performed in the same way than AURORA only. Multi-201 

metastatic samples derived from AURORA and RAP and single primary-tumor pairs derived 202 

from GEICAM with PAM50 classification of Normal-like in primary or metastatic tumors and 203 

post-treatment primary tumors were removed from the analysis. For the comparisons between 204 

site of metastasis using the merged set, we performed SAM39 analysis and the differentially 205 

expressed modules (FDR=0) between 48 Liver metastasis vs 21 Brain metastasis, 48 Liver 206 

metastasis vs 27 Lung metastasis, 48 Liver metastasis vs 27 Lung metastasis, 48 Liver metastasis 207 
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vs 38 LN metastasis, 21 Brain metastasis vs 38 LN metastasis and 27 Lung metastasis vs 21 208 

Brain metastasis (Supplementary table 3).  209 

 210 

Statistical Methods 211 

For Linear Mixed Models/ Linear Mixed Effects Model and Linear Models analysis between 212 

primary and metastatic tumors the lmerTest8 package summary includes coefficient table with 213 

estimates and p-values for t-statistics using Satterthwaite's method. These p-values were adjusted 214 

for multiple comparisons using the Holm-Bonferroni approach40. Nonparametric, two-sided, 215 

exact tests were used to make comparisons. A Mann-Whitney U test was used for comparisons 216 

between different groups, and a Paired t-test was used for analyzing repeated measures within 217 

the same groups. Correlations were measured using the Pearson or Spearman correlation 218 

coefficient. 219 

 220 

TCGA RNAseq data 221 

We analyzed the breast cancer dataset from The Cancer Genome Atlas (TCGA) project profiled 222 

using the Illumina HiSeq system. We included 1095 primary tumors and 97 adjacent non-223 

malignant tissues for developing the immune signature named “GP2 Immune-Metagene” and  224 

761 primary tumors and 74 adjacent non-malignant tissues for the HLA-A methylated primary 225 

tumors analysis and prognostic value of HLA-A. TCGA files were downloaded from Broad 226 

GDAC Firehose: (https://gdac.broadinstitute.org/runs/stddata__latest/data/BRCA/20160128/ 227 

“gdac.broadinstitute.org_BRCA.Merge_rnaseq__illuminahiseq_rnaseq__unc_edu__Level_3__g228 

ene_expression__data.Level_3.2016012800.0.0.tar.gz”). 229 

 230 

Array-based DNA methylation assay 231 

DNA methylation was evaluated using the Illumina HumanMethylationEPIC (EPIC) array 232 

(Illumina, CA, USA). The EPIC platform analyzes the DNA methylation status of up to 863,904 233 

CpG loci and 2,932 non-CpG cytosines, spanning gene-associated CpGs as well as a large 234 

number of enhancer/regulatory CpGs in intergenic regions41. Briefly, DNA was quantified by 235 

Qubit fluorimetry (Life Technologies) and 500ng of DNA from each sample was bisulfite-236 

converted using the Zymo EZ DNA Methylation Kit (Zymo Research, Irvine, CA USA) 237 
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following the manufacturer’s protocol using the specified modifications for the Illumina 238 

Infinium Methylation Assay. After conversion, all bisulfite reactions were cleaned using the 239 

Zymo-Spin binding columns, and eluted in Tris buffer. Following elution, BS converted DNA 240 

was processed through the EPIC array protocol. For FFPE samples, the entire BS converted 241 

eluate was used as input for the Infinium HD FFPE DNA Restore kit, and processed through the 242 

separate restoration workflow. To perform the assay, converted DNA was denatured with NaOH, 243 

amplified, and hybridized to the EPIC bead chip. An extension reaction was performed using 244 

fluorophore-labeled nucleotides per the manufacturer’s protocol.  245 

 246 

DNA methylation data packages 247 

DNA methylation data were packaged into four levels as follows. 248 

LEVEL 1: Level 1 data contain raw IDAT files (two per sample with the extensions _Grn.idat 249 

and _Red.idat for the two color channels) as produced by the Illumina iScan system. The 250 

mapping between IDAT file names and AURORA sample barcodes is provided in 251 

Sample.mapping.tsv. 252 

LEVEL 2: Level 2 data contain the signal intensities corresponding to methylated (M) and 253 

unmethylated (U) alleles and detection P-values for each probe as extracted by the readIDATpair 254 

function in the R package SeSAMe (https://github.com/zwdzwd/sesame) from the IDAT files. 255 

The P-values are calculated using pOOBAH (P-value with Out-Of-Band probes for Array 256 

Hybridization), which is based on empirical cumulative distribution function of the out-of-band 257 

signal from all Type-I probes42. 258 

LEVEL 3:  Level 3 data contain β values defined as SM /(SM+SU) for each locus calculated using 259 

the R package SeSAMe, where SM and SU represent signal intensities for methylated and 260 

unmethylated allele. The raw signal intensities are first processed with background correction 261 

and dye-bias correction. The background correction is based on the noob method43. The dye-bias 262 

is corrected using non-linear quantile interpolation-based method using the 263 

dyeBiasCorrTypeINorm function42. β values are then computed using the getBetas function. 264 

Probes with a detection P-value greater than 0.05 in a given sample are masked as NA. Whether 265 

the probe is masked due to detection failure is recorded in an extra column 266 

(Masked_by_Detection_P_value) to distinguish from experiment-independent masking of probes 267 
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(N=105,454) subject to cross-hybridization and genetic polymorphism. The experiment-268 

independent masking is based on the MASK_general column of the file named 269 

EPIC.hg38.manifest.tsv (release 20180909) downloaded from 270 

http://zwdzwd.github.io/InfiniumAnnotation41. From the same source, an additional file 271 

(EPIC.hg38.manifest.gencode.v22.tsv) is also included to provide detailed annotation of 272 

transcription association for each probe.  273 

LEVEL 4: Level 4 data contain merged data matrix with β values across all samples. Probes 274 

masked as NA concerning the probe design in Level 3 data are removed. Sixteen FFPE samples 275 

that initially yielded low-quality data were rerun. The resulting two data sets values were merged 276 

probe-wise by taking the mean β value. If data was masked in one of the runs, we took available 277 

data from the other run. 278 

Nomenclature for control samples: 279 

We include several cell line control samples in each batch to allow for the evaluation of potential 280 

batch effects and to facilitate correction of observed batch effects. 281 

Control sample IDs that start with “VARI-Control-” can be interpreted as follows: 282 

VARI-Control-[Batch number]-[Cell line name)-(DNA Isolate ID (A,B,..)]-[Assay Technical 283 

Replicate (1,2,3...sequential across batches for the same DNA Isolate)]. 284 

 285 

External DNA methylation data sets 286 

We processed additional normal tissue DNA methylation data from ENCODE44 and GEO45. We 287 

collected raw IDAT files for 24 samples from seven tissue types, including adrenal gland (n=5), 288 

liver (n=1), lung (n=4), ovary (n=2), skin (n=4), blood (n=6), and brain (n=2), that were 289 

frequently represented as a site of metastasis. We generated β values using the R package 290 

SeSAMe as described above for the AURORA samples. Further information on these data sets is 291 

provided in Supplementary table 4. 292 

 293 

Global DNA hypermethylation analysis 294 

To examine cancer-associated DNA hypermethylation profiles, we first used DNA methylation 295 

data from normal tissues to eliminate CpG sites that involved in tissue-specific methylation 296 
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(mean β value > 0.2 in any of the eight tissue types). We eliminated additional CpGs that were 297 

significantly differentially methylated between FF and FFPE samples (t-test FDR-adjusted P-298 

value < 0.01 and absolute mean β-value difference > 0.25). For the heatmap analysis shown in 299 

Fig.1c, we used 5,000 most variably methylated CpGs across tumors. The probes lacked 300 

methylation in the normal tissues (N=146,385) and the subset (N=5,000) used in the heatmap are 301 

listed in Supplementary table 4. 302 

 303 

Distal element DNA hypomethylation associated with metastasis 304 

We identified 152,211 CpGs in dELSs (distal enhancer-like signatures fall more than 2 kb from 305 

the nearest TSS) defined by the ENCODE project46. We then selected 19,607 CpGs that are 306 

constitutively methylated across eight normal tissue types (mean β value > 0.8). Using the 307 

19,607 CpGs sites, we fitted a probe-wise linear mixed-effects model with terms including 308 

primary vs. metastasis, tumor purity, and patient (coded as a random effect) as implemented in 309 

the R package lme447. P-values were estimated based on the Satterthwaite's approximation 310 

method included in the lmerTest package in R47, and adjusted for multiple testing using the 311 

Benjamini–Hochberg approach48. To examine transcription factors that bind to the CpG sites 312 

hypomethylated in metastatic tumors, we analyzed 11,348 ChIP-seq data on 1,359 individual 313 

DNA binding factors curated in the Cistrome Data Browser (DB)49. The statistical significance 314 

of enrichment for transcription factor binding sites among the hypomethylated CpGs was 315 

determined using Fisher’s exact test with 200bp regions centered on the target CpGs using the R 316 

package LOLA50. All CpGs on the array overlapping the dELSs were used as the background set. 317 

P-values were adjusted for multiple comparisons using the Benjamini-Hochberg method. 318 

 319 

Putative ESR1 and FOXA1 Enhancer Target Genes Affected by Metastasis-Associated 320 

DNA Hypomethylation 321 

We identified 47 significantly hypomethylated CpGs overlapping the binding sites for ESR1 or 322 

FOXA1.To investigate putative target genes affected by DNA hypomethylation, we first 323 

collected 4,681 putative targets of either ESR1 or FOXA1 in breast cancers as predicted by 324 

Cistrome Cancer51. We then considered at most ten nearest genes within 1,000kb upstream and 325 

ten nearest genes within 1,000kb downstream from the affected CpG sites, resulting in a list of 326 
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121 potential target genes. Gene Ontology GO terms over-representation analysis was performed 327 

using the enrichGO function with default parameters as implemented in the R package 328 

clusterProfiler 52. 329 

 330 

Identification of DNA hypermethylation associated with metastasis 331 

To identify CpG sites hypermethylated in metastatic tumors compared to primary tumors, we 332 

used the 146,385 probes unmethylated in normal tissues defined above. We fitted a probe-wise 333 

linear mixed-effects model with terms including primary vs. metastasis, tumor purity, and patient 334 

(coded as a random effect) as implemented in the R package lme47. P-values were estimated 335 

based on the Satterthwaite's approximation method included in the lmerTest package8 in R and 336 

adjusted for multiple testing using the Benjamini–Hochberg approach40. 337 

CpG target analysis 338 

Probes located in the PcG target sites (Fig.5e, j, and o) were determined using H3K27me3 ChIP-339 

seq peaks on the H1 embryonic stem cells generated by the NIH Roadmap Epigenomics 340 

Consortium53. The broad peaks were downloaded using the R package AnnotaitonHub (ID: 341 

AH28888). 342 

 343 

TCGA DNA methylation data 344 

We analyzed the breast cancer dataset from The Cancer Genome Atlas (TCGA) project, 345 

including 761 primary tumors and 74 adjacent non-malignant tissues profiled using the Infinium 346 

HumanMethylation450 (HM450) array. IDAT files were downloaded from the NCI Genomic 347 

Data Commons (GDC) Legacy Archive (https://portal.gdc.cancer.gov/legacy-archive)54, and 348 

processed using openSeSAMe pipeline implemented in the R package SeSAMe42. 349 

 350 

DNA sequencing of tumor and normals 351 

Due to variable DNA quality, ranging from high (>2 kb; 131 samples) to medium (0.5-2 kb; 18 352 

samples) and low (<0.5 kb; 44 samples), the 193 AURORA samples were binned into three 353 

different batches. For each batch, library construction used the NEBNext UltraII FS DNA 354 

Library Prep kit (New England Biolabs, Ipswich, MA) with a 15-minute enzymatic 355 

fragmentation. Each library received a unique dual-indexed adapter (Integrated DNA 356 

https://portal.gdc.cancer.gov/legacy-archive
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Technologies, Coralville IA) allowing for both low pass whole genome sequencing (WGS) and 357 

multiplex hybrid capture enrichment. Libraries were pooled at 2-4µL, based on final library 358 

quality and yield. To evaluate library representation dues to variable DNA quality, we performed 359 

survey WGS sequencing for proper library balancing. The pooled libraries were concentrated 360 

and diluted to 2.25nM for survey sequencing on the NovaSeq 6000. 361 

 362 

Exome hybrid capture utilized the IDT xGen Exome Research Panel v1.0 enhanced with the 363 

xGenCNV Backbone Panel-Tech Access (Integrated DNA Technologies, Coralville, IA). The 364 

remaining pooled libraries were hybridized to this probe set according to the manufacturer’s 365 

protocol. The captured products were eluted following precipitation with streptavidin-labeled 366 

magnetic beads, amplified by PCR and quantitated prior to dilution and preparatory flow cell 367 

amplification for Illumina sequencing. Illumina paired-end sequencing (recipe: 151x17x8x151) 368 

performed on the NovaSeq 6000 using the S4 flow cell configuration. For WGS, we targeted 5X 369 

coverage, and for WES we aimed for an average unique, on-target sequencing coverage depth of 370 

500X for the tumor and 250X for the matched normal tissue.  371 

 372 

Churchill Secondary Analysis for DNA sequencing 373 

The NCH-developed Churchill secondary-analysis pipeline55 was used to process paired-end 374 

read data for all samples, utilizing attached UMIs. Reads were aligned to reference genome 375 

GRCh38.d1.vd1 via bwa-mem, with the resulting alignment deduplicated using GATK’s (Picard) 376 

MarkDuplicates and base scores recalibrated using GATK’s BaseRecalibrator and ApplyBQSR. 377 

Variant-calling was then performed on the final deduplicated, recalibrated BAMs. Germline 378 

variants were called using GATK’s HaplotypeCaller; somatic variants were called using 379 

GATK’s Mutect2, with the paired normal samples used to exclude germline variants, and 380 

somatic variant filters from Mutect2 were applied. Additionally, somatic variants from FFPE 381 

sources were using corrected variant allele frequency, read start diversity, and unique read ends 382 

as indicators of preservation-sourced artifacts. Descriptions of the specific filters can be found 383 

below. All SNVs and INDELs were annotated via SnpEff, using the GDC.h38 GENCODE v22 384 

database56. To ensure samples were of usable quality, depth and breadth metrics were generated 385 

by mosdepth57, oxidation and insert size metrics were generated by GATK’s 386 
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CollectOxoGMetrics and CollectMultipleMetrics tools, and sequence-usability (duplicate, 387 

softclipping, mapq0, unaligned) metrics were generated via samtools58 and custom scripts. 388 

 389 

FFPE Filtering 390 

FFPE_filter_LMR_VAF_0.04 391 

Local Mismatch Rate Corrected Variant Allele Frequency below 4%. The local mismatch rate of 392 

a variant is the number of mismatched bases in all reads aligned within a 10 bp window each side 393 

of the position divided by the total number of bases aligned in this region. This value (LMR) is 394 

subtracted from the VAF and if the result is below 4% the variant will be filtered. 395 

FFPE_filter_RSD 396 

Read start diversity filter. The number of unique start positions of all variant supporting reads are 397 

counted (after soft trimming). For variants with over 15 supporting reads, at least 4 unique 398 

starting positions are required to pass this filter. For variants with over 5 supporting reads, at 399 

least 2 unique starting positions are required. 400 

FFPE_filter_URE 401 

Unique Nearest Read End filter. For all variant supporting reads, either the start position or the 402 

end position, whichever is closest to the variant (after soft trimming) is recorded. For variants 403 

with over 15 supporting reads, at least 4 unique positions are required to pass this filter. For 404 

variants with over 5 supporting reads, at least 2 unique positions are required. 405 

 406 

CNV/LOH 407 

Copy-number changes and loss-of-heterozygosity events in WGS samples were detected using 408 

GATK’s GermlineCNVCaller59, with the Churchill pipeline’s final BAM alignments as input. 409 

Intervals of 1000 bp were used to bin only SNVs found in gnomAD at a frequency of 0.01% or 410 

greater. Germline CNV events were identified by comparing individual normal samples to a 411 

panel-of-normals composed of all other germline normal samples. Somatic CNV events were 412 

identified by comparing each somatic sample for a case to that case’s paired germline normal. 413 

Following this, CNV events were annotated with the symbols of genes they affected, producing 414 

gene-specific copy-ratios. 415 

Additionally, copy number derived from the raw denoised copy ratio signal were produced and 416 

plotted across the HLA locus chr6:28,510,120-33,480,577. A smoothing factor was applied by 417 
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reducing the number of regions into bins by 50-fold and calculating the mean log2 value for each 418 

bin. HLA-A/B/C/DRB5 genes were specifically noted for overlap with prominent deletions in 419 

the region. 420 

 421 

Clonality and Tumor Purity  422 

Clonal variation within and among tumor samples was assessed using superFreq60. Output BAM 423 

alignments from the Churchill pipeline were filtered down to only unique reads overlapping a 424 

probe-targeted region. The filtered alignments were then re-genotyped, using Varscan261 to 425 

identify the presence or absence of each of a case’s variants in each of its samples. With these 426 

inputs, superFreq assesses likely copy-number and loss-of-heterozygosity events in combination 427 

with SNV and indels to generate the most likely substructure of clones for each sample. The 428 

percent composition of tumor cells of all clones was totaled to determine the cellularity of each 429 

sample. For each clone, variants in ClinVar- and COSMIC-listed genes are highlighted, as well 430 

as mutations of likely-damaging types (frameshift and nonsense); these variants were then 431 

queried in the VarSome database, with ‘Pathogenic’ and ‘Likely Pathogenic’ variants being 432 

considered as potentially consequential clonal variation. Finally, to assess the relationship 433 

between clonal diversification patterns and medically-relevant disease characteristics, population 434 

genetics and ecological diversity metrics (Fst62 and Shannon’s H63, respectively) were calculated 435 

from clone data via custom scripts. 436 

 437 

Neoantigen Prediction 438 

Somatic variants from samples where both DNA and RNA sequencing data were available were 439 

evaluated as potential neotantigens using pVACseq, part of the pVACtools package64.  SNVs 440 

and INDELs, after Mutect2 and FFPE filtering when appropriate, were combined with gene 441 

expression data to identify and prioritize tumor-specific neoepitopes that are both expressed and 442 

has a significantly increased binding affinity compared to the wild-type epitope in the context of 443 

the subject’s HLA class I alleles.  pVACseq’s recommended settings and parameters were used 444 

for all neoantigen predictions within this cohort. 445 

 446 
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Resources Table 447 

Resource / Deposited data Source Identifier 

AURORA dbGAP 
Submission in 

progress 

TCGA-BRCA mRNA-seq data 

Broad 

GDAC 

Firehose; 

dbGAP 

https://gdac.broadinstit

ute.org/runs/stddata__l

atest/data/BRCA/2016

0128/; 

dbGaP accession 

phs000178 

TCGA-BRCA DNA methylation data NCI GDC  
https://portal.gdc.canc

er.gov/legacy-archive  

UNC Tumor donation program (RAP and 9830) dbGAP phs002429 

GEICAM/2009-03 ConvertHER trial (GEICAM cohort) 
dbGAP; 

GEO 

phs001866; 

GSE147322 

 448 

  449 

https://portal.gdc.cancer.gov/legacy-archive
https://portal.gdc.cancer.gov/legacy-archive
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