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Section S1: Dielectric function and optical conductivity of ZrSiS and ZrSiSe
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Figure S1. (Left) Real part of the dielectric function of ZrSiS (dashed lines) and ZrSiSe (solid line). The
gray-shaded region indicates the frequency range where ZrSiS is hyperbolic. (Right) ab-plane optical
conductivities of ZrSiSe at 300 K and 5 K. Solid and dotted lines represent the real and imaginary parts of
o(w) = a1 + io,, respectively.

The ab-plane complex optical conductivity (c(w) = g, + iag,) of bulk ZrSiSe is obtained using
broadband reflectance spectra combined with spectroscopic ellipsometry?. To study the
hyperbolicity the c-axis dielectric response is also important. While an optically flat ac-surface is
not attainable in ZrSiSe, measurements on the large and flat ac-surface of a closely related ZrSiS
compound indeed reveal a much lower plasma frequency along the c-axis (Fig. S1, black dashed
line), consistent with recent report?. Given the similar ab-plane optical responses of ZrSiS® and
ZrSiSel, their hyperbolic frequency regions are presumed to be closely matched as well.

As mentioned in the main text, the unique nodal-line structure of ZrSiSe offers an effective
approach to reducing the electronic loss associated with interband optical transitions. More
specifically, in Fig. S2a, numerous “nodal-points™ exist (red-shaded plane) for two-dimensional
(2D) cuts away from the vertical nodal-lines (gray-shaded plane). For flat nodal-lines (Fig. S2b),
the real optical conductivity follows a frequency-independent power law o; ~const. across a
large frequency spectrum®3-, resulting from its linear-in-frequency joint density of states
(JDOS). However, the 2D planes away from vertical nodal-lines support van Hove singularities
between the nodal-points, as shown schematically in Fig. S2c. The van Hove singularities then
imply that the JDOS will stop increasing above the van Hove energy A" and the corresponding o;

will decrease!®, as illustrated in Fig. S2d.

Although van Hove singularities appear in many electronic systems (e.g., Weyl semimetals), the
impact on the optical conductivity of 3D systems rarely leads to a minimum, due to the large



JDOS. For a pair of Weyl nodes shown in Fig. S2e, the JDOS scales with frequency as w? and
correspondingly, o; (w) « JDOS/w = w. As a result, the van Hove singularity only changes the
slope of the linear scaling of o, in a Weyl semimetal®’.
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Figure S2. a. Schematic of cage-like nodal lines (red) in the Brillouin zone of ZrSiSe. b. Energy (E)
versus momentum (k,.,, and k) dispersion along a vertical nodal-line shown in panel a (grey-shaded
region). For an energy flat nodal-line (red), the Fermi velocity along the line direction is zero (v, = 0)
while the Fermi velocity perpendicular to the lines (vy,) remains large. c. E versus k., and k, dispersion
away from vertical nodal-lines (the red-shaded plane in a). Interband optical transitions are strongly
suppressed above the VVan Hove singularities (black arrow) at energy A’. d. Schematic of the real part

o1 (w) of the optical conductivity of ZrSiSe, where the frequency-independent behavior terminates at

A’ ~ 0.4 eV and reaches a local minimum around 0.77 eV (= 6250 cm™1). e. Schematic of o, (w) for a
pair of three-dimensional (3D) Wey! points also exhibiting Van Hove singularity (inset). Above the
singularity energy, the linear increase of a; (w) persists with a reduced slope.



Section S2: Additional near-field imaging data and fitting
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Figure S3. Topography and frequency-dependent near-field scattering amplitude data (S3) of the 26 nm
ZrSiSe sample (right) on a gold disk antenna. Scale bars in all panels are 300 nm. Red dashed lines
indicate the sector region used to average the line profiles of S5 along the perimeter of the disk antenna
and are kept the same for all frequencies.

In Fig. S3 we show the full frequency dependence of the antenna launching experimental data in
the hyperbolic regime. Since the diameter of the Au disk antenna (2 um) is comparable to the
laser wavelength (1.3 — 1.8 um), the near-field signal exhibits diffraction patterns inside the Au
antenna, as shown in the main text. On the other hand, the ZrSiSe region covering the Au
antenna shows an enhancement in near-field amplitude and a gradual increase in the “double-
ring” separation. This separation reaches a maximum at w = 5556 cm™?! and the length scale
(=190 nm) is an order of magnitude smaller than the laser wavelength (A = 1.8 pm).

To quantify the double-ring separations, we fitted the line profiles of S; with Gaussian functions
and a linear background, as shown in Fig. S4. Together with the slope correction discussed in the
Methods section of the main text, we extracted the frequency-dependent peak separation §(w),
as shown in Fig. S5. The out-of-plane (c-axis) dielectric constant of ZrSiSe is then obtained
using the experimental ab-plane dielectric constant and & (), according to \/e, = i\/eq(2d/6),
where d is the thickness of the ZrSiSe crystal.

The extracted c-axis dielectric functions of ZrSiSe are modeled with Drude-Lorentzian
oscillators accounting for both the intraband and the interband contributions: e.(w) = &, +



2

Y ZL Here &, is the high-frequency dielectric constant, w, ;, a)f,‘j and y; are the

(uo,j—wz—iij
center frequency, oscillator strength, and scattering rate of the j-th oscillator, respectively. The
model (red line in Fig. S5) agrees well with the experimental data and the fitting parameters are
listed in Table. S1.
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Figure S4. Frequency-dependent line profiles in the sample region from Fig.S3 are shown as blue dots.
The extracted line profiles are fitted with two Gaussian profiles (green and yellow dotted lines) and linear
backgrounds (gray solid lines). Black dashed lines are the sum of the Gaussians and the background,
showing good agreement with the experiment.
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Figure S5. (Left) Experimental peak separation & (w) obtained from the fitting in Fig. S4 and the slope
correction discussed in the main text. (Right) Drude-Lorentz model fitting of the c-axis dielectric function
data (black dots), obtained through the antenna launching experiment.



j wg,; (cm™1) wpj (em™) yj (em™)
1 0 5127.2 400.0
2 6291.3 2057.4 715.2
3 7367.8 2242.8 1055.3

Table S1. Parameters for the Drude-Lorentz model fitting of the experimental out-of-plane dielectric
function of ZrSiSe using e, (w) = € + X j w3 i/(w§ ; — w? — iy;w). Here, £,,=2.96 is the high
frequency dielectric constant.

In Fig. S6 — Fig. S8, we show the gold disk antenna launching experiment with ZrSiSe crystals
of varying thicknesses on top. Additional data with ZrSiSe crystals of thickness 25 nm and 40
nm are also shown as Extended Data Fig.3 and Extended Data Fig.4 in the main text,
respectively.

In Fig. S9, we show the complete frequency-dependent near-field phase data (¢,) for the 20 nm
thin ZrSiSe crystal on the SiO2/Si substrate. Dashed lines indicate the paths along which we
extract the line profiles, shown in Fig. S10.
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Figure S6. Topography and the corresponding near-field amplitude data (S;) at (a, b) w = 7143 cm™?
and (d, e) w = 6061 cm™1 for the 36 nm thick ZrSiSe crystal on a Au antenna. Inset in panel d is the
topography line profile along the orange dashed line. The extracted near-field amplitude line profiles on
the sample along the perimeter of the antenna are shown for 7143 cm™! and 6061 cm™t in c and f,
respectively. The line profiles are fitted with Gaussian functions (green and yellow dotted lines) and a
linear background (grey dotted line). Scale bars in panels a-d are 500 nm.
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Figure S9. Frequency-dependent (w = 8333 — 5000 cm™1) near-field phase (¢,) for the 20 nm ZrSiSe
on SiO-/Si. Scale bars are 500 nm.
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Figure S10. (Left) Line profiles of near-field phase (¢,) along the black dashed lines in Fig. S9 for the 20
nm ZrSiSe on SiO,/Si. (Right) Simulation of the phase line profiles at corresponding frequencies using
the same parameters as for the simulation shown in the main text (Fig. 3).



Section S3: Modeling the near-field signal near antenna edges

To model the spatial profile of the signal near the edge of the gold disk, we develop an
approximate solution for the scattered field created by a conducting disk, including the effects of
diffraction. The basis of this approximation is Sommerfeld’s solution to the famous problem of
diffraction by a perfectly conducting screen®. Below, we review this solution and use it to
construct an approximate solution for a metallic disk covered by a thin optically hyperbolic film.

Consider first a wave, incident at an angle a with respect to the plane with no component parallel
to the edge of the conducting screen (8 = 0), which we denote as the y-direction (Fig. S11 left).
For concreteness, we first consider the case of a magnetic field H = H, y, where the scattered
magnetic field has only one component along the y-direction, H,, = U*(x, z). The scattered
magnetic field can be expressed through Fresnel diffraction integrals F(z):

ikzsina+im/4

Vi

e—ikz sina+im/4

Ut(x, 2 k) = Uy(x) v

(F(m) + F(n_)> —isin(kzsina) | (1)

where F(z) = foze—ikzdk', n+ = V2kr cos d’%“, and Uy (x) = Eje**cose Here k is the free-space

photon wavevector, and (r, ¢) represents polar coordinates in the xz-plane with tan¢ = z/x

and r = Vx? + z2. For the other, orthogonal polarization with the incident electric field E =
E, ¥, one obtains the second solution for E;, = U'(x, z):

Ul(x,z; k) = Uy(x)

eikzsina+i1t/4 e—ikzsina+in/4
——\(FO1 ) ———F——
Vr * v

F(n_)> — cos(kzsina) (2)

Y z

Figure S11. A schematic illustrating different choices of coordinate systems used in the expressions for
the scattered fields. The shaded region represents the conducting screen creating the diffraction pattern,
with the screen running parallel to the y-axis.



An arbitrary incidence angle relative to the edge can be accomplished by introducing an angle g,
understood as a latitude relative to the y-axis, shown in Fig. S11. The angles «, § are related to
the incidence angles 6, ¢ of a spherical polar coordinate system by the relations:

cosacosff = cosysinf
sinff = siny sinf
sina cosf§ = cos @

The z-component of the scattered electric field for an incident p-polarized light can then be
decomposed into the polarizations of the fundamental solutions U+, U"14, yielding:
isinf 0

- (U” (x,z; k cos ﬁ))] (3)

The coefficients A, B arise from the decomposition of the polarization of the incident wave into
components parallel and perpendicular to the edge of the screen and depend only on the polar
and in-plane incidence angles «, 8. We can then construct an approximate solution for a disk by
solving for several angles y and plotting the diffraction pattern produced for each angle, with the
out-of-plane component E,, plotted in Fig. S12a at a frequency of w = 6600 cm™1.

o i 0
ESe(x,y,z; k) = ethysinB [A e (U+(x,z;kcos B)) + B
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Figure S12. Absolute value of the z-component of the scattered field E,, at a height of 25 nm above the
disk, obtained using the approximate model (a) and the numerical solution (b). The direction of the
incident field is highlighted by the red arrow in both panels.

To check the validity of this approximation, we used the COMSOL package to simulate the
scattered field distribution produced by a plane wave whose magnetic field was polarized
parallel to the disk. This numerical approach was necessitated by the large free-space
wavelength, which is comparable to the size of the metallic disk, invalidating the quasistatic
approximation typically used in the modeling of the SNOM signal. The disk was included by
implementing a perfectly conducting boundary condition on the surface of the disk inside of a
physical domain of dimension 4 um x 4 um X 2 um padded with perfectly matched layers of



thickness 500 nm at each edge of the domain. A scattering boundary condition was implemented
at the edge of the physical domain, and only the scattered field was extracted. The result of this
simulation is plotted in Fig. S12b. The agreement between the approximation and the numerical
solution is expected to hold only near the edge of the disk, which contains the crucial feature,
namely a divergence of the field due to a sharp edge. The angular intensity distribution around
the circumference of the disk is also captured by the approximate model, which can then be
modified to account for the effect of the hyperbolic medium.

The introduction of the sample will bring with it the hyperbolic modes and modify the scattered
field. The multiple branches of the polariton dispersion observed are derived by computing the
poles in the reflection coefficient 7,,(q, w) in the absence of losses. In a realistic system with
finite loss, the dispersion is instead dictated by the maxima in Im 7,,(q, w). We consider a three-
layer system consisting of vacuum, sample and substrate, labeled as medium 0, 1 and 2,
respectively. The divergence of 7,,(q, w) happens at a discrete set of values satisfying the
condition:

2rl + o1 + Y = 2kid (4)

for a medium of thickness d. The phase shifts ¥,,, ¥, can be expressed in terms of reflection
coefficients at the top and bottom interfaces, ry; = e'¥o1 and r,; = e¥21 | respectively. The
reflection coefficients r;; at the interfaces are given by:

g [k — e [kf

") = L e E ke

(5)

where the z-component of the wavevector k7 of a p-polarized light in each medium is given by:

KE(q) = f —q—z Im k7 > 0 ()

In the hyperbolic regime (g > w/c), k% is predominantly real, so the solutions of Eqn. (4) are
not confined to a surface but can exist within the bulk of the sample. A closed-form solution for
the dispersion can only be obtained within the quasistatic approximation (c — ). In that case,
the reflection coefficients of Eqn. (5) become independent of g and reduce to:

G-
ST

The original transcendental equation Egn. (4) reduces to a linear equation for the dispersion of
each mode q;. In the particular case of launching by a conducting metallic edge, the observed
fringes in real space can be understood as a beating between the various modes g; in momentum
space?, giving a fringe spacing of:

(7)



(8)

with the last equality holding in the quasistatic limit.

w=7634cm™! w=6667cm™?! w=5556cm™?!

Figure S13. Simulated near-field amplitude of ZrSiSe (26.5 nm) on a gold disk (25 nm) obtained from
the approximate model at w = 7634 cm™1,6667 cm™1,5556 cm™1. The edge of the gold disk is shown
by the white dashed line and the direction of the field is indicated by the red arrow.

Having previously obtained a solution for the field created in vacuum by a screen, this
expression can be used as a building block to construct an approximate solution to the field
produced by the system of the disk, sample, and substrate. Since the polariton wavelength (4,) is
an order of magnitude smaller than the free-space photon wavelength 4,, near the edge we
expect a quasistatic approximation to be valid, permitting the use of an image method to
introduce a sample®. Using the field from Eqn. (3), we introduce an equidistant series of images,
as in the solution for the static field of a dielectric film between two media. We take the
infinitely thin disk as the source of this static field, situated at the interface of media 1 and 2, that
is, below the ZrSiSe layer. For an optically anisotropic material, the thickness of the film is
further modified by the ratio of in-plane and z-axis dielectric function: Vet /v/€Z. The scattered
near-field signal (S) can be approximated as the z-components of the field E; obtained from the
diffraction problem and the reflection coefficients g;; from Eqn. (7):

C Vet
S(x,y,2) = (1= Bo)E;*(x,y,z + h) + B21(1 + Bo1) z BB EZ* (x, y,(2n + 1)d\/_g—z + h) 9
a €

n=1

To include the effects of demodulation, we compute the field at a discrete set of points above the
sample:

h(t) = hy + Ah(1 — cos nQt) (10)



to obtain the complex signal §;, = S,e*®n. Here Q is the tip-tapping frequency and we used
tapping amplitude Ah = 50 nm and minimum position hy = 5 nm. The demodulated scattering
amplitudes (n = 3) computed as a few different frequencies are shown in Fig. S13.

Section S4: Electronic structure calculations of ZrSiSe

The electronic structure of the system was investigated with density functional theory (DFT).
DFT calculations were carried out at the level of DFT plus onsite Hubbard U and intersite V
(DFT+U+V)™, as implemented in the Octopus code'?, which delivers an hybrid-like quality of
the band structure at a fraction of the computational cost'?. Experimental lattice constants of a =
3.623 A and ¢ = 8.365 A were employed. For the slab configuration, containing 5 layers of
ZrSiSe, a 16 A vacuum region was chosen to properly converge the bands along the non-periodic
dimension z. The ground state was calculated by discretizing the equations in real-space with a
spacing of 0.159 A and spin-orbit coupling was fully accounted for valence electrons while core
electrons were treated with relativistic HGH pseudopotentials'®. The Brillouin zone was sampled
with a 16x16x8 Monkhorst-Pack grid for the bulk and a 15x15 grid for the slab geometries.
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