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Section S1: Dielectric function and optical conductivity of ZrSiS and ZrSiSe 

 

Figure S1. (Left) Real part of the dielectric function of ZrSiS (dashed lines) and ZrSiSe (solid line). The 

gray-shaded region indicates the frequency range where ZrSiS is hyperbolic. (Right) ab-plane optical 

conductivities of ZrSiSe at 300 K and 5 K. Solid and dotted lines represent the real and imaginary parts of 

𝜎(𝜔) = 𝜎1 + 𝑖𝜎2, respectively. 

The ab-plane complex optical conductivity (𝜎(𝜔) = 𝜎1 + 𝑖𝜎2) of bulk ZrSiSe is obtained using 

broadband reflectance spectra combined with spectroscopic ellipsometry1. To study the 

hyperbolicity the c-axis dielectric response is also important. While an optically flat ac-surface is 

not attainable in ZrSiSe, measurements on the large and flat ac-surface of a closely related ZrSiS 

compound indeed reveal a much lower plasma frequency along the c-axis (Fig. S1, black dashed 

line), consistent with recent report2. Given the similar ab-plane optical responses of ZrSiS3 and 

ZrSiSe1, their hyperbolic frequency regions are presumed to be closely matched as well. 

As mentioned in the main text, the unique nodal-line structure of ZrSiSe offers an effective 

approach to reducing the electronic loss associated with interband optical transitions. More 

specifically, in Fig. S2a, numerous “nodal-points" exist (red-shaded plane) for two-dimensional 

(2D) cuts away from the vertical nodal-lines (gray-shaded plane). For flat nodal-lines (Fig. S2b), 

the real optical conductivity follows a frequency-independent power law 𝜎1 ∼const. across a 

large frequency spectrum1,3–5, resulting from its linear-in-frequency joint density of states 

(JDOS). However, the 2D planes away from vertical nodal-lines support van Hove singularities 

between the nodal-points, as shown schematically in Fig. S2c. The van Hove singularities then 

imply that the JDOS will stop increasing above the van Hove energy Δ′ and the corresponding 𝜎1 

will decrease1,5, as illustrated in Fig. S2d.  

Although van Hove singularities appear in many electronic systems (e.g., Weyl semimetals), the 

impact on the optical conductivity of 3D systems rarely leads to a minimum, due to the large 



JDOS. For a pair of Weyl nodes shown in Fig. S2e, the JDOS scales with frequency as 𝜔2 and 

correspondingly, 𝜎1(𝜔) ∝ JDOS/𝜔 = 𝜔. As a result, the van Hove singularity only changes the 

slope of the linear scaling of 𝜎1 in a Weyl semimetal6,7. 

 

Figure S2. a. Schematic of cage-like nodal lines (red) in the Brillouin zone of ZrSiSe. b. Energy (E) 

versus momentum (𝑘𝑥𝑦 and 𝑘𝑧) dispersion along a vertical nodal-line shown in panel a (grey-shaded 

region). For an energy flat nodal-line (red), the Fermi velocity along the line direction is zero (𝑣𝑧 = 0) 

while the Fermi velocity perpendicular to the lines (𝑣𝑥𝑦) remains large. c. E versus 𝑘𝑥𝑦 and 𝑘𝑧 dispersion 

away from vertical nodal-lines (the red-shaded plane in a). Interband optical transitions are strongly 

suppressed above the Van Hove singularities (black arrow) at energy Δ′. d. Schematic of the real part 

𝜎1(𝜔) of the optical conductivity of ZrSiSe, where the frequency-independent behavior terminates at 

Δ′ ≈ 0.4 eV and reaches a local minimum around 0.77 eV (≈ 6250 𝑐𝑚−1). e. Schematic of 𝜎1(𝜔) for a 

pair of three-dimensional (3D) Weyl points also exhibiting Van Hove singularity (inset). Above the 

singularity energy, the linear increase of 𝜎1(𝜔) persists with a reduced slope. 

 

 

 

 



Section S2: Additional near-field imaging data and fitting 

 

Figure S3. Topography and frequency-dependent near-field scattering amplitude data (𝑆3) of the 26 nm 

ZrSiSe sample (right) on a gold disk antenna. Scale bars in all panels are 300 nm. Red dashed lines 

indicate the sector region used to average the line profiles of 𝑆3 along the perimeter of the disk antenna 

and are kept the same for all frequencies. 

 

In Fig. S3 we show the full frequency dependence of the antenna launching experimental data in 

the hyperbolic regime. Since the diameter of the Au disk antenna (2 μm) is comparable to the 

laser wavelength (1.3 − 1.8 μm), the near-field signal exhibits diffraction patterns inside the Au 

antenna, as shown in the main text. On the other hand, the ZrSiSe region covering the Au 

antenna shows an enhancement in near-field amplitude and a gradual increase in the “double-

ring” separation. This separation reaches a maximum at ω = 5556 cm−1 and the length scale 

(≈190 nm) is an order of magnitude smaller than the laser wavelength (λ = 1.8 μm). 

To quantify the double-ring separations, we fitted the line profiles of 𝑆3 with Gaussian functions 

and a linear background, as shown in Fig. S4. Together with the slope correction discussed in the 

Methods section of the main text, we extracted the frequency-dependent peak separation 𝛿(𝜔), 

as shown in Fig. S5. The out-of-plane (c-axis) dielectric constant of ZrSiSe is then obtained 

using the experimental ab-plane dielectric constant and 𝛿(𝜔), according to √𝜀𝑐 = 𝑖√𝜀𝑎𝑏(2𝑑/𝛿), 

where d is the thickness of the ZrSiSe crystal.  

The extracted c-axis dielectric functions of ZrSiSe are modeled with Drude-Lorentzian 

oscillators accounting for both the intraband and the interband contributions: 𝜀𝑐(𝜔) = 𝜀∞ +



∑
𝜔𝑝,𝑗

2

𝜔0,𝑗
2 −𝜔2−𝑖𝛾𝑗𝜔𝑗 . Here 𝜀∞ is the high-frequency dielectric constant, 𝜔0,𝑗, 𝜔𝑝,𝑗

2  and 𝛾𝑗 are the 

center frequency, oscillator strength, and scattering rate of the j-th oscillator, respectively. The 

model (red line in Fig. S5) agrees well with the experimental data and the fitting parameters are 

listed in Table. S1. 

 

Figure S4. Frequency-dependent line profiles in the sample region from Fig.S3 are shown as blue dots. 

The extracted line profiles are fitted with two Gaussian profiles (green and yellow dotted lines) and linear 

backgrounds (gray solid lines). Black dashed lines are the sum of the Gaussians and the background, 

showing good agreement with the experiment. 

 

Figure S5. (Left) Experimental peak separation 𝛿(𝜔) obtained from the fitting in Fig. S4 and the slope 

correction discussed in the main text. (Right) Drude-Lorentz model fitting of the c-axis dielectric function 

data (black dots), obtained through the antenna launching experiment. 



j 𝜔0,𝑗 (𝑐𝑚−1) 𝜔𝑝,𝑗 (𝑐𝑚−1) 𝛾𝑗  (𝑐𝑚−1) 

1 0 5127.2 400.0 

2 6291.3 2057.4 715.2 

3 7367.8 2242.8 1055.3 

Table S1. Parameters for the Drude-Lorentz model fitting of the experimental out-of-plane dielectric 

function of ZrSiSe using 𝜀𝑐(𝜔) = 𝜀∞ + ∑ 𝜔𝑝,𝑗
2

𝑗 /(𝜔0,𝑗
2 − 𝜔2 − 𝑖𝛾𝑗𝜔). Here, 𝜀∞=2.96 is the high 

frequency dielectric constant. 

In Fig. S6 – Fig. S8, we show the gold disk antenna launching experiment with ZrSiSe crystals 

of varying thicknesses on top. Additional data with ZrSiSe crystals of thickness 25 nm and 40 

nm are also shown as Extended Data Fig.3 and Extended Data Fig.4 in the main text, 

respectively. 

In Fig. S9, we show the complete frequency-dependent near-field phase data (𝜙4) for the 20 nm 

thin ZrSiSe crystal on the SiO2/Si substrate. Dashed lines indicate the paths along which we 

extract the line profiles, shown in Fig. S10. 

 

Figure S6. Topography and the corresponding near-field amplitude data (𝑆3) at (a, b) 𝜔 = 7143 𝑐𝑚−1 

and (d, e) 𝜔 = 6061 𝑐𝑚−1 for the 36 nm thick ZrSiSe crystal on a Au antenna. Inset in panel d is the 

topography line profile along the orange dashed line. The extracted near-field amplitude line profiles on 

the sample along the perimeter of the antenna are shown for 7143 𝑐𝑚−1 and 6061 𝑐𝑚−1 in c and f, 

respectively. The line profiles are fitted with Gaussian functions (green and yellow dotted lines) and a 

linear background (grey dotted line). Scale bars in panels a-d are 500 nm. 



Figure S7. Topography 

(bottom) and the near-field 

amplitude data (top) at (a) 

𝜔 = 7143 𝑐𝑚−1 and (b) 𝜔 =

6061 𝑐𝑚−1 for the 28 nm 

thick ZrSiSe crystal on a Au 

antenna. The extracted near-

field amplitude line profiles on 

the sample along the perimeter 

of the antenna are shown for 

7143 𝑐𝑚−1 and 6061 𝑐𝑚−1 

in c and d, respectively. The 

line profiles are fitted with 

Gaussian functions (green and 

yellow dotted lines) and a 

linear background (grey dotted 

line). Scale bars in panels a,b 

are 500 nm.  

 

 

 

 

 

Figure S8. Topography (bottom) 

and the corresponding near-field 

amplitude data (top) at (a) 𝜔 =

7143 𝑐𝑚−1 and (b) 𝜔 =

6061 𝑐𝑚−1 for the 20 nm thick 

ZrSiSe crystal on a Au antenna. 

Inset in panel b is the topography 

line profile along the orange 

dashed line. The extracted near-

field amplitude line profiles on 

the sample along the perimeter of 

the antenna are shown for 

7143 𝑐𝑚−1 and 6061 𝑐𝑚−1 in c 

and d, respectively. The line 

profiles are fitted with Gaussian 

functions (green and yellow 

dotted lines) and a linear 

background (grey dotted line). 

Scale bars in a,b are 500 nm.  



  

Figure S9. Frequency-dependent (𝜔 = 8333 − 5000 𝑐𝑚−1) near-field phase (𝜙4) for the 20 nm ZrSiSe 

on SiO2/Si. Scale bars are 500 nm. 



 

Figure S10. (Left) Line profiles of near-field phase (𝜙4) along the black dashed lines in Fig. S9 for the 20 

nm ZrSiSe on SiO2/Si. (Right) Simulation of the phase line profiles at corresponding frequencies using 

the same parameters as for the simulation shown in the main text (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section S3: Modeling the near-field signal near antenna edges 

To model the spatial profile of the signal near the edge of the gold disk, we develop an 

approximate solution for the scattered field created by a conducting disk, including the effects of 

diffraction. The basis of this approximation is Sommerfeld’s solution to the famous problem of 

diffraction by a perfectly conducting screen8. Below, we review this solution and use it to 

construct an approximate solution for a metallic disk covered by a thin optically hyperbolic film.  

Consider first a wave, incident at an angle 𝛼 with respect to the plane with no component parallel 

to the edge of the conducting screen (𝛽 = 0), which we denote as the y-direction (Fig. S11 left). 

For concreteness, we first consider the case of a magnetic field 𝑯 = 𝐻𝑦𝒚̂, where the scattered 

magnetic field has only one component along the y-direction, 𝐻𝑦 = 𝑈⊥(𝑥, 𝑧). The scattered 

magnetic field can be expressed through Fresnel diffraction integrals 𝐹(𝑧): 

𝑈⊥(𝑥, 𝑧; 𝑘) = 𝑈0(𝑥) (
𝑒𝑖𝑘𝑧 sin 𝛼+𝑖𝜋/4

√𝜋
(𝐹(𝜂+) +

𝑒−𝑖𝑘𝑧 sin 𝛼+𝑖𝜋/4

√𝜋
𝐹(𝜂−)) − 𝑖𝑠𝑖𝑛(𝑘𝑧 sin 𝛼)) (1) 

where 𝐹(𝑧) = ∫ 𝑒−𝑖𝜅2
𝑑𝜅

𝑧

0
, 𝜂± = √2𝑘𝑟 cos

𝜙∓𝛼

2
,  and 𝑈0(𝑥) = 𝐸0𝑒𝑖𝑘𝑥 cos 𝛼. Here k is the free-space 

photon wavevector, and (𝑟, 𝜙) represents polar coordinates in the 𝑥𝑧-plane with tan 𝜙 = 𝑧/𝑥 

and 𝑟 = √𝑥2 + 𝑧2. For the other, orthogonal polarization with the incident electric field 𝑬 =

𝐸𝑦𝒚̂, one obtains the second solution for 𝐸𝑦 = 𝑈∥(𝑥, 𝑧): 

𝑈∥(𝑥, 𝑧; 𝑘) = 𝑈0(𝑥) (
𝑒𝑖𝑘𝑧 sin 𝛼+𝑖𝜋/4

√𝜋
(𝐹(𝜂+) −

𝑒−𝑖𝑘𝑧 sin 𝛼+𝑖𝜋/4

√𝜋
𝐹(𝜂−)) − 𝑐𝑜𝑠(𝑘𝑧 sin 𝛼)) (2) 

 

Figure S11. A schematic illustrating different choices of coordinate systems used in the expressions for 

the scattered fields. The shaded region represents the conducting screen creating the diffraction pattern, 

with the screen running parallel to the y-axis. 



An arbitrary incidence angle relative to the edge can be accomplished by introducing an angle 𝛽, 

understood as a latitude relative to the y-axis, shown in Fig. S11. The angles 𝛼, 𝛽 are related to 

the incidence angles 𝜃, 𝜙 of a spherical polar coordinate system by the relations: 

cos 𝛼 cos 𝛽 = cos 𝜓 sin 𝜃 

sin 𝛽 = sin 𝜓 sin 𝜃 

sin 𝛼 cos 𝛽 = cos 𝜃 

The z-component of the scattered electric field for an incident p-polarized light can then be 

decomposed into the polarizations of the fundamental solutions 𝑈⊥, 𝑈∥14, yielding: 

𝐸𝑧
𝑠𝑐𝑎(𝑥, 𝑦, 𝑧; 𝑘) = 𝑒𝑖𝑘𝑦𝑠𝑖𝑛𝛽 [𝐴

𝑖

𝑘

𝜕

𝜕𝑥
(𝑈⊥(𝑥, 𝑧; 𝑘 cos 𝛽)) + 𝐵

𝑖 sin 𝛽

𝑘

𝜕

𝜕𝑧
(𝑈∥(𝑥, 𝑧; 𝑘 cos 𝛽))] (3) 

The coefficients 𝐴, 𝐵 arise from the decomposition of the polarization of the incident wave into 

components parallel and perpendicular to the edge of the screen and depend only on the polar 

and in-plane incidence angles 𝛼, 𝛽. We can then construct an approximate solution for a disk by 

solving for several angles 𝜓 and plotting the diffraction pattern produced for each angle, with the 

out-of-plane component 𝐸𝑧 plotted in Fig. S12a at a frequency of 𝜔 = 6600 𝑐𝑚−1. 

 

Figure S12. Absolute value of the z-component of the scattered field 𝐸𝑧 at a height of 25 nm above the 

disk, obtained using the approximate model (a) and the numerical solution (b). The direction of the 

incident field is highlighted by the red arrow in both panels. 

To check the validity of this approximation, we used the COMSOL package to simulate the 

scattered field distribution produced by a plane wave whose magnetic field was polarized 

parallel to the disk. This numerical approach was necessitated by the large free-space 

wavelength, which is comparable to the size of the metallic disk, invalidating the quasistatic 

approximation typically used in the modeling of the SNOM signal. The disk was included by 

implementing a perfectly conducting boundary condition on the surface of the disk inside of a 

physical domain of dimension 4 𝜇𝑚 × 4 𝜇𝑚 × 2 𝜇𝑚 padded with perfectly matched layers of 



thickness 500 nm at each edge of the domain. A scattering boundary condition was implemented 

at the edge of the physical domain, and only the scattered field was extracted. The result of this 

simulation is plotted in Fig. S12b. The agreement between the approximation and the numerical 

solution is expected to hold only near the edge of the disk, which contains the crucial feature, 

namely a divergence of the field due to a sharp edge. The angular intensity distribution around 

the circumference of the disk is also captured by the approximate model, which can then be 

modified to account for the effect of the hyperbolic medium. 

The introduction of the sample will bring with it the hyperbolic modes and modify the scattered 

field. The multiple branches of the polariton dispersion observed are derived by computing the 

poles in the reflection coefficient 𝑟𝑝(𝑞, 𝜔) in the absence of losses. In a realistic system with 

finite loss, the dispersion is instead dictated by the maxima in Im 𝑟𝑝(𝑞, 𝜔). We consider a three-

layer system consisting of vacuum, sample and substrate, labeled as medium 0, 1 and 2, 

respectively. The divergence of 𝑟𝑝(𝑞, 𝜔) happens at a discrete set of values satisfying the 

condition:

2𝜋𝑙 + 𝜓01 + 𝜓21 = 2𝑘1
𝑧𝑑 (4) 

for a medium of thickness d. The phase shifts 𝜓01, 𝜓21 can be expressed in terms of reflection 

coefficients at the top and bottom interfaces, 𝑟01 = 𝑒𝑖𝜓01  and 𝑟21 = 𝑒𝑖𝜓21  , respectively. The 

reflection coefficients 𝑟𝑖𝑗 at the interfaces are given by: 

𝑟𝑖𝑗(𝑞) =
𝜀𝑗

⊥/𝑘𝑗
𝑧 − 𝜀𝑖

⊥/𝑘𝑖
𝑧

𝜀𝑗
⊥/𝑘𝑗

𝑧 + 𝜀𝑖
⊥/𝑘𝑖

𝑧  (5) 

where the z-component of the wavevector 𝑘𝑖
𝑧 of a p-polarized light in each medium is given by: 

𝑘𝑖
𝑧(𝑞) = √𝜀𝑖

⊥√
𝜔2

𝑐2
−

𝑞2

𝜀𝑖
𝑧 , Im 𝑘𝑖

𝑧 > 0  (6) 

In the hyperbolic regime (𝑞 ≫ 𝜔/𝑐), 𝑘1
𝑧 is predominantly real, so the solutions of Eqn. (4) are 

not confined to a surface but can exist within the bulk of the sample. A closed-form solution for 

the dispersion can only be obtained within the quasistatic approximation (𝑐 → ∞). In that case, 

the reflection coefficients of Eqn. (5) become independent of q and reduce to: 

𝛽𝑖𝑗 =

√𝜀𝑗
⊥√𝜀𝑗

𝑧 − √𝜀𝑖
⊥√𝜀𝑖

𝑧

√𝜀𝑗
⊥√𝜀𝑗

𝑧 + √𝜀𝑖
⊥√𝜀𝑖

𝑧

 (7) 

The original transcendental equation Eqn. (4) reduces to a linear equation for the dispersion of 

each mode 𝑞𝑙. In the particular case of launching by a conducting metallic edge, the observed 

fringes in real space can be understood as a beating between the various modes 𝑞𝑙 in momentum 

space9, giving a fringe spacing of: 



𝜆𝑝 =
2𝜋

Δ𝑞𝑙
≈ −2𝑖𝑑

√𝜀1
⊥

√𝜀1
𝑧

(8) 

with the last equality holding in the quasistatic limit. 

 

Figure S13. Simulated near-field amplitude of ZrSiSe (26.5 nm) on a gold disk (25 nm) obtained from 

the approximate model at 𝜔 = 7634 𝑐𝑚−1, 6667 𝑐𝑚−1, 5556 𝑐𝑚−1. The edge of the gold disk is shown 

by the white dashed line and the direction of the field is indicated by the red arrow. 

Having previously obtained a solution for the field created in vacuum by a screen, this 

expression can be used as a building block to construct an approximate solution to the field 

produced by the system of the disk, sample, and substrate. Since the polariton wavelength (𝜆𝑝) is 

an order of magnitude smaller than the free-space photon wavelength 𝜆0, near the edge we 

expect a quasistatic approximation to be valid, permitting the use of an image method to 

introduce a sample9. Using the field from Eqn. (3), we introduce an equidistant series of images, 

as in the solution for the static field of a dielectric film between two media. We take the 

infinitely thin disk as the source of this static field, situated at the interface of media 1 and 2, that 

is, below the ZrSiSe layer. For an optically anisotropic material, the thickness of the film is 

further modified by the ratio of in-plane and z-axis dielectric function: √𝜀𝑡/√𝜀𝑧. The scattered 

near-field signal (𝑆) can be approximated as the z-components of the field 𝐸𝑧
𝑠 obtained from the 

diffraction problem and the reflection coefficients 𝛽𝑖𝑗 from Eqn. (7): 

𝑆(𝑥, 𝑦, 𝑧) = (1 − 𝛽01)𝐸𝑧
𝑠𝑐𝑎(𝑥, 𝑦, 𝑧 + ℎ) + 𝛽21(1 + 𝛽01) ∑ 𝛽01

𝑛 𝛽21
𝑛 𝐸𝑧

𝑠𝑐𝑎 (𝑥, 𝑦, (2𝑛 + 1)𝑑
√𝜀𝑡

√𝜀𝑧
+ ℎ)

∞

𝑛=1

 (9) 

 

To include the effects of demodulation, we compute the field at a discrete set of points above the 

sample: 

ℎ(𝑡) = ℎ0 + Δℎ(1 − cos 𝑛Ω𝑡) (10) 



to obtain the complex signal 𝑠𝑛̃ = 𝑆𝑛𝑒𝑖𝜙𝑛. Here Ω is the tip-tapping frequency and we used 

tapping amplitude Δℎ = 50 𝑛𝑚 and minimum position ℎ0 = 5 𝑛𝑚. The demodulated scattering 

amplitudes (𝑛 = 3) computed as a few different frequencies are shown in Fig. S13. 

 

Section S4: Electronic structure calculations of ZrSiSe 

The electronic structure of the system was investigated with density functional theory (DFT). 

DFT calculations were carried out at the level of DFT plus onsite Hubbard U and intersite V 

(DFT+U+V)10, as implemented in the Octopus code11, which delivers an hybrid-like quality of 

the band structure at a fraction of the computational cost12. Experimental lattice constants of 𝑎 =

3.623 Å and 𝑐 = 8.365 Å were employed. For the slab configuration, containing 5 layers of 

ZrSiSe, a 16 Å vacuum region was chosen to properly converge the bands along the non-periodic 

dimension z. The ground state was calculated by discretizing the equations in real-space with a 

spacing of 0.159 Å and spin-orbit coupling was fully accounted for valence electrons while core 

electrons were treated with relativistic HGH pseudopotentials13. The Brillouin zone was sampled 

with a 16×16×8 Monkhorst-Pack grid for the bulk and a 15×15 grid for the slab geometries. 
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