

Supporting Information

Exposed facets dictate microbial methylation potential
of mercury sulfide nanoparticles

Li Tian¹, Wenyu Guan¹, Yunyun Ji¹, Xin He¹, Wei Chen¹, Pedro J. J. Alvarez², Tong

Zhang¹ *

1. *College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China*
2. *Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA*

* Corresponding author: zhangtong@nankai.edu.cn

1 **Methods**

2 **Precipitation of mercury sulfide (HgS) in the presence of natural ligands.** The
3 inorganic mercury (Hg) stock solution consisted of Hg(NO₃)₂ (Sinopharm, China)
4 dissolving in 0.02 M trace-metal grade HNO₃. Na₂S stocks were prepared by dissolving
5 freshly washed and dried crystals of Na₂S·9H₂O (Aladdin, China) in N₂-purged nanopure
6 water (>18 MΩ-cm), and were utilized within 4 h of preparation. Standard materials of
7 natural organic matter (NOM), including Suwannee River humic acid (SRHA, catalog
8 number: 3S101H) and Suwannee River fulvic acid (SRFA, catalog number: 2S101F),
9 were purchased from International Humic Substances Society (IHSS, USA). The NOM
10 stock solution was prepared by dissolving the NOM powder in nanopure water with pH
11 adjusted to 7.5 using 0.01 M NaOH. The NOM stock solution was kept refrigerated, and
12 filtered through 0.2-μm syringe filters and the filtrate was quantified using combustion
13 catalytic oxidation/infrared spectroscopy (Multi N/C 3100 TOC, Analytik Jena AG,
14 Germany) prior to use. The powder stock of low-molecular-weight (LMW) thiol ligand,
15 glutathione (GSH, Aladdin, China), was kept refrigerated prior to dissolving in N₂-purged
16 nanopure water. The stock solution of GSH was freshly prepared for each precipitation
17 experiment and discarded after use.

18 The buffer solution for the precipitation experiments contained 0.01 M NaNO₃ and 4
19 mM sodium 4-(2-hydroxyethyl) piperazine-1-ethanesulfonate (HEPES) with pH adjusted
20 to 7.2 and then double-filtered to <0.05 μm. In this buffer solution, 50 μM Hg(NO₃)₂ and

21 50 μM Na_2S were mixed with 10 $\text{mg}\text{-C l}^{-1}$ SRHA or SRFA; 60 μM $\text{Hg}(\text{NO}_3)_2$ and 60 μM
22 Na_2S were mixed with 100 μM GSH. The precipitation products were collected after 1-d,
23 11-d and 21-d aging period (in dark, at room temperature, 23-26°C), respectively, and
24 utilized for material characterization and microbial methylation experiments.

25 Precipitation experiments of $\text{Hg}(\text{NO}_3)_2$ and Na_2S in the same buffer solution without
26 natural ligands were also conducted and the precipitation products were included in the
27 aging experiments as control samples.

28

29 **Preparation of model HgS nanoparticles.** Model HgS nanoparticles with different
30 exposed facets were synthesized following previously established methods¹. For
31 synthesizing model nanoparticles I, 1.6 g $\text{Hg}(\text{CH}_3\text{COO})_2\cdot 2\text{H}_2\text{O}$ and 0.5 g thiourea
32 (Aladdin, China) were mixed in 100 ml nanopure water and pH was adjusted to 4.0 using
33 acetic acid. Then 0.5 g Polyvinylpyrrolidone (PVP, Mw 40 kD, Amresco, USA) was
34 added to the suspension, which was sonicated for 30 min while purged with nitrogen. The
35 black-colored precipitates were collected from the suspension using centrifugation and
36 then thoroughly washed with absolute ethanol and nanopure water. Finally, the
37 precipitates were heated at 300°C for 2 h in the pipe furnace to remove the residual PVP.
38 The procedure for preparing model nanoparticles II was the same as that of nanoparticles
39 I, except that no PVP was added to the experimental suspension. After synthesis, the total
40 carbon content in the model materials were measured on a TOC analyzer (Multi N/C

41 3100 TOC, Analytik Jena AG, Germany), and appeared to be 2.6% and 2.8% of the total
42 particle mass for model material I and II, respectively, indicating minimal residual PVP
43 on model nanoparticles I. The two model materials were freeze-dried and stored in an
44 anaerobic chamber with desiccants prior to material characterization and microbial
45 methylation experiments.

46

47 **Characterization of HgS nanoparticles.** The particle morphology of the products of
48 HgS precipitation experiments and the synthesized model nanoparticles were analyzed
49 using transmission electron microscopy coupled with energy dispersive X-ray
50 spectroscopy (TEM-EDX, JEM-2100, JEOL, Japan). Samples for TEM analysis were
51 prepared by depositing droplets of the particle suspensions on 200-mesh carbon-coated
52 copper grids, and allowing the grids to air dry in an anaerobic chamber. For each type of
53 HgS nanoparticle, the geometric diameters were obtained by measuring 100 particles
54 from the TEM images using image processing software Image J, based on which the
55 geometric surface areas were calculated by assuming spherical particles with a density of
56 7.71 g cm^{-3} (ref. ^{2,3}). The crystallographic structures of the HgS nanoparticles were
57 analyzed by X-ray diffraction (XRD) spectroscopy on a Rigaku diffractometer (Ultima
58 IV, Rigaku Inc., Japan) with Cu $\text{K}\alpha$ radiation ($\lambda = 1.5418 \text{ \AA}$). The crystallite diameters
59 were calculated according to the Scherrer formula using the XRD data⁴. High-resolution
60 TEM (HR-TEM) was utilized to assess the lattice spacing of the crystalline nanoparticles

61 to further corroborate the crystalline phases determined by XRD analysis. The surface
62 elemental composition of HgS nanoparticles were characterized with X-ray photoelectron
63 spectrometry (XPS, Axis Ultra DLD, Kratos, Britain). The hydrodynamic diameters and
64 zeta potential of nanoparticle aggregates were analyzed on a Zetasizer (Nano Series
65 ZS90, Malvern, USA)

66

67 **Microbial methylation experiments.** Methylating bacterium *Desulfovibrio*
68 *desulfuricans* ND132 was cultured in Hungate tubes (Changshu Wente experimental ware
69 co. LTD, China), which were kept in dark and at room temperature (23-26°C) in an
70 anaerobic chamber. The bacterial cultures were grown in sulfate-containing media and
71 then transferred in fermentative media twice before mercury methylation experiments.
72 The sulfate-containing media and fermentative media were prepared according to
73 previously reported methodologies, and contain the redox sensitive resazurin as well as
74 the reductant Ti-nitrilotriacetic acid (NTA) to help maintain anaerobic conditions^{5,6}. The
75 inoculation ratio for the test cultures were 1:37 and 1:30 in the methylation experiments
76 examining the bioavailability of the aged HgS precipitation products and the model
77 nanoparticles, respectively.

78 Prior to the addition of HgS nanoparticles, *D. desulfuricans* ND132 was pre-cultured
79 to reach late-log growth phase. The stock suspensions of model nanoparticles I and II
80 were prepared by adding the corresponding powder products into nanopure water, which

81 were sonicated for 120 min in anaerobic vials before taking aliquots. The total mercury
82 addition for the methylation experiments of model nanoparticles and precipitation
83 products was 50 nM and 10 nM, respectively. The pH of the test cultures was maintained
84 at 7.0-7.3 using 3-(N-morpholino) propanesulfonic acid (MOPS). The test cultures were
85 placed in dark, at room temperature (23-26°C) in an anaerobic chamber during the entire
86 time course of the methylation experiments. Two sets of controls were incubated under
87 the same conditions including (1) uninoculated media spiked with $\text{Hg}(\text{NO}_3)_2$; (2)
88 bacterial cultures without mercury addition. MeHg production in all control samples were
89 below the detection limit ($\leq 0.09 \text{ pM MeHg}$) and thus abiotic methylation and mercury
90 contamination were negligible in our experiments. At each time point, triplicate vials
91 were collected and aliquots were taken for quantification of cell numbers using flow
92 cytometry (Accuri C6 Plus, BD, Singapore) after the bacterial cells were stained with
93 SYBR Green I (Life Technologies, USA). Total mercury concentrations were measured
94 using cold vapor atomic fluorescence spectrometry (CVAFS, Tekran 2600, Tekran,
95 USA)⁷. Afterward, the rest of the cultures were preserved by 0.4% (v/v) trace-metal-
96 grade HCl and kept refrigerated prior to methylmercury (MeHg) analysis. MeHg
97 concentrations were quantified by distillation, aqueous phase ethylation, gas
98 chromatographic separation, and CVAFS (Tekran 2700, Tekran, USA)⁸.

99 Mercury methylation bioassays were also carried out in the presence of divalent
100 zinc, Zn(II). The Zn(II) stock solutions were prepared by dissolving trace-metal grade

101 ZnCl₂ (Acros Organics, Belgium) in 0.01 M trace-metal grade HCl using degassed
102 nanopure water. Zn(II) was injected into the cultures of *D. desulfuricans* ND132 to reach
103 final concentrations of 100-500 μ M, before exposure to 10 nM HgS nanoparticles co-
104 precipitated with GSH and aged for 1 d. The rest of the protocols were consistent with the
105 other mercury methylation experiments conducted in this research.

106

107 **Characterization of nanoparticle–cell association.** In a subset of test cultures exposed
108 to model nanoparticles I and II, bacterial cells with cell-bound nanoparticles were
109 separated from unassociated nanoparticles by a density gradient centrifugation method
110 using OptiPrepTM kit (Alere Technologies AS, Oslo, Norway)⁹. Briefly, bacterial cells
111 with bound and unbound nanoparticles were harvested by centrifugation at 9,000 rpm for
112 5 min. The pellets were resuspended in 1.5 ml of 50% (w/v) OptiPrepTM medium and
113 then centrifuged at 9,000 rpm for 5 min. Afterward, the top fraction (0.7 ml total) was
114 used for quantification of cell-bound mercury, which was normalized with the cell
115 numbers measured before centrifugation. The cell recovery during this procedure was
116 assessed by measuring the protein content before and after gradient centrifugation using
117 the bicinchoninic acid (BCA) assay¹⁰, and was found to be 93.9 \pm 6.4%.

118 In a subset of test cultures exposed to HgS nanoparticles co-precipitated with
119 SRHA, SRFA or GSH, samples were collected for TEM analysis by centrifugation. The
120 pellets were washed with 10 mM phosphate buffered saline (PBS, pH 7.4), resuspended

121 in a fixative solution containing 2.5% (v/v) glutaraldehyde, and stored at 4°C overnight.
122 The cells were washed with PBS again before and after being fixed in 1% (w/v) osmium
123 tetroxide. Then the samples were dehydrated with 30%-100% (v/v) ethanol, embedded in
124 Epon812 epoxy resin, and cured at 37°C, 45°C and 65°C for 24 h, respectively.
125 Subsequently, they were sliced into ultra-thin sections by the UltracutE microtome. These
126 sections were deposited on 200-mesh carbon-coated copper grids and analyzed by TEM
127 (JEM-1200EX, JEOL, Japan) and EDX (OXFOR MAX80, Oxford Instruments, Britain).

128

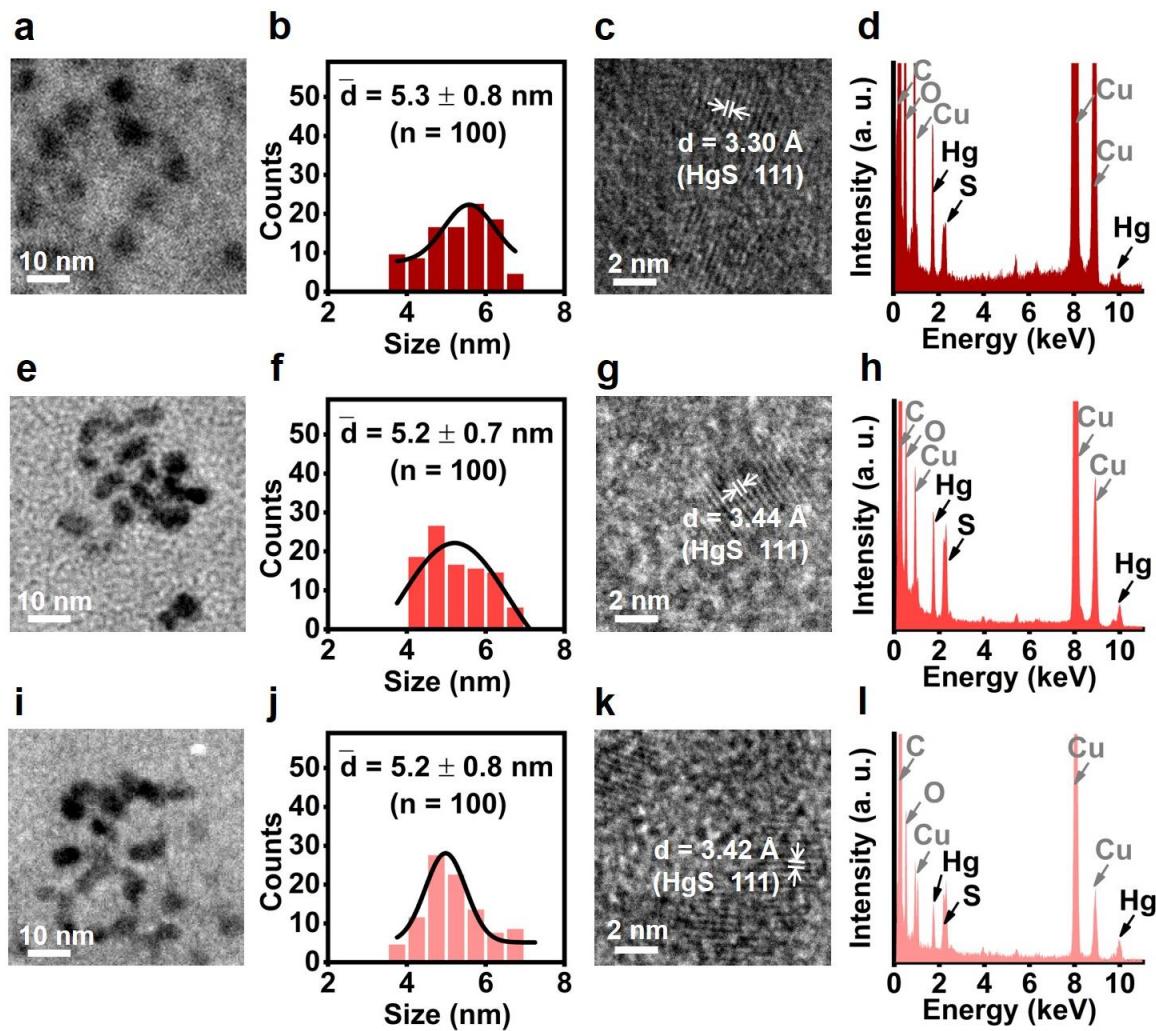
129 **Molecular dynamics (MD) simulations.** The protein sequence and three-dimensional
130 structure of periplasmic solute-binding protein of zinc transport system of *D.*
131 *desulfuricans* ND132, ZnuA, was obtained from UniProt database
132 (<https://www.uniprot.org/uniprot/F0JJA9>) and predicted by ITASSER online service¹¹⁻¹³.
133 The crystal structure of metacinnabar was taken from the website of
134 <https://materialsproject.org/materials/mp-1123/>. The spherical structures of facet (111),
135 (220) and (311) were constructed by the software module of biovia material studio 2017.
136 All of the MD calculations were carried out using the GROMACS 5.0.4 package¹⁴⁻¹⁶ in
137 the NPT ensemble. The protein force field was performed using Amber 99SB-ILDN all-
138 atoms force field¹⁷. The parameters of the facets were taken from the literature¹⁸ and
139 generated by the x2top command in GROMACS.

140 MD simulation was performed from 0 to 100 ns for each calculation. The
141 temperature was stabilized at 298 K by Nose Hoover thermostat coupling¹⁹. The cut-off
142 switching function for calculating the non-bonded van der Waals interactions started at
143 1.2 nm and reached zero at 1.35 nm. The long-range electrostatic interaction was
144 calculated by Particle mesh Ewald²⁰ summation, with a truncation radius of 1.2 nm.
145 Periodic boundary conditions were used throughout the calculation. The limitation of
146 bond length was implemented through linear constraint solver algorithm²¹. The hydrated
147 layers were modeled as point charge water molecules²². The system was kept neutral by
148 adding chloride and sodium ions. The time step of calculated data was 2 fs. Molecular
149 graphics and visualization were performed using the free VMD software²³.

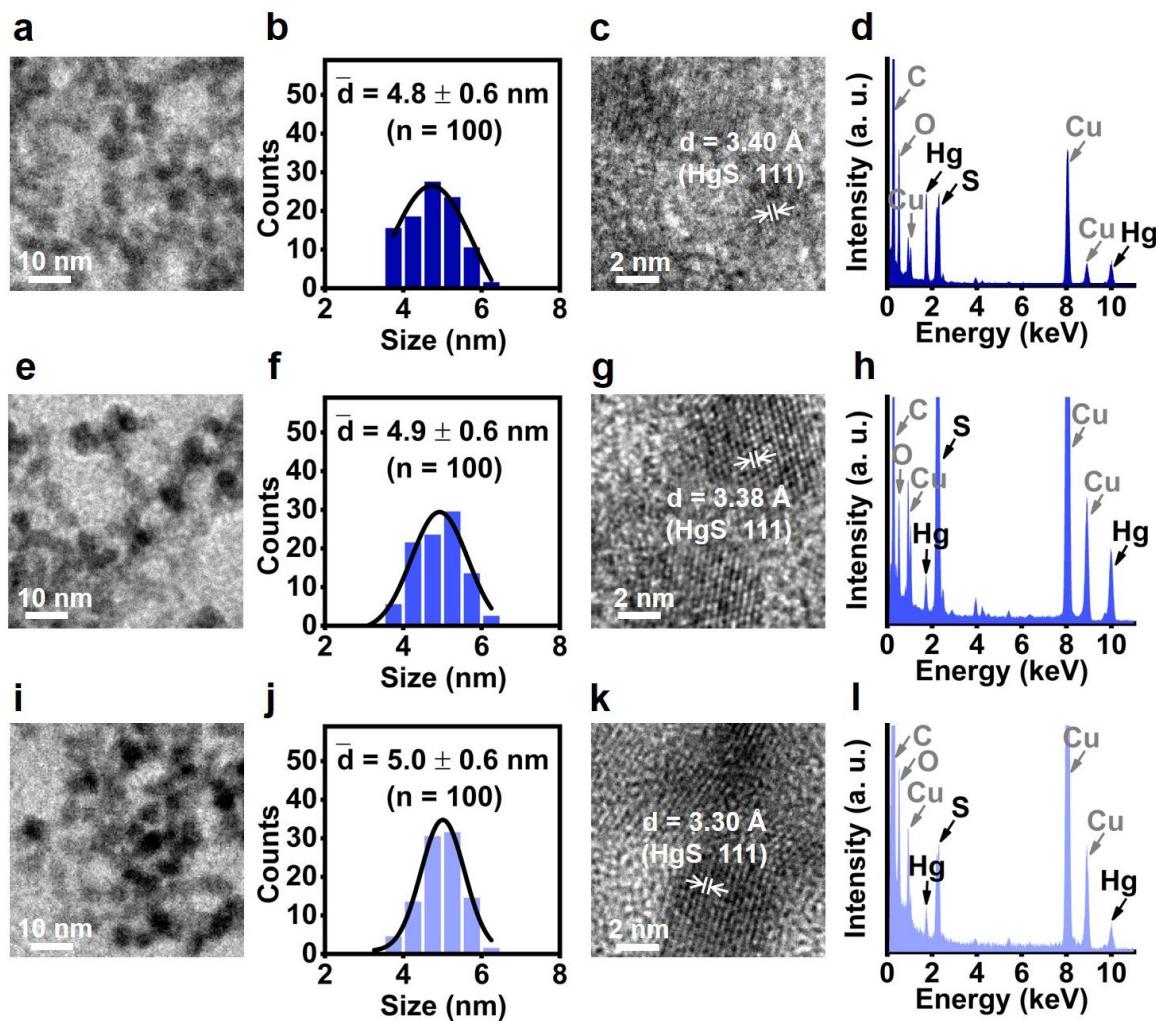
150

151 **Adsorption of natural ligands to model nanoparticles.** Adsorption experiments were
152 performed in a series of 40 ml EPA vials containing 0.01 M NaNO₃, SRHA, SRFA or
153 GSH with an initial concentration of 10 mg-C l⁻¹, 10 mg-C l⁻¹ or 100 mg l⁻¹ was added to
154 the vials that contain 1,000 mg l⁻¹ model nanoparticles I or II, respectively. For all the
155 adsorption experiments, pH of the reaction matrices was adjusted to 7.0 ± 0.7 using
156 HNO₃ and NaOH. The vials were then kept at room temperature (23-26°C) on a rotating
157 mixer at a speed of 70 rpm min⁻¹. Two sets of controls were incubated under the same
158 conditions including (1) HgS nanoparticles with no ligands; (2) SRHA, SRFA or GSH
159 with no nanoparticles. At each time point, triplicate vials were sacrificed and centrifuged

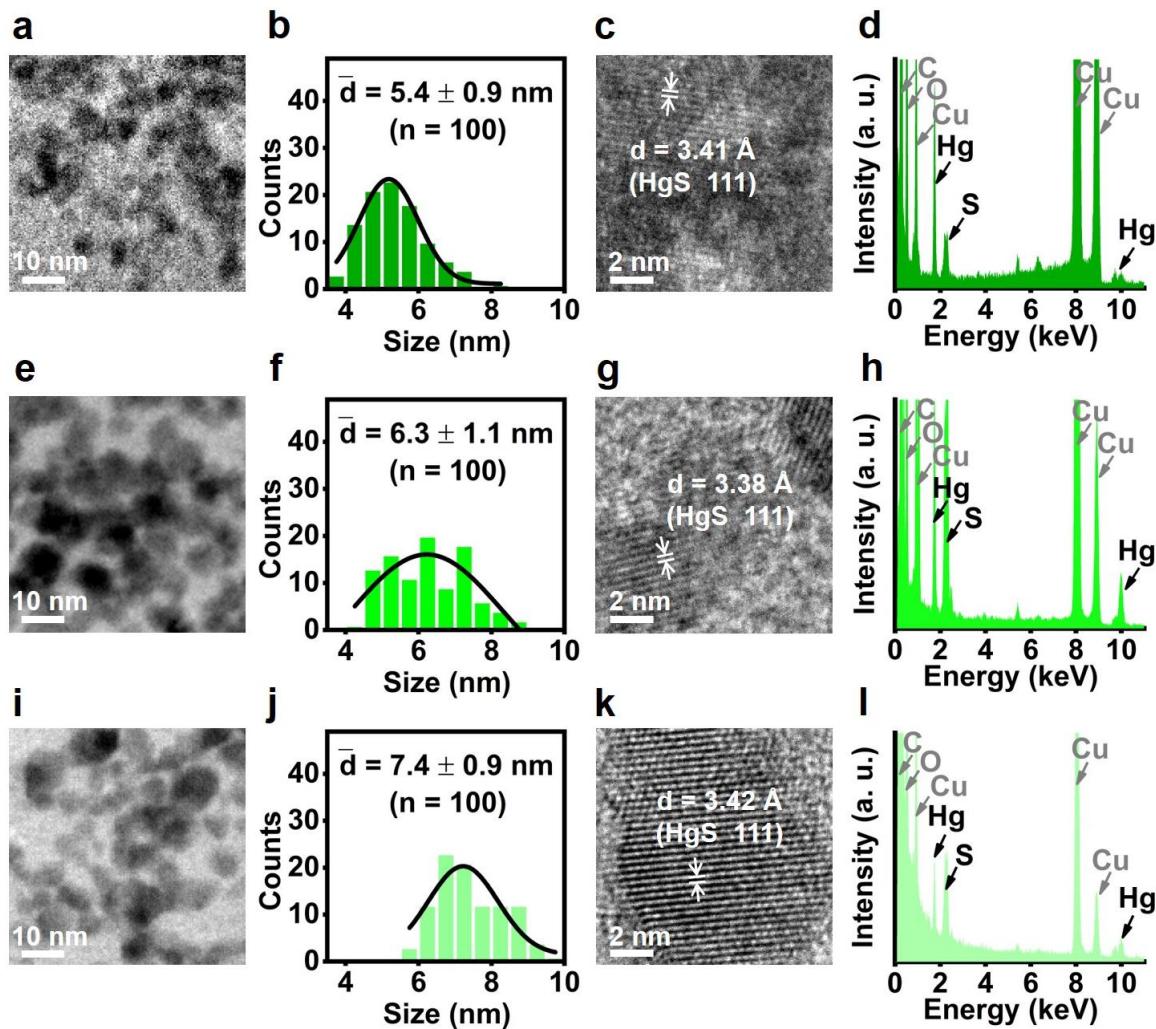
160 at 12,000 rpm for 3 min, which effectively separated the adsorbed ligands from free
161 ligands according to the controls (i.e., <2% HgS nanoparticles and >99% ligands
162 remained in the supernatant after centrifugation). The supernatant was sampled to
163 determine the concentration of the unadsorbed SRHA, SRFA or GSH and the amount of
164 the adsorbed ligands were calculated using a mass balance approach. The concentrations
165 of SRHA and SRFA were measured on a TOC analyzer (Multi N/C 3100 TOC, Analytik
166 Jena AG, Germany), and the GSH concentrations were quantified with Total Amino Acid
167 Assay Kit (Nanjing Jiancheng Bioengineering Institute, China) by following the
168 manufacturer's protocols.

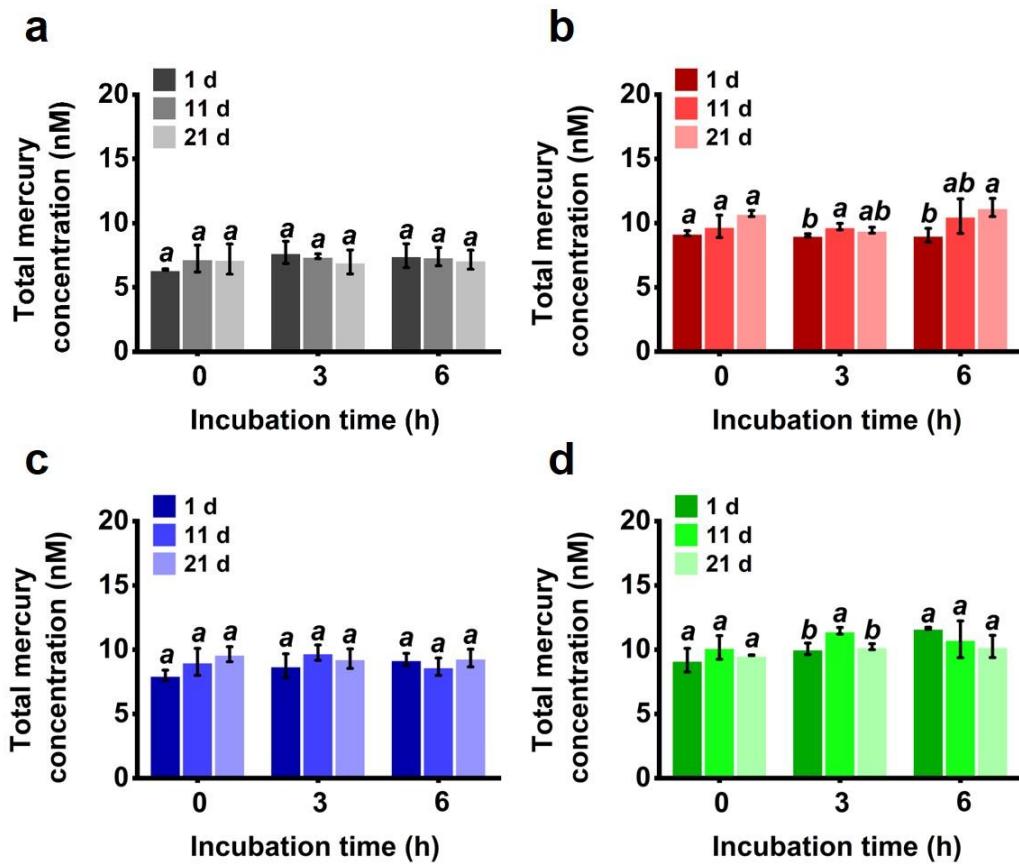

169

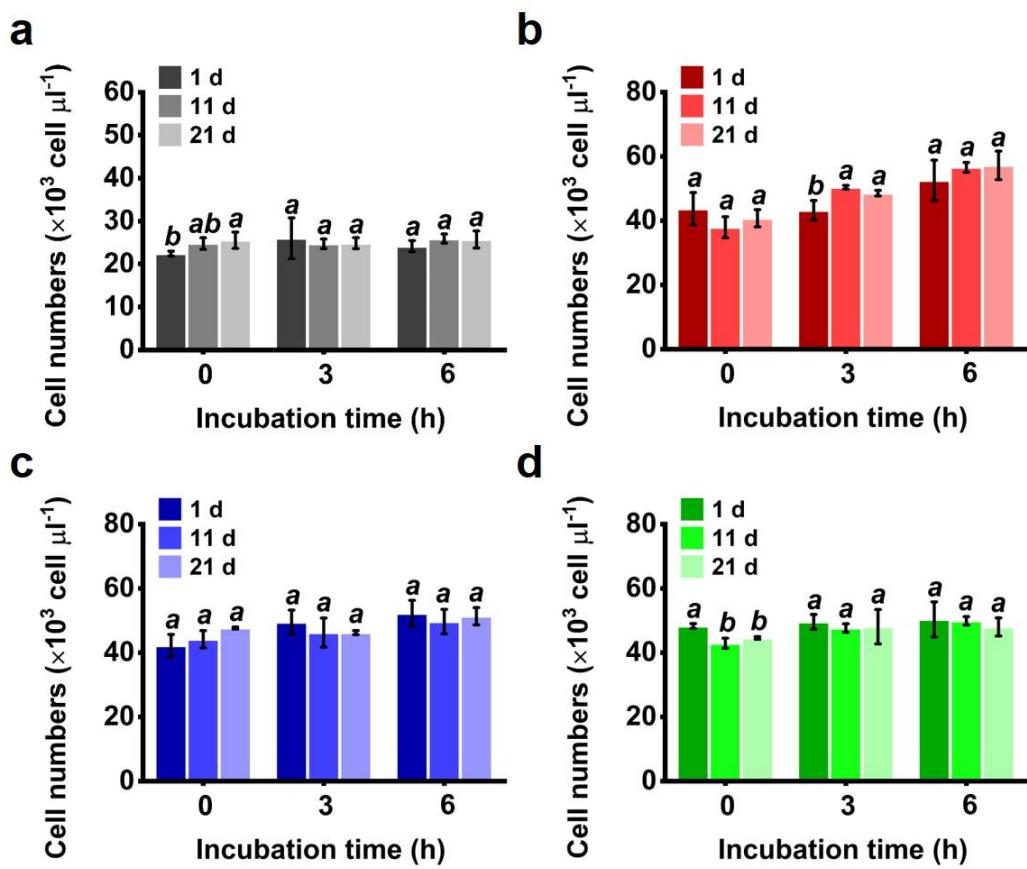
170 **Density functional theory (DFT) analysis.** The adsorption of GSH on the (111), (220)
171 and (311) facets of metacinnabar was simulated using DFT analysis conducted by the
172 Vienna Ab-initio Simulation Package (VASP). The electron-ion interaction was assessed
173 by the method of projector-augmented wave and the cutoff value of the plane-wave was
174 420 eV. The Perdew-Burke-Ernzerh (PBE)²⁴⁻²⁶ method was used for the description of the
175 exchange and correlation potential, with spin polarization considered in all computations.
176 The electronic structure calculations were employed with a Gaussian smearing of 0.1 eV,
177 and $1 \times 1 \times 1$ Monkhorst-Pack k-point grids were used for the sampling of the Brillouin
178 zone²⁷.

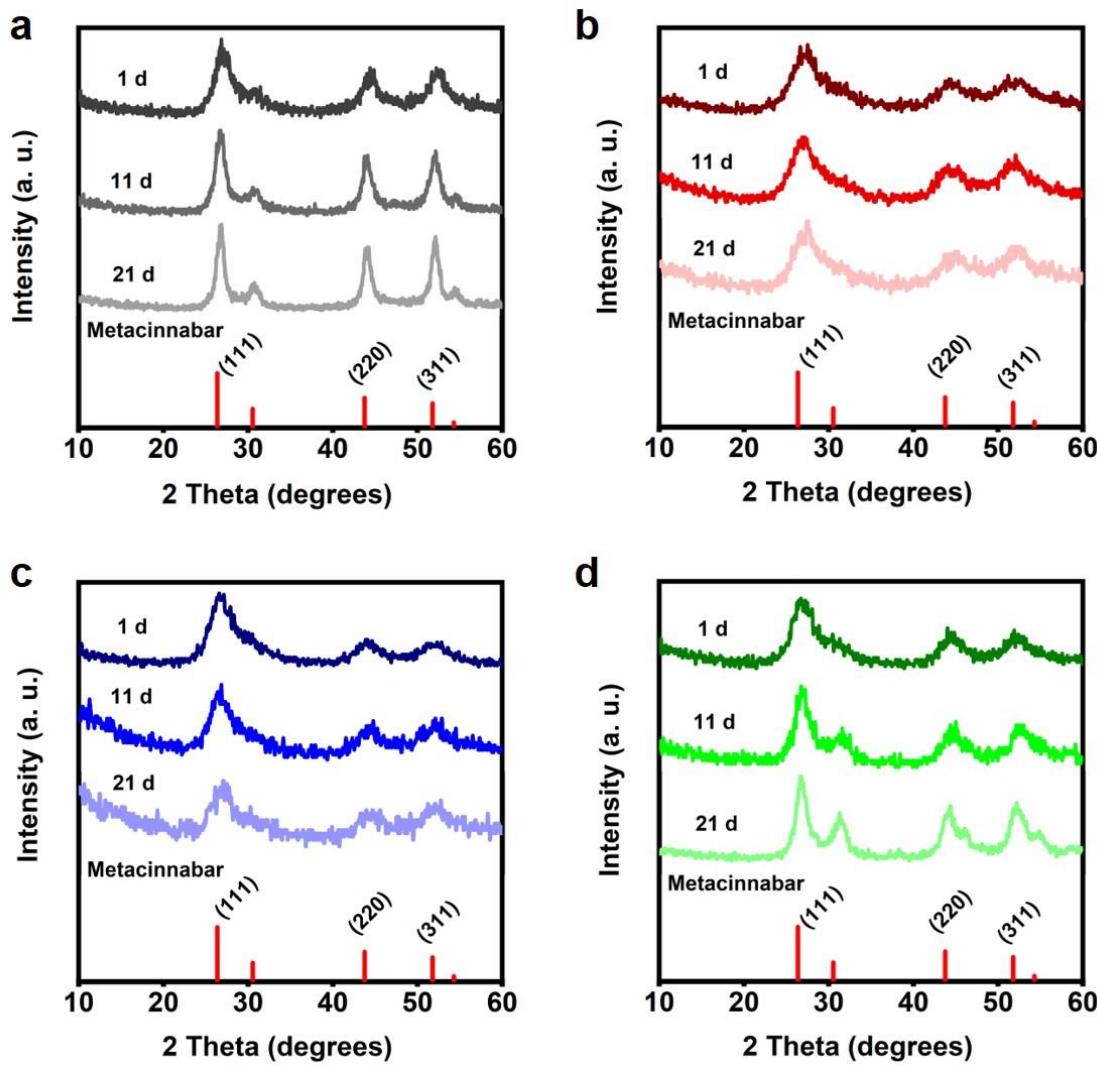

179 We used a (3×3) repeated unit cell with a four-layer slab for the (111), (220) and
180 (311) surfaces for GSH adsorption. All slabs were spaced more than 14 Å perpendicular
181 to the slab surface to avoid artificial interaction due to periodicity. During optimization,
182 the atoms of the two layers at the bottom were fixed, and the remaining atoms were
183 relaxed to reach stable configurations. Atoms were optimized until the residual forces
184 were below $0.02 \text{ eV } \text{\AA}^{-1}$. The adsorption energies are estimated using the equation:

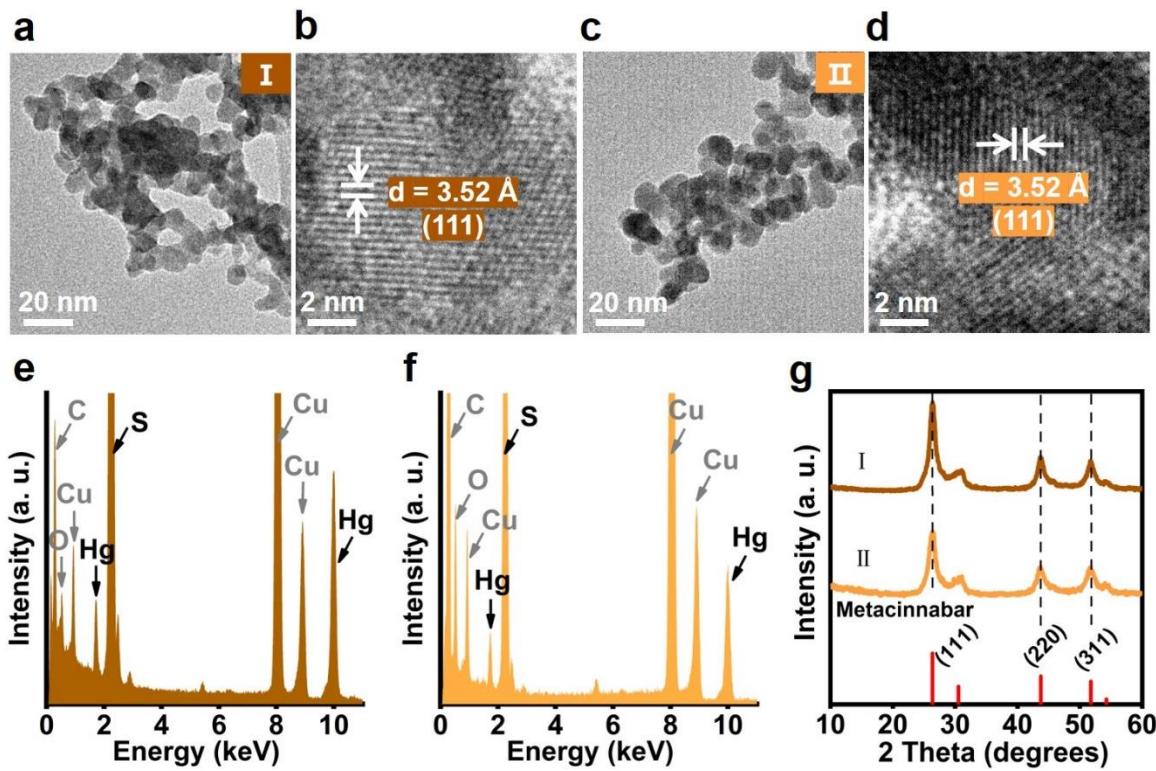
185 $E_{\text{adsA}} = E_{\text{slab+A}} - E_{\text{slab}} - E_A$ (1)

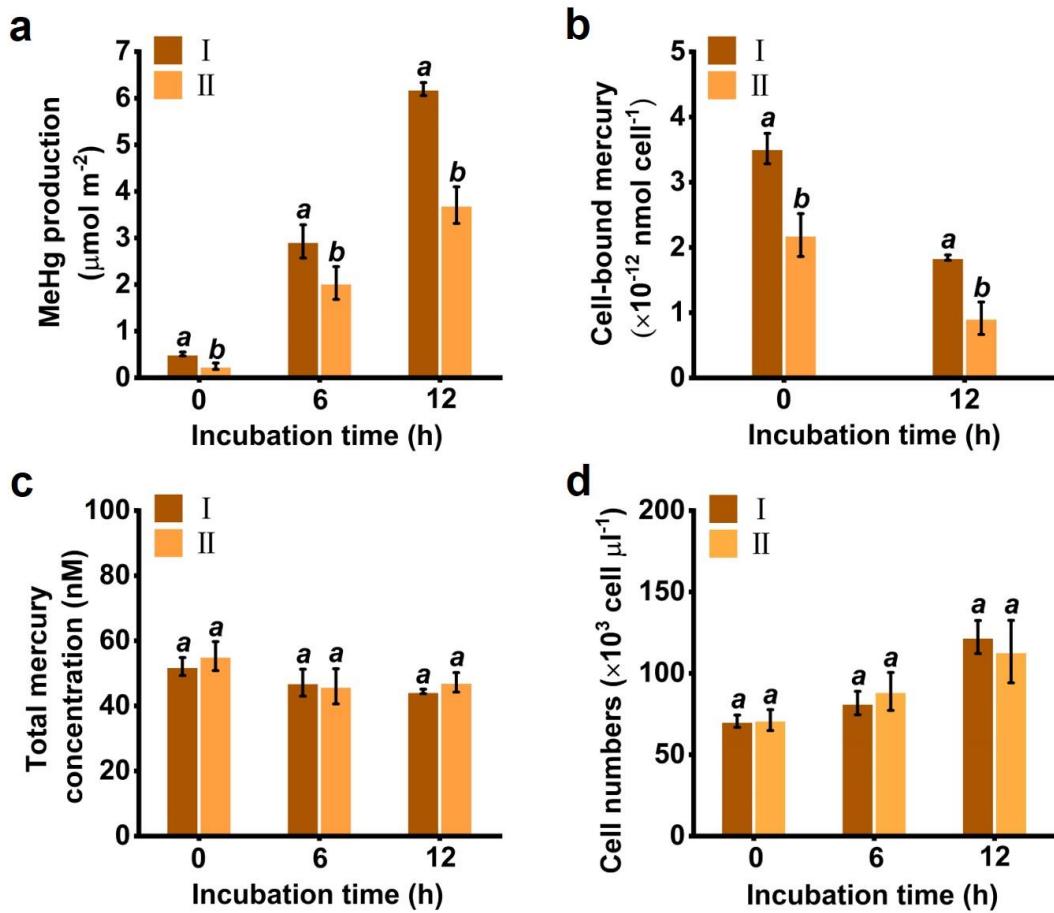

186 where E_{adsA} is the interaction energy between slab fragment and molecule fragment in
187 the optimized configurations; $E_{\text{slab+A}}$ is the total energy of the slab and the molecule in
188 the optimized configurations; E_{slab} is the energy of the slab alone in the optimized
189 configurations; E_A is the energy of the molecule alone in the optimized configurations.

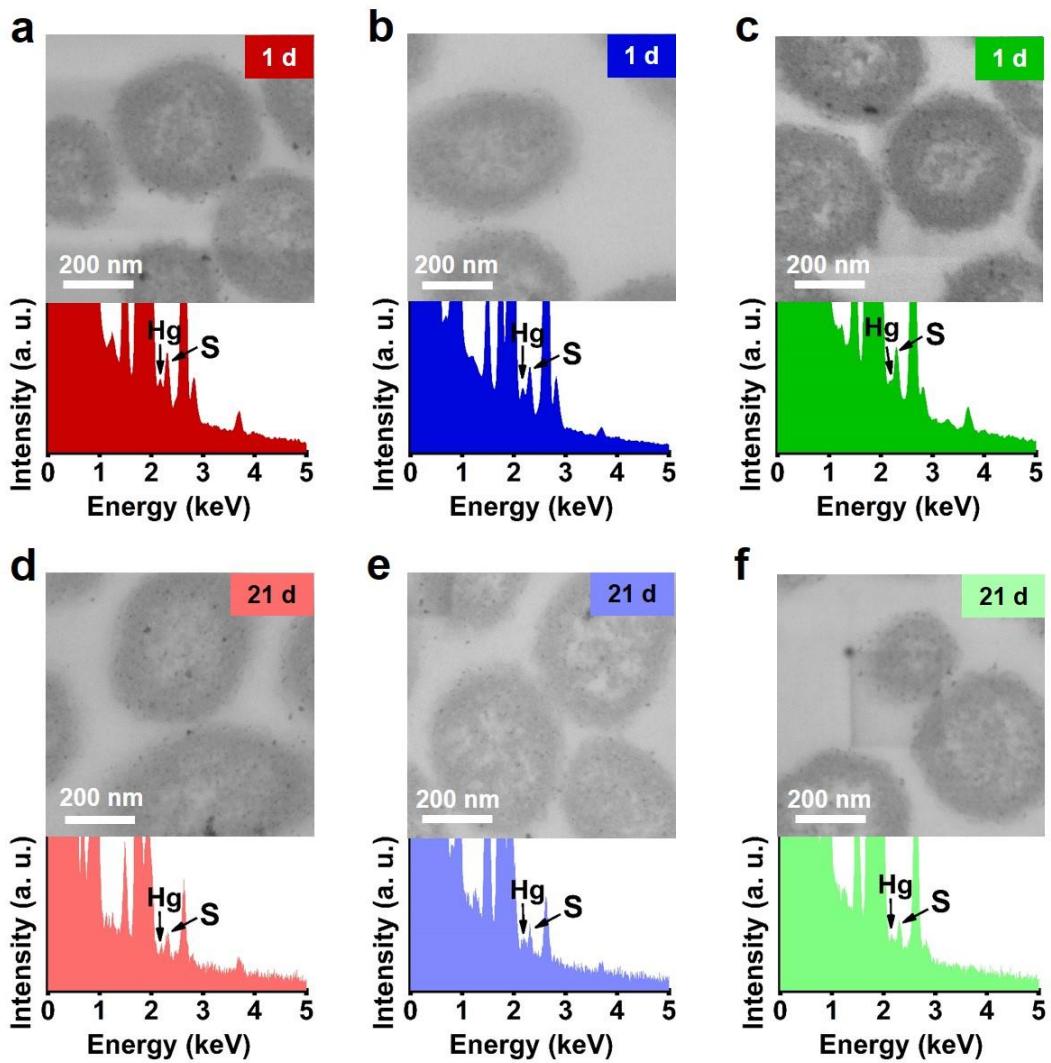

Supplementary Figure 1. TEM images (a, e, i), particle size distribution (b, f, j), high-resolution TEM images (c, g, k) and EDX spectra (d, h, l) of HgS nanoparticles formed in the presence of SRHA, aged for 1 d (a-d), 11 d (e-h) and 21 d (i-l). Values of particle sizes represent mean \pm 1 SD of one hundred samples.

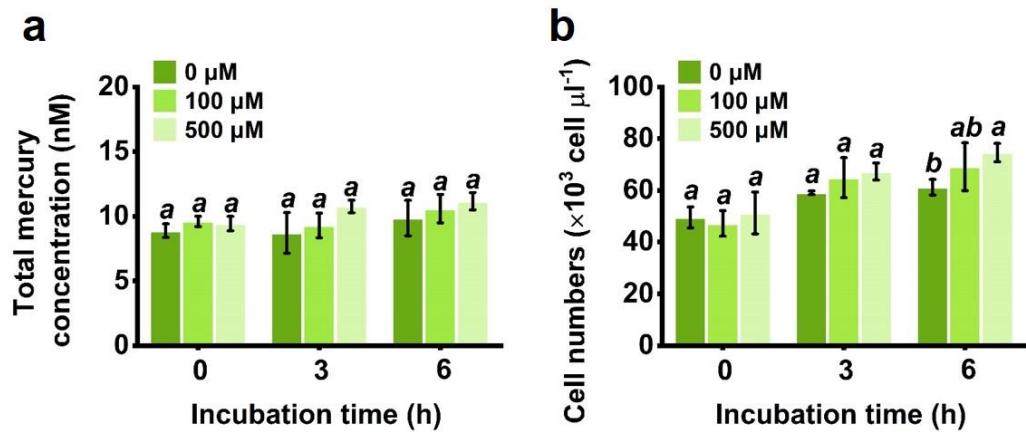

Supplementary Figure 2. TEM images (a, e, i), particle size distribution (b, f, j), high-resolution TEM images (c, g, k) and EDX spectra (d, h, l) of HgS nanoparticles formed in the presence of SRFA, aged for 1 d (a-d), 11 d (e-h) and 21 d (i-l). Values of particle sizes represent mean \pm 1 SD of one hundred samples.

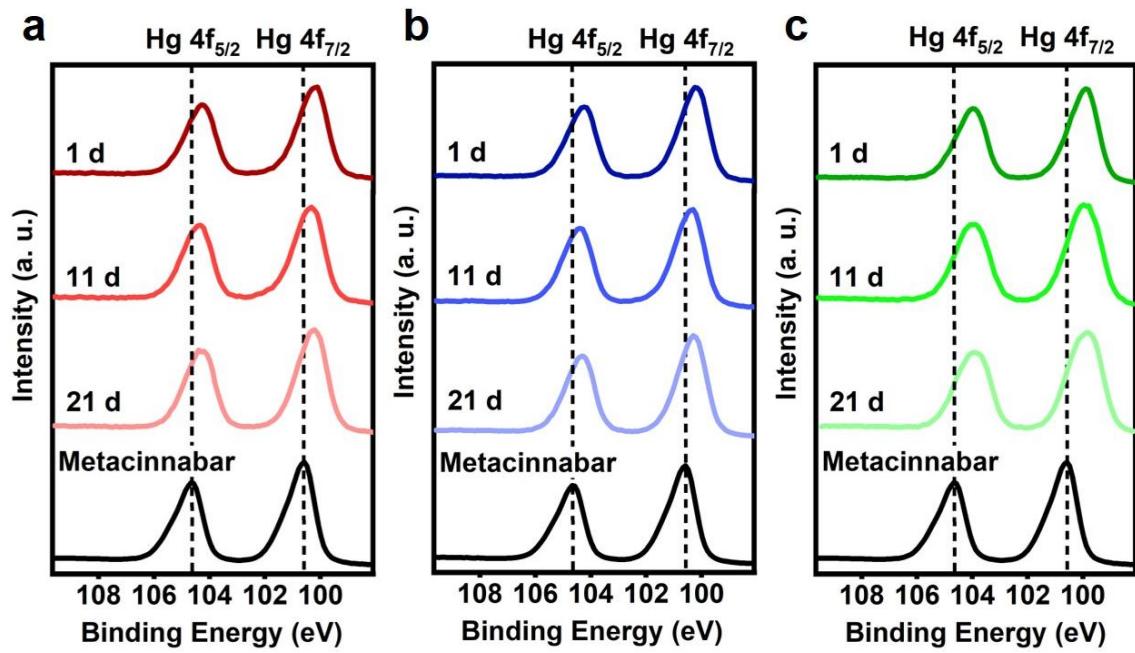

Supplementary Figure 3. TEM images (a, e, i), particle size distribution (b, f, j), high-resolution TEM images (c, g, k) and EDX spectra (d, h, l) of HgS nanoparticles formed in the presence of GSH, aged for 1 d (a-d), 11 d (e-h) and 21 d (i-l). Values of particle sizes represent mean \pm 1 SD of one hundred samples.


Supplementary Figure 4. Total mercury concentrations in methylating bacterial cultures exposed to HgS formed in the absence of natural ligands (a), and in the presence of SRHA (b), SRFA (c) or GSH (d). Values that are statistically different ($p < 0.05$) among treatments according to the one-way ANOVA are indicated by italic lowercase letters. Error bars represent ± 1 SD of triplicate samples.


Supplementary Figure 5. Total cell number concentrations in methylating bacterial cultures exposed to HgS formed in the absence of natural ligands (a), and in the presence of SRHA (b), SRFA (c) or GSH (d). Values that are statistically different ($p < 0.05$) among treatments according to the one-way ANOVA are indicated by italic lowercase letters. Error bars represent ± 1 SD of triplicate samples.


Supplementary Figure 6. XRD spectra of HgS formed in the absence of natural ligands (a), and in the presence of SRHA (b), SRFA (c) or GSH (d).


Supplementary Figure 7. TEM images (a, c), high-resolution TEM images (b, d), EDX spectra (e, f) and XRD spectra (g) of model material I (a, b, e, g) and II (c, d, f, g).


Supplementary Figure 8. Concentrations of microbially produced MeHg (a), cell-bound mercury (b), total mercury (c) and total cell number (d) in cultures of *D. desulfuricans* ND132 exposed to 50 nM model material I and II. Values that are statistically different ($p < 0.05$) between treatment I and II according to the independent *t*-test are indicated by italic lowercase letters. Error bars represent ± 1 SD of triplicate samples.

Supplementary Figure 9. TEM images and EDX spectra of the thin sections of *D. desulfuricans* ND132 after exposure to HgS nanoparticles formed in the presence of SRHA (a, d), SRFA (b, e) or GSH (c, f), aged for 1 d (a-c) or 21 d (d-f).

Supplementary Figure 10. Concentrations of total mercury and total cell number in cultures of *D. desulfuricans* ND132 exposure to Zn(II) and HgS nanoparticles formed in the presence of GSH and aged for 1 d. Values that are statistically different ($p < 0.05$) among different treatments according to the one-way ANOVA are indicated by italic lowercase letters. Error bars represent ± 1 SD of triplicate samples.

Supplementary Figure 11. Hg 4f XPS spectra of HgS nanoparticles formed in the presence of SRHA (a), SRFA (b) or GSH (c).

Supplementary Table 1. Physicochemical properties of HgS nanoparticles formed in the presence of natural ligands.

Physicochemical properties	Aging time (d)	Ligand		
		SRHA	SRFA	GSH
Geometric diameter (nm)*	1	5.3 ± 0.8 ^a	4.8 ± 0.6 ^a	5.4 ± 0.9 ^c
	11	5.2 ± 0.7 ^a	4.9 ± 0.6 ^a	6.3 ± 1.1 ^b
	21	5.2 ± 0.8 ^a	5.0 ± 0.6 ^a	7.4 ± 0.9 ^a
Geometric surface area (m ² g ⁻¹)*	1	151 ± 26 ^a	165 ± 21 ^a	149 ± 24 ^a
	11	152 ± 21 ^a	162 ± 23 ^a	127 ± 22 ^b
	21	152 ± 23 ^a	159 ± 19 ^a	106 ± 13 ^c
Crystallite diameter (nm)†	1	3.0 ± 0.4 ^a	3.3 ± 0.4 ^b	3.8 ± 0.2 ^c
	11	3.1 ± 0.4 ^a	3.9 ± 0.2 ^b	4.6 ± 0.4 ^b
	21	3.6 ± 0.4 ^a	4.5 ± 0.2 ^a	6.0 ± 0.4 ^a
Hydrodynamic diameter (nm)†	1	482 ± 60 ^a	52.9 ± 1.5 ^b	388 ± 33 ^b
	11	441 ± 53 ^a	55.3 ± 18 ^b	570 ± 69 ^{ab}
	21	537 ± 189 ^a	78.6 ± 2.7 ^a	623 ± 161 ^a
Zeta potential (mV)†	1	-23.2 ± 0.8 ^a	-26.0 ± 0.5 ^{ab}	-23.4 ± 4.3 ^a
	11	-23.1 ± 1.0 ^a	-26.9 ± 1.6 ^a	-21.3 ± 0.5 ^a
	21	-23.6 ± 0.4 ^a	-23.4 ± 1.9 ^b	-23.3 ± 0.9 ^a

*Values represent mean ± 1 SD of one hundred samples. Values that are statistically different ($p < 0.05$) among the treatments with different aging time according to the one-way ANOVA are indicated by italic lowercase letters.

†The crystallite diameters are calculated according to the Scherrer formula⁴ using the XRD data (Supplementary Figure 6). Values represent mean ± 1 SD of triplicate samples. Values that are statistically different ($p < 0.05$) among the treatments with different aging time according to the one-way ANOVA are indicated by italic lowercase letters.

Supplementary Table 2. Physicochemical properties of model HgS nanoparticles.

Physicochemical properties	Model material I	Model material II
(111)/(220)*	2.4	2.0
Geometric diameter (nm) [†]	8.9 ± 1.0^a	9.0 ± 1.2^a
Geometric surface area (m ² g ⁻¹) [†]	88.5 ± 10^a	87.6 ± 12^a
Crystallite diameter (nm) [‡]	6.5 ± 0.1^a	6.5 ± 0.5^a
Hydrodynamic diameter (nm) [‡]	599 ± 90^a	602 ± 221^a
Zeta potential (mV) [‡]	-12.0 ± 1.5^a	-14.4 ± 0.2^a

*The intensity ratios of the XRD diffraction peaks of metacinnabar (111) and (220) facets.

[†]Values represent mean \pm 1 SD of one hundred samples. Values that are statistically different ($p < 0.05$) between treatment I and II according to the independent *t*-test are indicated by italic lowercase letters.

[‡]The crystallite diameters are calculated according to the Scherrer formula⁴ using the XRD data (Supplementary Figure 7g). Values represent mean \pm 1 SD of triplicate samples. Values that are statistically different ($p < 0.05$) between treatment I and II according to the independent *t*-test are indicated by italic lowercase letters.

References

- 1 Wang, H. & Zhu, J. J. A sonochemical method for the selective synthesis of α -HgS and β -HgS nanoparticles. *Ultrason. Sonochem.* **11**, 293-300 (2004).
- 2 Zhang, T. et al. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. *Environ. Sci. Technol.* **46**, 6950-6958 (2012).
- 3 Institute of Experimental Mineralogy, Russian Academy of Science. Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues. <http://database.iem.ac.ru/mincryst/index.php> (Created 1997, Updated 2020).
- 4 Birks, L. S. F., H. Particle size determination from X-ray line broadening. *J. Appl. Phys.* **17**, 687-691 (1946).
- 5 Benoit, J. M., Gilmour, C. C. & Mason, R. P. Aspects of bioavailability of mercury for methylation in pure cultures of *Desulfobulbus propionicus* (1pr3). *Appl. Environ. Microbiol.* **67**, 51-58 (2001).
- 6 Gilmour, C. C. et al. Sulfate-reducing bacterium *Desulfovibrio desulfuricans* ND132 as a model for understanding bacterial mercury methylation. *Appl. Environ. Microbiol.* **77**, 3938-3951 (2011).
- 7 U.S. Environmental Protection Agency. Method 1631, Revision D: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectroscopy. (Washington, DC, 2001).

8 U.S. Environmental Protection Agency. Method 1630: Methyl Mercury in water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS. (Washington, DC, 2001).

9 Mortimer, M., Petersen, E. J., Buchholz, B. A., Orias, E. & Holden, P. A. Bioaccumulation of multiwall carbon nanotubes in *tetrahymena thermophila* by direct feeding or trophic transfer. *Environ. Sci. Technol.* **50**, 8876-8885 (2016).

10 Smith, P. K. et al. Measurement of protein using bicinchoninic acid. *Anal. Biochem.* **150**, 76-85 (1985).

11 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. *Nat. Protoc.* **5**, 725-738 (2010).

12 Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. *Nat. Methods* **12**, 7-8 (2015).

13 Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. *Nucleic Acids Res.* **43**, W174-W181 (2015).

14 Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX* **1-2**, 19-25 (2015).

15 Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. *Bioinformatics* **29**, 845-854 (2013).

16 Van der Spoel, D. et al. GROMACS: fast, flexible, and free. *J. Comput. Chem.* **26**, 1701-1718 (2005).

17 Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. *Proteins* **78**, 1950-1958 (2010).

18 Fuchs, J. F. et al. New model potentials for sulfur-copper(I) and sulfur-mercury(II) interactions in proteins: from *ab initio* to molecular dynamics. *J. Comput. Chem.* **27**, 837-856 (2006).

19 Evans, D. J. & Holian, B. L. The Nose–Hoover thermostat. *J. Chem. Phys.* **83**, 4069-4074 (1985).

20 Tom, D., Darrin, Y. & Lee, P. Particle mesh Ewald: an $N \cdot \log(N)$ method for Ewald sums in large systems. *J. Chem. Phys.* **98**, 10089-10092 (1993).

21 Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. *J. Comput. Chem.* **18**, 1463-1472 (1997).

22 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **79**, 926-935 (1983).

23 Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J. Mol. Graphics* **14**, 33-38 (1996).

24 Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **48**, 13115-13118 (1993).

25 Kresse, G. & Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169-11186 (1996).

26 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758-1775 (1999).

27 Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. *Phys. Rev. B* **13**, 5188-5192 (1976).