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ISOLATED PHOTOINDUCED CHANGE IN THE SHG PATTERN
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FIG. S1: Photoinduced change measured across the entire [1,1,1] SHG pattern at a fixed time delay
(0.2 ps). Here, photoinduced changes are isolated through taking the difference between pre- and

post-pump SHG patterns generated from (a) fiw = 1.55 eV, (b) lw = 1.03 eV and (c¢) fw = 0.89
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II. TIME-RESOLVED SHG TRACES WITH IR PROBES
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FIG. S2: Time-dependent traces of Algyg(2w) measured for (a,c) 1.03 eV and (b,d) 0.89 eV probe
energies following a 1.55 eV pump excitation (fluence = 4.34 mJ/cm?). Traces reveal a suppression
of both the (a,b) main lobe (0°) and (¢,d) the minor lobe (90°) for the [1,1,1] SHG patterns shown

as insets.



III. TIME-RESOLVED X-RAY DIFFRACTION

Time-resolved X-ray diffraction (TR-XRD) experiments were performed on a TaAs single
crystal having a surface normal along the (112) direction. This experiment was carried out
on the X-ray pump-probe (XPP) instrument [1] at the Linac Coherent Light Source (LCLS)
[2]. Optical excitation from an amplified Ti:Sapphire (1.55 eV) laser system operating at a
120 Hz repetition rate was chosen to closely match the experimental conditions used in our
TR-SHG study. Lattice dynamics probed by a 35 fs, monochromatic X-ray pulse centered
at 9.52 keV were measured following photoexcitation by an optical pump pulse having an

2. Experiments were performed in a reflection geometry,

excitation fluence of 2.86 mJ/cm
with the X-ray probe having a grazing angle of 0.5° with respect to the (112) face, and
chosen to closely match the penetration depth of a normally incident optical pump pulse.

Shot-to-shot fluctuations in the time delay between the optical pump and X-ray probe were
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FIG. S3: Lattice dynamics of the (a) (103) and (b) (200) Bragg reflections, as integrated over the

3 x 3 pixel area (~ 4.0 x 1072 °/pixel) shown in the inset.



corrected for by a time diagnostic tool [3], leading to a temporal resolution better than 80
fs.

Lattice dynamics of the (103) and (200) Bragg reflections, allowed by the tetragonal
symmetry of TaAs, are shown in Fig. S3. Here, a 20% attenuation of the (103) Bragg peak
following 1.55 eV pump excitation occurs over a ~ 10 ps timescale, consistent with lattice
heating captured by the Debye-Waller effect. No such attenuation is observed for the (200)
Bragg reflection, due to a dependence of the Debye-Waller factor on the scattering vector,
¢ [4]. The insets in Fig. S3(a-b) depict a change in intensity of the (103) and (200) Bragg
reflections, as defined by Al = I(At = 10 ps) — I(At = —2 ps), revealing that the position
and structure factor of these Bragg peaks remains constant over short timescales, suggesting
the lattice plays a secondary role. In conjunction with the fact that SHG patterns measured
with probe energies different from the 1.55 eV excitation energy retain 4mml’ symmetry,
these TR-XRD findings further emphasize that structural dynamics cannot underlie the
symmetry breaking observed in the SHG pattern when resonantly probing the transiently

excited state.



IV. PUMP HELICITY-DEPENDENCE OF PHOTOINDUCED SHG PATTERN
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FIG. S4: Photoinduced changes to the [1,1,1] SHG pattern at 1.55 eV measured as a function
of pump helicity (right circularly polarized (RCP) vs. left circularly polarized (LCP)) and delay.
Dashed lines at 90°, 180°, and 270° reveal a helicity dependence in the emergent asymmetric lobes
as well as in the rotation of the pattern over an ultrashort (a) -0.1 ps and (b) 0 ps timescale, which

is lost following a (c) 1.0 ps pump delay.



V. FLUENCE DEPENDENCE
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FIG. S5: Room temperature, pump fluence dependence of the time-resolved SHG traces at 1.55
eV for (a) the main lobe (0°) and (b) the asymmetric, photoinduced lobe (90°) present in the
[1,1,1] SHG pattern. The inset shows the fluence dependence of the relaxation times 72 and 7py, as

determined from fits following linearly polarized pump excitation.



VI.

FIG. S6: Temperature dependence of the time-resolved SHG traces at 1.55 eV for (a) the main lobe
(0°) and (b) the asymmetric, photoinduced lobe (90°) present in the [1,1,1] SHG pattern. The inset

shows the temperature dependence of the relaxation time 7o and 7p; (main text) as determined
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from fits following linearly polarized pump excitation with a fluence of 4.34 mJ/cm?.




VII. PUMP INDUCED SHIFT CURRENTS IN TAAS

The shift current is defined by Sipe and Shkrebtii [5] in terms of the nonlinear conductivity

tensor o,y as

Ja = Z Uabch(w)Ec(_w)v

be=ay,2

where the electric field of the incident light pulse is given by E(t) = E(w)e™ ! + E(—w)e™!.
Based on symmetry, the 4mm1’ point group of TaAs constrains oy, to yield three indepen-
dent tensor elements: 0., = 0yy: = Opzp = Oysy, Ozzy = Oy, and o,,.. For light incident
on the surface normal of the (112) face, the electric field can be expressed in terms of the

in-plane [1,1,1] and [1,1,0] axes as

a a

E,=—FEy i1+ —Fnh1
] T g
a a

E,=—FEp11— —FEu1
Yy |a&| [17171] |a/2| [17170]
Cc
EZ = - |a/1| E[l,l,ﬂ’

where |a}| = v2a4/1 + % and |a}| = v/2a define normalization constants in terms of the
lattice parameters a and c. Hence, the excitation of a shift current along the [1,1,0] axis is

allowed by symmetry under the condition

a

J[LLO] = |CL/2| (Jx - Jy)
a
= A (0202 Bp (W) E(—w) + 0pza B (W) Ep (—w) — UyyzEy(w)Ez(_w) - JyzyEz{w)Ey(_W))
2

1
= ————— O (B 1,1 (W) Ep 1,0 (—w) + Ep a1 (—w) Ep i (w)),

while shift current generation along [1,1,1] follows from

1

4]

J[l,l,ﬂ = (aJx + CLJy — CJZ)

=

1
= T2t &) JIT P (403, +20°0pp + 0.22) By 1)(w) Bpp a1y (—w) +

(2a* + C2>UzmmE[1,i,0] (W) Epi,0(—w)).

Thus, shift current generation along [1,1,1] will always be allowed by symmetry on the

(112) face, regardless of polarization. In contrast, the excitation of a shift current along

9



[1,1,0] requires the polarization to be detuned from either the [1,1,1] or [1,1,0] axes, with
the strongest contribution coming from an equal projection along these two orthogonal

axes (i.e. 45°). Such a result is similar to the symmetry constraints imposed on injection

photocurrents, which are restricted to flow along the [1,1,0] axis only [6].
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VIII. SYMMETRY ANALYSIS OF TIME-RESOLVED SECOND-HARMONIC
GENERATION PATTERNS

In this section, we describe our procedure for fitting the SHG patterns obtained before
and after pump excitation (At = {-5.0,0.0,1.0,5.0} ps). In Sec. VIITA, we give details
about the experimental setup. Then, in Sec. VIII B, we derive the form of the SHG electric
dipole tensor for the relevant magnetic point groups (MPGs), state the general form of the
expressions for the outgoing intensities in the [110] and [111] channels, and describe details

of our fits.

A. Experimental setup

The experimental geometry is depicted schematically in Fig. S7. It shows the scattering
of an SHG probe beam relative to the normal of the (112) surface, defined as a}, = a; +as+
2‘Z—§a3 = [1 123—;]. The two high-symmetry directions on the (112) surface plane are defined
as @) = a; + ay — a3z = [111] and a), = a; — ay = [110]. Here, we denote the conventional
tetragonal basis vectors as a; = [100], ay = [010] and a3 = [001], where |a1| = |az| = a =
3.4348 A and |as| = ¢ = 11.641 A. We note that the vector a), is orthogonal to the polar
axis, [001]. A transformation from the primed basis vectors to the conventional tetragonal

basis vectors is obtained via a;, = ) ; Us,as with the transformation matrix

1 1 1
Upa) =] 1 -1 1 ' (S1)
-1 0 2a*/c?

While the primed lattice vectors a;, are orthogonal a;, - aj; o das, they are not normalized.
The length of the primed basis vectors is |a}| = v2a4/1 + %, la}| = v/2a, and |a}| =
V2ay/1+ 2‘;—;. It is convenient to introduce normalized basis vectors via e, = a,/|a,| and

A
o =

The basis transformation matrix between these two orthonormal basis sets

€n = ay/lag].

is achieved via e}, = > 4 Usees with transformation matrix

) aflay| aflas|  a/las]
Usa) = | a/lai] —a/las] a/lag] | - (52)
—c/lai| 0 2a%/(claj])
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FIG. S7: Sketch of the experimental setup in which the incoming probe beam makes an angle,
6, with respect to the surface normal af = [112‘;—2] and the in-plane a} = [111] direction. The
polarization of the probe beam is continuously rotated over a full 360°, starting from ¢ = 0°

(p-polarization) parallel to the a)-a% plane.

Expressed in this orthonormal basis, the components of a vector transform according to
V=), Up€, =D 4 (Za Uﬁav;>65 = _svpes, leading to vg = 3 Usal,.

A Toump = 80 fs pump pulse centered at a wavelength A = 800 nm is directed along the
normal aj = [112‘;—;] axis of the crystal surface. The pump pulse is linearly polarized along
€pump = €} (ox [111]), up to about a 2° alignment error. The incoming probe beam has a
variable wavelength between A = 800 nm and A = 1400 nm, making an angle of § = 6°
with respect to the surface normal a} = [1 12‘;—;]. The scattering plane of the probe beam is
defined by the e)-e} plane as given by the incoming and outgoing wavevectors

2
Ein jout = Tﬂ <— sinf €| F cosd eé) , (S3)

where the upper sign refers to kj,. In the experiment, the incoming polarization, é;,(¢), is

continuously rotated, and in the primed coordinate system takes the form
éin(¢) = R(QSJ kin)(COS 07 07 — sin 9>T . (84)

Here, the rotation matrix R(¢, lgzin) describes a rotation by angle ¢ around the direction
ki, = ki, /|km|. Explicitly, é,(¢ = 0°) = cos fe] — sin fe’; corresponds to p-polarization and
éin(¢ = 90°) = —e), corresponds to s-polarization.

As shown in Fig. S7, we record the outgoing SHG intensities in two channels: one parallel

to al, = [110] (s-out) and one primarily parallel to a} = [111] (p-out):

I (2w; 6) o< | P(2w; ¢) - € (S5)
Lo (2w; ) o |[P(2w; ¢) - €] (S6)
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Here, P(2w;¢) is the nonlinear SHG polarization that is induced in the material at twice
the frequency of the incoming light w = 27¢/\. Since TaAs is non-centrosymmetric, i.e., it
lacks inversion symmetry, the polarization is dominated by the bulk electric dipole response
P(2wid) = > X (2wiw,w)E;(w; ¢)Ei(w; ¢), (S7)

Jk=a,y,2
where the incoming electric field is given by E(w; ¢) = E(w)éi(¢), and the indices i, j, k €

{z,y, 2} refer to the conventional tetragonal basis directions ay, as, as.

B. SHG electric dipole response tensor for relevant magnetic point groups

ED

In general, the non-linear electric dipole susceptibility x;:p has 18 independent complex

elements due to permutation symmetry in the last two indices (see Eq. (S7)):

TTT TTY TIZ YTT YTY YTZ 2XT 2TY 2T
ED _
Xijk = Xijk = TTY TYY TYZ YTy YYy yyz 2xy 2YY Yz , (S8)
TTZ TYZ TLZ YTz Yyzr Yyiz 2Tz 2Yz 224

where we will drop the superscript “ED”for the remainder of this discussion. The presence
of magnetic point symmetries in the crystal puts constraints on the form of the tensor,
according to Neumann’s principle. Under a transformation with an element R of the point
group, represented by a matrix R;;, one finds

Xijk &, Xijk = Z Ry Rjjr Ry Xt joa (S9)

it g K

where X;jx = Xijx by symmetry. Under time-reversal 7, which acts as complex conjuga-
tion K, the tensor transforms as x;jx 7, Xijk = Xijk- In the presence of time-reversal
symmetry, all elements of y;;i are thus real. For an element of the MPG that combines a

spatial symmetry with time-reversal R = R7T, one finds the constraint y;;p R=TH, Xijk =

* I
> o Riir By Riggr Xy = Xigi-

1. jmml’ symmetry before and long after pump excitation

TaAs is characterized by the crystalline point group Cy, = 4mm and possesses time-

reversal symmetry in the absence of any photocurrent. The relevant MPG before and long

13



(> 2.0 ps) after the pump pulse is therefore 4mm1’. The point group 4mm consists of a
fourfold rotation 4, around the polar a3 = [001] axis and four vertical mirror planes that
contain the polar axis. Two mirror planes are along the tetragonal coordinate axes m; ., and
Mo y,» and two are along the diagonals m, , , and m, _, .. Note that x, y, z refer to a; = [100],
= [010] and a3 = [001]. It is thus convenient to work in the unprimed (crystal) basis and
express the electric field E(w) in Eq. (S7) in this basis using the transformation matrix (S2).
For 4mm1’ symmetry, the nonlinear susceptibility contains only three independent real el-

ements, and we can use {zzz, zxz, 222} € R to parameterize it. Fourfold rotation symmetry,

for example, which is expressed by the matrix R[45, ] = (g _81 §> and R[4g,.] = (—31 é ?),
reduces the number of independent elements to four: {zxzz,xyz, zxx, zz2z}. The presence of

. . 100 L
mirror symmetries such as R[mg, .| = 0-10 enforces zyz — 0, resulting in the form of

the nonlinear electric-dipole susceptibility for 4mm symmetry to be

0 0 zxz 0 O 0 zzvw 0 0
X =110 00 |[|o o zzz|] 0 220 0[] (S10)

zxz 0 0 0 xzxz O 0 0 zzz

The tensor elements are real if the system is time-reversal symmetric (4mm1’) and complex
if time-reversal is broken (4mm). The outgoing intensities in the two channels we measure

read

I8 = o) sin®(2¢) (S11)

IS = [b1 + by cos?(9)] (S12)

For a fixed incoming angle 6, the coefficient a; (zxz2) is a function of zxz only and by (zxx) will
depend on zzz only. The coefficient by(zxz, 222, 222) depends on all three tensor elements.
Note that an (unknown) global proportionality factor has been absorbed into this definition
for the matrix elements. As a result, fitting our experimental data, which is given in arbitrary
units, only yields the ratios of tensor elements, but not their absolute values.

The outgoing intensities for the relevant MPG symmetries are collected in Table S1. In
addition to 4mm1’ symmetry, which is relevant for the bulk, static pattern, as well as for
long (> 2.0 ps) pump delays, we also include the form of the outgoing intensities for m1’
symmetry with diagonal mirror m, ., ,. This is the MPG of the (112) surface, which has only

one mirror plane in addition to time-reversal. Interestingly, we find that the general form of

14



the outgoing intensities is identical to the case of 4mm1’ symmetry, which is likewise found
to be valid in the absence of time-reversal. Adding the intensity of an additional electric-
dipole surface response therefore does not allow for the overall rotation and photoinduced
asymmetric lobes in the transiently excited IEHICI;] pattern to be fit.

The ratio of the fit parameters resulting from the best fits at At = 5.0 ps in Table S2
show agreement with previous studies [7], where the zzz element is similarly found to be
larger than the other two. The table also includes R? values of our fits from either the [110]
or [111] output channels. We find Rf;, = 0.97 and Rf 3 = 0.99, demonstrating that the

fit accurately captures our experimental data.

MPG Form of 1510 Form of IiHd
4mm]l’ a18§¢ (bl + 52035)2
4mm a18§¢ blcé + bgsé + b38%¢
ml’ (myq.2) als§¢ (b + bgci)2
m (Mg,g,:) aisy, bich + bash + bgs3,
1’ (a1 + agci5 + a332¢)2 (b1 + bgcé + b332¢)2
1 alc‘é + agc‘z‘)s(z, + a30¢52’5 + a4sé + a5s§¢ blcé + bQCzsd) + b30¢si + b4sé + b5sg¢

TABLE S1: General form of the outgoing intensities along [110] (s-out) and [111] (p-out) for the
different MPG symmetries occurring in our experiment. Here, ¢, = cos¢, sy, = sin¢ and the
coefficients a; and b; are real. Before and long after (At = F5 ps) pump excitation, the system has
4mm1’ symmetry. In the presence of a pump-induced photocurrent, all spatial symmetries and

time-reversal symmetry are lost, leaving the system in a reduced 1 symmetry state. We note that in

the main text, we use the following notation for 1 symmetry: Iélng = Zizo Cy[}m sin™(¢) cos* (),
corresponding to C([)lli] = by, CPH] = b, Cgli] = 205, CEH] = b3, and CEH] = by. Since the

symmetry of the (112) surface is given by m1’, where the diagonal mirror my , . is preserved, we
also include the form of the outgoing intensities for the m1’ point group. Because the form of
the expression for 4mm1’ and m1’ with diagonal mirror m,, , , are identical, we conclude that the
overall rotation and asymmetric lobes present at ¢ = 90° and ¢ = 270° in the photoinduced [111]

pattern, cannot be reproduced by considering an incoherent surface contribution.

15



4mm1’ ||At = —5.0 ps|At = 5.0 ps
zxx/rrz 0.12 —0.099
zzzfraz 7.4 5.4
YN 0.11 —0.091
ba/ /a1 6.4 4.9
R%([110]) 0.97 0.97
R([111)||  0.99 0.99

TABLE S2: Values of fit parameters and corresponding R? values for the best fits at At = F5.0 ps
for a 4mm1’ symmetric tensor x;jr. The fits are shown in Fig. 1 of the main text in panels (a,e)

and (d,f). We observe that the zzz element dominates as expected.

2. 1 symmetry in the transiently excited state

A linearly polarized pump pulse normally incident on the surface will induce a transient
photocurrent directed at ~ 6° relative to the m, , . mirror plane of the (112) surface [6].
This photocurrent will break all spatial symmetries along with time-reversal symmetry.
The MPG in the transiently excited state is therefore 1. The photocurrent decays on the
timescale of 7p; ~ 1.1 ps after which 4mm1’ symmetry is restored (see panels (d,h) in Fig. 1.
and Table S2).

The non-linear electric dipole tensor for 1 symmetry is of the general form in Eq. (S8)
with complex elements. The outgoing intensities IélHig] and IélHlé] are then described by
polynomials in cos ¢ and sin ¢ given in Table S1. The coefficients a; and b; for : = 1,...5
are real and lengthy expressions of the x;jz. They can be considered as independent fit
parameters, as the susceptibility contains 36 independent real elements for 1 symmetry. We
have obtained fits both in terms of the ten fit parameters a; and b; as well as in terms of
the x;jx, but we state only the values for a; and b; obtained from best fits in Table S3. The
table also contains R? values, which are all found to be 0.99. The resulting fits are shown
in panels (b, f) and (c, g) of Fig. 1 in the main text.

For completeness, Table S4 shows the general form of the outgoing intensities IélHi(O}] and

IE&E for all time-reversal invariant (i.e., grey) subgroups of 4mml’ along with the corre-

sponding crystallographic groups, where time-reversal symmetry is broken. It is interesting
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to note that as long as the diagonal mirror symmetry m, . is present, the form of the

outgoing intensities is identical to the fully symmetric case with spatial 4mm symmetry.

1 At = 0.0 ps|At = 1.0 ps
a1/as 0.078 0.078
as/as 0.15 0.15
as/as —0.031 —0.031
as/as 0.087 0.086
M ag = by Jas 20 29
Cgllﬂ/ag, =by/as 3.2 2.6
M /s = by /as 2.2 1.9
M as = by/as 1.7 0.70
18 /a5 = by fas | —0.45 ~0.29
R%([1,1,0]) 0.99 0.99
R*([1,1,1)) 0.99 0.99

TABLE S3: Fit parameters and corresponding R? values for a 1 point group symmetry of the
photoexcited state. The general form of the outgoing intensities is (see Table S1): Ig;5 =

a1cé—l—agcgsqg+a30¢32+a4sé+a533¢ and Ingg = blcé+bgc§’58¢+bgc¢si+b4sé+b5s§¢. We note that in

the main text, we use the following notation for 1 symmetry, I élng = Zizo C}llm sin"(¢) cos* (),
corresponding to CY'MY = by, ¢ = by, M = 265, ¢l = by, and [ = by. The overall rota-
tion of the I élng pattern and anisotropy in the photoinduced lobes are captured by the by coefficient.
Asymmetry in the photoinduced lobes is given by a non-zero bs, by coefficients (predominately b3 in

our fits). The coefficient by is responsible for a finite value of the local minima around ¢ = 90°,270°.

C. Discussion of symmetry breaking transient features in the SHG patterns

Let us briefly discuss which of the terms in the general form of the outgoing intensities
allow us to capture the observed transient features in the SHG pattern. To recall, in the
transient regime at At = 0.0 ps and At = 1.0 ps, we find (i) an overall rotation of the [ngg

pattern by ~ 2.5° and (ii) emergent, asymmetric lobes at ¢ = 90° and ¢ = 270°. In contrast
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MPG Form of Iélég] Form of Ingg
2mml’, (Mg —g 2, My z.2) a15%¢ (b1 + bgc?ﬁ)2
2mm, (Mg, g2, My z ) a15§¢ blcé + bQSé + b38%¢
2mm1’, (Mg, M0y.2) (0103, + a252¢)2 (b1 + bgci + b382¢)2
2mm, (Mmg.0,2, M0,y,2) cé (a1 + CLQCZ5 + a382¢) blcg5 + bgcgs(b + b30¢si + b4sé + b5s%¢
41’ (alcé + a252¢)2 (b1 + bgci + b382¢)2
4 ci (a1 + agcé + a332¢) blcé + bQCZ’SSd) + b30¢sz + b4si + b58%¢
ml’ (mg,2) (a1 + azci + a332¢)2 (b + 5263) + 5352¢>)2
m (mg.0,z) (11035 + agci% + a30¢82 + a453> + a5s§¢ blc‘;5 + bgcisd) + bgc¢si + b4sé + b5s§¢
21’ (alcg5 + a232¢)2 (b1 + bgcé + b332¢)2
2 05) (a1 + agci + a352¢) blcé + bQCg’sng + b30¢si + b4sé + b5sg¢

TABLE S4: General form of the outgoing intensities along [110] (s-out) and [111] (p-out) for the
remaining white and corresponding gray MPGs that are derived from 4mm1l’. Here, ¢4 = cos ¢,
s = sin ¢ and the coefficients a; and b; are real. The expression for m1’ and m with mirror mg, .
is identical to the one with m, .. We state these expressions for completeness, but note that we
do not consider other possible black-white magnetic subgroups of 4mm1’, as they are not relevant

to our experiment.

the Ig&gj pattern remains unchanged under pump excitation.

Importantly, neither of the two features, (i) and (ii), described above can be captured by
a tensor constrained by 4mm1’ symmetry, as the lobes must remain pinned to the coordinate
axes. While the emergence of small lobes at ¢ = 90° (and ¢ = 270°) can be enforced by
increasing the value of by, these will necessarily be symmetric around a maximum at ¢ = 90°.
Similarly, the overall rotation can be accounted for in the absence of time-reversal symmetry
for 4mm, but the asymmetry of the photoinduced lobes at ¢ = 90° and ¢ = 270° cannot
be obtained with a 4mm tensor. Since the diagonal mirror m, , , enforces the form for m1’
(m) to be identical to 4mm1’ (4mm) (see Table S1), the same applies for a (surface) tensor
constrained by m1’ (with m, , , mirror symmetry).

Interestingly, the asymmetry of the small lobes at ¢ = 90° and ¢ = 270° cannot be

produced in the presence of time-reversal symmetry, even if all spatial symmetries are broken,
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i.e. for 1’ symmetry. This is shown most transparently by rewriting

(b1 sin® ¢ + by cos® ¢ + by sin ¢ cos ¢)* = [ay cos®(¢ — ¢o) + az sin®(¢ — ¢o)] ? (S13)

with global shift angle ¢g = Ssin™'[bs/(a; — a»)] and a; = 2 F VB gy = b+

oS

, where
b="0b +byand B = (b — by)* + bg. The sign in the expressions for a; and as is chosen
such that sign(a; — as) = sign(b; — by). Note that a; — ay = F+/B. While the expression
for 1’ can thus reproduce a global shift of the pattern by ¢y, the pattern is necessarily
symmetric around the lobes and in particular the small side lobes close to 7/2. In contrast,
the observed asymmetry shown in Fig. 1 (b, f, ¢, g) is fully consistent with 1 symmetry.
Hence, the asymmetry of these emergent lobes can be directly associated with a breaking of
both time-reversal and mirror m, , . symmetry brought on by photocurrent generation.

In our fit using 1 symmetry, the overall rotation is (mostly) accounted for by the coefficient
by = c{“ﬂ (see Table S3). The asymmetry of the photoinduced lobes at ¢ = 90° and ¢ = 270°
is (mostly) expressed by the fit parameter by = Cgm, because it is multiplied by sin® ¢ cos ¢
and is thus larger close to ¢ = 7/2 than sin ¢ cos® ¢. The magnitude of the side lobes at
¢ = /2 is encoded by the fit parameter by = Cz[lllﬂ (which is multiplied by sin* ¢). While
the largest parameter is b; = C([]Hﬂ, which is responsible for the main lobes at ¢ = 0°, we find
that at At = 0.0(1.0) ps the ”overall rotation parameter” by/b; = C{lﬂ]/C([)lﬂ] = 0.16(0.09)
and “lobe asymmetry parameter” bs/b; = Cgm /C([)lﬂ] = 0.11(0.07) are still significant. In
other words, a symmetry breaking photocurrent has a significant impact of order 10 - 15%

on the IélHlé] pattern.
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IX. FIRST-PRINCIPLES CALCULATIONS OF OPTICAL CONDUCTIVITY IN
TAAS
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FIG. S8: (a) Total density-of-states (DOS) of TaAs (black) decomposed into Ta-d (blue) and
As-p (red) orbital contributions. Calculated optical conductivity for (b) oz = oyy and (c) 0.
decomposed to show different orbital contributions. Here, solid and dashed curves represent the

real and imaginary parts of the optical conductivity, respectively.

The calculated density-of-states (DOS) of TaAs is shown in Fig. S8(a). The DOS near the
Fermi energy (0 eV) mainly comes from the contribution of Ta-d orbitals. From the DOS,
we find that the optical conductivity can be described by four contributions: the transitions
from As-p to As-p orbitals, As-p to Ta-d orbitals, Ta-d to As-p orbitals, and Ta-d to Ta-d
orbitals. In the Kubo-Greenwood formula, there are two momentum matrix elements in
the numerator. The orbital contribution for the transitions can be defined via one of the
momentum matrices through, (kM |p, v v -|kN), where M and N denote the pseudoatomic
orbitals. The orbital contribution for the optical conductivity, o(w) is shown in Fig. S8(b-c)

for the 0,, and o,, components, respectively. In Fig. S8(b), a prominent contribution close
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to 1.0 eV in the in-plane conductivity o,, (or oy,) can be identified as the result of an As-p

to Ta-d transition. In contrast, Fig. S8(c) shows a prominent contribution close to 1.9 eV

for the out-of-plane conductivity o.., which can be identified as the result of a Ta-d to Ta-d

transition.
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