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I. ISOLATED PHOTOINDUCED CHANGE IN THE SHG PATTERN

FIG. S1: Photoinduced change measured across the entire [1,1,1̄] SHG pattern at a fixed time delay

(0.2 ps). Here, photoinduced changes are isolated through taking the difference between pre- and

post-pump SHG patterns generated from (a) ~ω = 1.55 eV, (b) ~ω = 1.03 eV and (c) ~ω = 0.89

eV probe energies.

2



II. TIME-RESOLVED SHG TRACES WITH IR PROBES

FIG. S2: Time-dependent traces of ∆ISHG(2ω) measured for (a,c) 1.03 eV and (b,d) 0.89 eV probe

energies following a 1.55 eV pump excitation (fluence = 4.34 mJ/cm2). Traces reveal a suppression

of both the (a,b) main lobe (0◦) and (c,d) the minor lobe (90◦) for the [1,1,1̄] SHG patterns shown

as insets.
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III. TIME-RESOLVED X-RAY DIFFRACTION

Time-resolved X-ray diffraction (TR-XRD) experiments were performed on a TaAs single

crystal having a surface normal along the (112) direction. This experiment was carried out

on the X-ray pump-probe (XPP) instrument [1] at the Linac Coherent Light Source (LCLS)

[2]. Optical excitation from an amplified Ti:Sapphire (1.55 eV) laser system operating at a

120 Hz repetition rate was chosen to closely match the experimental conditions used in our

TR-SHG study. Lattice dynamics probed by a 35 fs, monochromatic X-ray pulse centered

at 9.52 keV were measured following photoexcitation by an optical pump pulse having an

excitation fluence of 2.86 mJ/cm2. Experiments were performed in a reflection geometry,

with the X-ray probe having a grazing angle of 0.5◦ with respect to the (112) face, and

chosen to closely match the penetration depth of a normally incident optical pump pulse.

Shot-to-shot fluctuations in the time delay between the optical pump and X-ray probe were

FIG. S3: Lattice dynamics of the (a) (103) and (b) (200) Bragg reflections, as integrated over the

3× 3 pixel area (∼ 4.0× 10−2 ◦/pixel) shown in the inset.
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corrected for by a time diagnostic tool [3], leading to a temporal resolution better than 80

fs.

Lattice dynamics of the (103) and (200) Bragg reflections, allowed by the tetragonal

symmetry of TaAs, are shown in Fig. S3. Here, a 20% attenuation of the (103) Bragg peak

following 1.55 eV pump excitation occurs over a ∼ 10 ps timescale, consistent with lattice

heating captured by the Debye-Waller effect. No such attenuation is observed for the (200)

Bragg reflection, due to a dependence of the Debye-Waller factor on the scattering vector,

~q [4]. The insets in Fig. S3(a-b) depict a change in intensity of the (103) and (200) Bragg

reflections, as defined by ∆I = I(∆t = 10 ps)− I(∆t = −2 ps), revealing that the position

and structure factor of these Bragg peaks remains constant over short timescales, suggesting

the lattice plays a secondary role. In conjunction with the fact that SHG patterns measured

with probe energies different from the 1.55 eV excitation energy retain 4mm1’ symmetry,

these TR-XRD findings further emphasize that structural dynamics cannot underlie the

symmetry breaking observed in the SHG pattern when resonantly probing the transiently

excited state.
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IV. PUMP HELICITY-DEPENDENCE OF PHOTOINDUCED SHG PATTERN

FIG. S4: Photoinduced changes to the [1,1,1̄] SHG pattern at 1.55 eV measured as a function

of pump helicity (right circularly polarized (RCP) vs. left circularly polarized (LCP)) and delay.

Dashed lines at 90◦, 180◦, and 270◦ reveal a helicity dependence in the emergent asymmetric lobes

as well as in the rotation of the pattern over an ultrashort (a) -0.1 ps and (b) 0 ps timescale, which

is lost following a (c) 1.0 ps pump delay.
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V. FLUENCE DEPENDENCE

FIG. S5: Room temperature, pump fluence dependence of the time-resolved SHG traces at 1.55

eV for (a) the main lobe (0◦) and (b) the asymmetric, photoinduced lobe (90◦) present in the

[1,1,1̄] SHG pattern. The inset shows the fluence dependence of the relaxation times τ2 and τPI, as

determined from fits following linearly polarized pump excitation.
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VI. TEMPERATURE DEPENDENCE

FIG. S6: Temperature dependence of the time-resolved SHG traces at 1.55 eV for (a) the main lobe

(0◦) and (b) the asymmetric, photoinduced lobe (90◦) present in the [1,1,1̄] SHG pattern. The inset

shows the temperature dependence of the relaxation time τ2 and τPI (main text) as determined

from fits following linearly polarized pump excitation with a fluence of 4.34 mJ/cm2.
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VII. PUMP INDUCED SHIFT CURRENTS IN TAAS

The shift current is defined by Sipe and Shkrebtii [5] in terms of the nonlinear conductivity

tensor σabc as

Ja =
∑

b,c=x,y,z

σabcEb(ω)Ec(−ω),

where the electric field of the incident light pulse is given by E(t) = E(ω)e−iωt +E(−ω)eiωt.

Based on symmetry, the 4mm1’ point group of TaAs constrains σabc to yield three indepen-

dent tensor elements: σxxz = σyyz = σxzx = σyzy, σzxx = σzyy, and σzzz. For light incident

on the surface normal of the (112) face, the electric field can be expressed in terms of the

in-plane [1,1,1̄] and [1,1̄,0] axes as

Ex =
a

|a′1|
E[1,1,1̄] +

a

|a′2|
E[1,1̄,0]

Ey =
a

|a′1|
E[1,1,1̄] −

a

|a′2|
E[1,1̄,0]

Ez = − c

|a′1|
E[1,1,1̄],

where |a′1| =
√

2a
√

1 + c2

2a2
and |a′2| =

√
2a define normalization constants in terms of the

lattice parameters a and c. Hence, the excitation of a shift current along the [1,1̄,0] axis is

allowed by symmetry under the condition

J[1,1̄,0] =
a

|a′2|
(Jx − Jy)

=
a

|a′2|
(σxxzEx(ω)Ez(−ω) + σxzxEz(ω)Ex(−ω)− σyyzEy(ω)Ez(−ω)− σyzyEz(ω)Ey(−ω))

= − 1√
1 + 2(a

c
)2
σxxz(E[1,1,1̄](ω)E[1,1̄,0](−ω) + E[1,1,1̄](−ω)E[1,1̄,0](ω)),

while shift current generation along [1,1,1̄] follows from

J[1,1,1̄] =
1

|a′1|
(aJx + aJy − cJz)

= − 1

(2a2 + c2)
√

1 + 2(a
c
)2

((4a2
xxz + 2a2σzxx + c2σzzz)E[1,1,1̄](ω)E[1,1,1̄](−ω)+

(2a2 + c2)σzxxE[1,1̄,0](ω)E[1,1̄,0](−ω)).

Thus, shift current generation along [1,1,1̄] will always be allowed by symmetry on the

(112) face, regardless of polarization. In contrast, the excitation of a shift current along
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[1,1̄,0] requires the polarization to be detuned from either the [1,1,1̄] or [1,1̄,0] axes, with

the strongest contribution coming from an equal projection along these two orthogonal

axes (i.e. 45◦). Such a result is similar to the symmetry constraints imposed on injection

photocurrents, which are restricted to flow along the [1,1̄,0] axis only [6].
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VIII. SYMMETRY ANALYSIS OF TIME-RESOLVED SECOND-HARMONIC

GENERATION PATTERNS

In this section, we describe our procedure for fitting the SHG patterns obtained before

and after pump excitation (∆t = {−5.0, 0.0, 1.0, 5.0} ps). In Sec. VIII A, we give details

about the experimental setup. Then, in Sec. VIII B, we derive the form of the SHG electric

dipole tensor for the relevant magnetic point groups (MPGs), state the general form of the

expressions for the outgoing intensities in the [11̄0] and [111̄] channels, and describe details

of our fits.

A. Experimental setup

The experimental geometry is depicted schematically in Fig. S7. It shows the scattering

of an SHG probe beam relative to the normal of the (112) surface, defined as a′3 = a1 +a2 +

2a
2

c2
a3 ≡ [112a

2

c2
]. The two high-symmetry directions on the (112) surface plane are defined

as a′1 = a1 + a2 − a3 = [111̄] and a′2 = a1 − a2 = [11̄0]. Here, we denote the conventional

tetragonal basis vectors as a1 ≡ [100], a2 ≡ [010] and a3 = [001], where |a1| = |a2| = a =

3.4348 Å and |a3| = c = 11.641 Å. We note that the vector a′2 is orthogonal to the polar

axis, [001]. A transformation from the primed basis vectors to the conventional tetragonal

basis vectors is obtained via a′α =
∑

β Uβαaβ with the transformation matrix

(Uβα) =


1 1 1

1 −1 1

−1 0 2a2/c2

 . (S1)

While the primed lattice vectors a′α are orthogonal a′α ·a′β ∝ δαβ, they are not normalized.

The length of the primed basis vectors is |a′1| =
√

2a
√

1 + c2

2a2
, |a′2| =

√
2a, and |a′3| =

√
2a
√

1 + 2a
2

c2
. It is convenient to introduce normalized basis vectors via eα = aα/|aα| and

e′α = a′α/|a′α|. The basis transformation matrix between these two orthonormal basis sets

is achieved via e′α =
∑

β Ũβαeβ with transformation matrix

(Ũβα) =


a/|a′1| a/|a′2| a/|a′3|

a/|a′1| −a/|a′2| a/|a′3|

−c/|a′1| 0 2a2/(c|a′3|)

 . (S2)
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FIG. S7: Sketch of the experimental setup in which the incoming probe beam makes an angle,

θ, with respect to the surface normal a′3 = [112a
2

c2
] and the in-plane a′1 = [111̄] direction. The

polarization of the probe beam is continuously rotated over a full 360◦, starting from φ = 0◦

(p-polarization) parallel to the a′1-a′3 plane.

Expressed in this orthonormal basis, the components of a vector transform according to

v =
∑

α v
′
αe
′
α =

∑
β

(∑
α Ũβαv

′
α

)
eβ =

∑
β vβeβ, leading to vβ =

∑
α Ũβαv

′
α.

A τpump = 80 fs pump pulse centered at a wavelength λ = 800 nm is directed along the

normal a′3 = [112a
2

c2
] axis of the crystal surface. The pump pulse is linearly polarized along

êpump = e′1(∝ [111̄]), up to about a 2◦ alignment error. The incoming probe beam has a

variable wavelength between λ = 800 nm and λ = 1400 nm, making an angle of θ = 6◦

with respect to the surface normal a′3 = [112a
2

c2
]. The scattering plane of the probe beam is

defined by the e′1-e′3 plane as given by the incoming and outgoing wavevectors

kin/out =
2π

λ

(
− sin θ e′1 ∓ cos θ e′3

)
, (S3)

where the upper sign refers to kin. In the experiment, the incoming polarization, êin(φ), is

continuously rotated, and in the primed coordinate system takes the form

êin(φ) = R(φ, k̂in)(cos θ, 0,− sin θ)T . (S4)

Here, the rotation matrix R(φ, k̂in) describes a rotation by angle φ around the direction

k̂in = kin/|kin|. Explicitly, êin(φ = 0◦) = cos θe′1 − sin θe′3 corresponds to p-polarization and

êin(φ = 90◦) = −e′2 corresponds to s-polarization.

As shown in Fig. S7, we record the outgoing SHG intensities in two channels: one parallel

to a′2 = [11̄0] (s-out) and one primarily parallel to a′1 = [111̄] (p-out):

I
[11̄0]
SHG(2ω;φ) ∝ |P (2ω;φ) · e′2|2 (S5)

I
[111̄]
SHG(2ω;φ) ∝ |P (2ω;φ) · e′1|2 . (S6)
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Here, P (2ω;φ) is the nonlinear SHG polarization that is induced in the material at twice

the frequency of the incoming light ω = 2πc/λ. Since TaAs is non-centrosymmetric, i.e., it

lacks inversion symmetry, the polarization is dominated by the bulk electric dipole response

Pi(2ω;φ) =
∑

j,k=x,y,z

χED
ijk (2ω;ω, ω)Ej(ω;φ)Ek(ω;φ) , (S7)

where the incoming electric field is given by E(ω;φ) = E(ω)êin(φ), and the indices i, j, k ∈

{x, y, z} refer to the conventional tetragonal basis directions a1, a2, a3.

B. SHG electric dipole response tensor for relevant magnetic point groups

In general, the non-linear electric dipole susceptibility χED
ijk has 18 independent complex

elements due to permutation symmetry in the last two indices (see Eq. (S7)):

χED
ijk ≡ χijk =



xxx xxy xxz

xxy xyy xyz

xxz xyz xzz



yxx yxy yxz

yxy yyy yyz

yxz yyz yzz



zxx zxy zxz

zxy zyy zyz

zxz zyz zzz


 , (S8)

where we will drop the superscript “ED”for the remainder of this discussion. The presence

of magnetic point symmetries in the crystal puts constraints on the form of the tensor,

according to Neumann’s principle. Under a transformation with an element R of the point

group, represented by a matrix Rij, one finds

χijk
R−→ χ̃ijk =

∑
i′,j′,k′

Rii′Rjj′Rkk′χi′j′k′ (S9)

where χ̃ijk = χijk by symmetry. Under time-reversal T , which acts as complex conjuga-

tion K, the tensor transforms as χijk
T−→ χ̃ijk = χ∗ijk. In the presence of time-reversal

symmetry, all elements of χijk are thus real. For an element of the MPG that combines a

spatial symmetry with time-reversal R′ = RT , one finds the constraint χijk
R′=T R−−−−→ χ̃ijk =∑

i′,j′,k′ Rii′Rjj′Rkk′χ
∗
i′j′k′ = χijk.

1. 4mm1’ symmetry before and long after pump excitation

TaAs is characterized by the crystalline point group C4v = 4mm and possesses time-

reversal symmetry in the absence of any photocurrent. The relevant MPG before and long
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(> 2.0 ps) after the pump pulse is therefore 4mm1’. The point group 4mm consists of a

fourfold rotation 40,0,z around the polar a3 = [001] axis and four vertical mirror planes that

contain the polar axis. Two mirror planes are along the tetragonal coordinate axes mx,0,z and

m0,y,z and two are along the diagonals mx,x,z and mx,−x,z. Note that x, y, z refer to a1 = [100],

a2 = [010] and a3 = [001]. It is thus convenient to work in the unprimed (crystal) basis and

express the electric field E(ω) in Eq. (S7) in this basis using the transformation matrix (S2).

For 4mm1’ symmetry, the nonlinear susceptibility contains only three independent real el-

ements, and we can use {xxz, zxx, zzz} ∈ R to parameterize it. Fourfold rotation symmetry,

for example, which is expressed by the matrix R[4+
0,0,z] =

(
0 −1 0
1 0 0
0 0 1

)
and R[4−0,0,z] =

(
0 1 0
−1 0 0
0 0 1

)
,

reduces the number of independent elements to four: {xxz, xyz, zxx, zzz}. The presence of

mirror symmetries such as R[mx,0,z] =
(

1 0 0
0 −1 0
0 0 1

)
enforces xyz → 0, resulting in the form of

the nonlinear electric-dipole susceptibility for 4mm symmetry to be

χ
(C4v)
ijk =




0 0 xxz

0 0 0

xxz 0 0




0 0 0

0 0 xxz

0 xxz 0



zxx 0 0

0 zxx 0

0 0 zzz


 . (S10)

The tensor elements are real if the system is time-reversal symmetric (4mm1’) and complex

if time-reversal is broken (4mm). The outgoing intensities in the two channels we measure

read

I
[11̄0]
SHG = a1 sin2(2φ) (S11)

I
[111̄]
SHG =

[
b1 + b2 cos2(φ)

]2
. (S12)

For a fixed incoming angle θ, the coefficient a1(xxz) is a function of xxz only and b1(zxx) will

depend on zxx only. The coefficient b2(xxz, zxx, zzz) depends on all three tensor elements.

Note that an (unknown) global proportionality factor has been absorbed into this definition

for the matrix elements. As a result, fitting our experimental data, which is given in arbitrary

units, only yields the ratios of tensor elements, but not their absolute values.

The outgoing intensities for the relevant MPG symmetries are collected in Table S1. In

addition to 4mm1’ symmetry, which is relevant for the bulk, static pattern, as well as for

long (> 2.0 ps) pump delays, we also include the form of the outgoing intensities for m1’

symmetry with diagonal mirror mx,x,z. This is the MPG of the (112) surface, which has only

one mirror plane in addition to time-reversal. Interestingly, we find that the general form of
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the outgoing intensities is identical to the case of 4mm1’ symmetry, which is likewise found

to be valid in the absence of time-reversal. Adding the intensity of an additional electric-

dipole surface response therefore does not allow for the overall rotation and photoinduced

asymmetric lobes in the transiently excited I
[111̄]
SHG pattern to be fit.

The ratio of the fit parameters resulting from the best fits at ∆t = ∓5.0 ps in Table S2

show agreement with previous studies [7], where the zzz element is similarly found to be

larger than the other two. The table also includes R2 values of our fits from either the [11̄0]

or [111̄] output channels. We find R2
[11̄0] = 0.97 and R2

[111̄] = 0.99, demonstrating that the

fit accurately captures our experimental data.

MPG Form of I
[11̄0]
SHG Form of I

[111̄]
SHG

4mm1’ a1s
2
2φ

(
b1 + b2c

2
φ

)2
4mm a1s

2
2φ b1c

4
φ + b2s

4
φ + b3s

2
2φ

m1’ (mx,x,z) a1s
2
2φ

(
b1 + b2c

2
φ

)2
m (mx,x,z) a1s

2
2φ b1c

4
φ + b2s

4
φ + b3s

2
2φ

1’
(
a1 + a2c

2
φ + a3s2φ

)2 (
b1 + b2c

2
φ + b3s2φ

)2
1 a1c

4
φ + a2c

3
φsφ + a3cφs

3
φ + a4s

4
φ + a5s

2
2φ b1c

4
φ + b2c

3
φsφ + b3cφs

3
φ + b4s

4
φ + b5s

2
2φ

TABLE S1: General form of the outgoing intensities along [11̄0] (s-out) and [111̄] (p-out) for the

different MPG symmetries occurring in our experiment. Here, cφ ≡ cosφ, sφ ≡ sinφ and the

coefficients ai and bi are real. Before and long after (∆t = ∓5 ps) pump excitation, the system has

4mm1′ symmetry. In the presence of a pump-induced photocurrent, all spatial symmetries and

time-reversal symmetry are lost, leaving the system in a reduced 1 symmetry state. We note that in

the main text, we use the following notation for 1 symmetry: I
[111̄]
SHG =

∑4
n=0 C

[111̄]
n sinn(φ) cos4−n(φ),

corresponding to C[111̄]
0 = b1, C[111̄]

1 = b2, C[111̄]
2 = 2b5, C[111̄]

3 = b3, and C[111̄]
4 = b4. Since the

symmetry of the (112) surface is given by m1′, where the diagonal mirror mx,x,z is preserved, we

also include the form of the outgoing intensities for the m1′ point group. Because the form of

the expression for 4mm1′ and m1′ with diagonal mirror mx,x,z are identical, we conclude that the

overall rotation and asymmetric lobes present at φ = 90◦ and φ = 270◦ in the photoinduced [111̄]

pattern, cannot be reproduced by considering an incoherent surface contribution.
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4mm1’ ∆t = −5.0 ps ∆t = 5.0 ps

zxx/xxz 0.12 −0.099

zzz/xxz 7.4 5.4

b1/
√
a1 0.11 −0.091

b2/
√
a1 6.4 4.9

R2([11̄0]) 0.97 0.97

R2([111̄]) 0.99 0.99

TABLE S2: Values of fit parameters and corresponding R2 values for the best fits at ∆t = ∓5.0 ps

for a 4mm1’ symmetric tensor χijk. The fits are shown in Fig. 1 of the main text in panels (a,e)

and (d,f). We observe that the zzz element dominates as expected.

2. 1 symmetry in the transiently excited state

A linearly polarized pump pulse normally incident on the surface will induce a transient

photocurrent directed at ∼ 6◦ relative to the mx,x,z mirror plane of the (112) surface [6].

This photocurrent will break all spatial symmetries along with time-reversal symmetry.

The MPG in the transiently excited state is therefore 1. The photocurrent decays on the

timescale of τPI ∼ 1.1 ps after which 4mm1’ symmetry is restored (see panels (d,h) in Fig. 1.

and Table S2).

The non-linear electric dipole tensor for 1 symmetry is of the general form in Eq. (S8)

with complex elements. The outgoing intensities I
[11̄0]
SHG and I

[111̄]
SHG are then described by

polynomials in cosφ and sinφ given in Table S1. The coefficients ai and bi for i = 1, . . . 5

are real and lengthy expressions of the χijk. They can be considered as independent fit

parameters, as the susceptibility contains 36 independent real elements for 1 symmetry. We

have obtained fits both in terms of the ten fit parameters ai and bi as well as in terms of

the χijk, but we state only the values for ai and bi obtained from best fits in Table S3. The

table also contains R2 values, which are all found to be 0.99. The resulting fits are shown

in panels (b, f) and (c, g) of Fig. 1 in the main text.

For completeness, Table S4 shows the general form of the outgoing intensities I
[11̄0]
SHG and

I
[111̄]
SHG for all time-reversal invariant (i.e., grey) subgroups of 4mm1’ along with the corre-

sponding crystallographic groups, where time-reversal symmetry is broken. It is interesting

16



to note that as long as the diagonal mirror symmetry mx,x,z is present, the form of the

outgoing intensities is identical to the fully symmetric case with spatial 4mm symmetry.

1 ∆t = 0.0 ps ∆t = 1.0 ps

a1/a5 0.078 0.078

a2/a5 0.15 0.15

a3/a5 −0.031 −0.031

a4/a5 0.087 0.086

C[111̄]
0 /a5 = b1/a5 20 29

C[111̄]
1 /a5 = b2/a5 3.2 2.6

C[111̄]
3 /a5 = b3/a5 2.2 1.9

C[111̄]
4 /a5 = b4/a5 1.7 0.70

1
2C

[111̄]
2 /a5 = b5/a5 −0.45 −0.29

R2([1, 1̄, 0]) 0.99 0.99

R2([1, 1, 1̄]) 0.99 0.99

TABLE S3: Fit parameters and corresponding R2 values for a 1 point group symmetry of the

photoexcited state. The general form of the outgoing intensities is (see Table S1): I
[11̄0]
SHG =

a1c
4
φ+a2c

3
φsφ+a3cφs

3
φ+a4s

4
φ+a5s

2
2φ and I

[111̄]
SHG = b1c

4
φ+b2c

3
φsφ+b3cφs

3
φ+b4s

4
φ+b5s

2
2φ. We note that in

the main text, we use the following notation for 1 symmetry, I
[111̄]
SHG =

∑4
n=0 C

[111̄]
n sinn(φ) cos4−n(φ),

corresponding to C[111̄]
0 = b1, C[111̄]

1 = b2, C[111̄]
2 = 2b5, C[111̄]

3 = b3, and C[111̄]
4 = b4. The overall rota-

tion of the I
[111̄]
SHG pattern and anisotropy in the photoinduced lobes are captured by the b2 coefficient.

Asymmetry in the photoinduced lobes is given by a non-zero b3, b4 coefficients (predominately b3 in

our fits). The coefficient b4 is responsible for a finite value of the local minima around φ = 90◦, 270◦.

C. Discussion of symmetry breaking transient features in the SHG patterns

Let us briefly discuss which of the terms in the general form of the outgoing intensities

allow us to capture the observed transient features in the SHG pattern. To recall, in the

transient regime at ∆t = 0.0 ps and ∆t = 1.0 ps, we find (i) an overall rotation of the I
[111̄]
SHG

pattern by ∼ 2.5◦, and (ii) emergent, asymmetric lobes at φ = 90◦ and φ = 270◦. In contrast
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MPG Form of I
[11̄0]
SHG Form of I

[111̄]
SHG

2mm1’, (mx,−x,z,mx,x,z) a1s
2
2φ

(
b1 + b2c

2
φ

)2
2mm, (mx,−x,z,mx,x,z) a1s

2
2φ b1c

4
φ + b2s

4
φ + b3s

2
2φ

2mm1’, (mx,0,z,m0,y,z)
(
a1c

2
φ + a2s2φ

)2 (
b1 + b2c

2
φ + b3s2φ

)2
2mm, (mx,0,z,m0,y,z) c2

φ

(
a1 + a2c

2
φ + a3s2φ

)
b1c

4
φ + b2c

3
φsφ + b3cφs

3
φ + b4s

4
φ + b5s

2
2φ

41’
(
a1c

2
φ + a2s2φ

)2 (
b1 + b2c

2
φ + b3s2φ

)2
4 c2

φ

(
a1 + a2c

2
φ + a3s2φ

)
b1c

4
φ + b2c

3
φsφ + b3cφs

3
φ + b4s

4
φ + b5s

2
2φ

m1’ (mx,0,z)
(
a1 + a2c

2
φ + a3s2φ

)2 (
b1 + b2c

2
φ + b3s2φ

)2
m (mx,0,z) a1c

4
φ + a2c

3
φsφ + a3cφs

3
φ + a4s

4
φ + a5s

2
2φ b1c

4
φ + b2c

3
φsφ + b3cφs

3
φ + b4s

4
φ + b5s

2
2φ

21’
(
a1c

2
φ + a2s2φ

)2 (
b1 + b2c

2
φ + b3s2φ

)2
2 c2

φ

(
a1 + a2c

2
φ + a3s2φ

)
b1c

4
φ + b2c

3
φsφ + b3cφs

3
φ + b4s

4
φ + b5s

2
2φ

TABLE S4: General form of the outgoing intensities along [11̄0] (s-out) and [111̄] (p-out) for the

remaining white and corresponding gray MPGs that are derived from 4mm1’. Here, cφ ≡ cosφ,

sφ ≡ sinφ and the coefficients ai and bi are real. The expression for m1′ and m with mirror m0,y,z

is identical to the one with mx,0,z. We state these expressions for completeness, but note that we

do not consider other possible black-white magnetic subgroups of 4mm1’, as they are not relevant

to our experiment.

the I
[11̄0]
SHG pattern remains unchanged under pump excitation.

Importantly, neither of the two features, (i) and (ii), described above can be captured by

a tensor constrained by 4mm1’ symmetry, as the lobes must remain pinned to the coordinate

axes. While the emergence of small lobes at φ = 90◦ (and φ = 270◦) can be enforced by

increasing the value of b1, these will necessarily be symmetric around a maximum at φ = 90◦.

Similarly, the overall rotation can be accounted for in the absence of time-reversal symmetry

for 4mm, but the asymmetry of the photoinduced lobes at φ = 90◦ and φ = 270◦ cannot

be obtained with a 4mm tensor. Since the diagonal mirror mx,x,z enforces the form for m1’

(m) to be identical to 4mm1’ (4mm) (see Table S1), the same applies for a (surface) tensor

constrained by m1’ (with mx,x,z mirror symmetry).

Interestingly, the asymmetry of the small lobes at φ = 90◦ and φ = 270◦ cannot be

produced in the presence of time-reversal symmetry, even if all spatial symmetries are broken,
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i.e. for 1’ symmetry. This is shown most transparently by rewriting

(b1 sin2 φ+ b2 cos2 φ+ b3 sinφ cosφ)2 =
[
a1 cos2(φ− φ0) + a2 sin2(φ− φ0)

]2
(S13)

with global shift angle φ0 = 1
2

sin−1[b3/(a1 − a2)] and a1 = b
2
∓
√
β

2
, a2 = b

2
±
√
β

2
, where

b = b1 + b2 and β = (b1 − b2)2 + b2
3. The sign in the expressions for a1 and a2 is chosen

such that sign(a1 − a2) = sign(b1 − b2). Note that a1 − a2 = ∓
√
β. While the expression

for 1’ can thus reproduce a global shift of the pattern by φ0, the pattern is necessarily

symmetric around the lobes and in particular the small side lobes close to π/2. In contrast,

the observed asymmetry shown in Fig. 1 (b, f, c, g) is fully consistent with 1 symmetry.

Hence, the asymmetry of these emergent lobes can be directly associated with a breaking of

both time-reversal and mirror mx,x,z symmetry brought on by photocurrent generation.

In our fit using 1 symmetry, the overall rotation is (mostly) accounted for by the coefficient

b2 ≡ C[111̄]
1 (see Table S3). The asymmetry of the photoinduced lobes at φ = 90◦ and φ = 270◦

is (mostly) expressed by the fit parameter b3 ≡ C[111̄]
3 , because it is multiplied by sin3 φ cosφ

and is thus larger close to φ = π/2 than sinφ cos3 φ. The magnitude of the side lobes at

φ = π/2 is encoded by the fit parameter b4 ≡ C[111̄]
4 (which is multiplied by sin4 φ). While

the largest parameter is b1 ≡ C[111̄]
0 , which is responsible for the main lobes at φ = 0◦, we find

that at ∆t = 0.0(1.0) ps the ”overall rotation parameter” b2/b1 = C[111̄]
1 /C[111̄]

0 = 0.16(0.09)

and “lobe asymmetry parameter” b3/b1 = C[111̄]
3 /C[111̄]

0 = 0.11(0.07) are still significant. In

other words, a symmetry breaking photocurrent has a significant impact of order 10 - 15%

on the I
[111̄]
SHG pattern.
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IX. FIRST-PRINCIPLES CALCULATIONS OF OPTICAL CONDUCTIVITY IN

TAAS

FIG. S8: (a) Total density-of-states (DOS) of TaAs (black) decomposed into Ta-d (blue) and

As-p (red) orbital contributions. Calculated optical conductivity for (b) σxx = σyy and (c) σzz

decomposed to show different orbital contributions. Here, solid and dashed curves represent the

real and imaginary parts of the optical conductivity, respectively.

The calculated density-of-states (DOS) of TaAs is shown in Fig. S8(a). The DOS near the

Fermi energy (0 eV) mainly comes from the contribution of Ta-d orbitals. From the DOS,

we find that the optical conductivity can be described by four contributions: the transitions

from As-p to As-p orbitals, As-p to Ta-d orbitals, Ta-d to As-p orbitals, and Ta-d to Ta-d

orbitals. In the Kubo-Greenwood formula, there are two momentum matrix elements in

the numerator. The orbital contribution for the transitions can be defined via one of the

momentum matrices through, 〈kM |p̂x ∨ y ∨ z|kN〉, where M and N denote the pseudoatomic

orbitals. The orbital contribution for the optical conductivity, σ(ω) is shown in Fig. S8(b-c)

for the σxx and σzz components, respectively. In Fig. S8(b), a prominent contribution close
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to 1.0 eV in the in-plane conductivity σxx (or σyy) can be identified as the result of an As-p

to Ta-d transition. In contrast, Fig. S8(c) shows a prominent contribution close to 1.9 eV

for the out-of-plane conductivity σzz, which can be identified as the result of a Ta-d to Ta-d

transition.
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