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1 The E. coli core model with biologically realistic parameter val-20

ues21

It is worth asking if the model exhibits distinct trajectories with biologically realistic kinetic values. However,22

obtaining the kinetic parameters for all reactions even in a rather small E. coli core model is still challenging.23

Thus, we take advantage of the metabolic ensemble modeling (MEM) [1,2] which is a method for the parameter24

estimation of the metabolic models. In the MEM approach, each enzymatic reaction is decomposed into a25

sequence of elementary reactions, i.e., an enzymatic reaction A + B 
 C catalyzed by E is, for instance,26
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decomposed as follows27

A+ E 
 AE (S1)

AE +B 
 ABE (S2)

ABE 
 CE (S3)

CE 
 C + E (S4)

Note that the rates of elementary reactions (Eq.(S1)-(S4)) can be represented by the mass-action kinetics.
For example, the forward reaction of Eq.(S1) is given by

vA+E→AE = kA+E→AE [A][E],

where kA+E→AE , [A], and [E] represents the rate-constant of the reaction A+E → AE, the concentration of
the chemical A, and the concentration of the free enzyme E (E not in the complex form). Let [A]ss and [E]0
be the steady concentration of the chemical A and the total concentration of the enzyme E, respectively.
Then at the steady state, the logarithm of the reaction flux is

ln vA+E→AE = ln(kA+E→AE [A]ss[E]0) + ln([E]/[E]0).

Note that the term depending on [A] is dropped because ln[A]/[A]ss is zero at the steady-state. The MEM28

approach seeks the values of the scaled rate-constant such as k̃A+E→AE = kA+E→AE [A]ss[E]0 and e =29

[E]/[E]0 so that the model can fit the experimentally-obtained fluxome data using the ensemble modeling [3].30

(for more detail, see [1, 2])31

For the simulation of the E. coli core model, we adopted the parameter values estimated by Khodayari et.32

al [2]. For obtaining the values of (non-scaled) rate constants, we need to divide the scaled rate constants by33

experimentally reported concentrations of chemicals because what they estimated are, for instance, in the form34

of kA+E→AE [A]ss[E]0. We calculated the rate-constants by using the concentration data measured by Gerosa35

et al. [4] and estimated by Akbari et al. [5]. Since the concentration of glyoxylate was presented in neither [4]36

nor [5], we used the geometric mean of the concentrations of two neighbor metabolites in the metabolic37

network, isocitrate, and L-malate. The back-calculated parameters are presented in SI Data.2. After the38

back-calculation of the rate-constants, we constructed the ODE model where the elementary reactions for39

each enzymatic reaction are adiabatically eliminated and the Michaelis-Menten type rate equation was used40

(see [2]).41

2 Judging multimodality42

Let us suppose that there is a list of the expansion ratio {R(x, y)}x,y∈Ti where Ti is the set of the trajectories43

of the ith model. Then, we fit the histogram of the expansion ratio by a sum of the Normal distributions44

G(R, ~µ, ~σ) =
∑M−1
i=0 wiN (R;µi, σi),

∑M−1
i=0 wi = 1, wi ≥ 0 where N (R;µi, σi) is the Normal distribution45

with µi and σi as the mean and the standard deviation, respectively. Here, we heuristically choose M46

as 4 because the distributions of the expansion ratio often had a heavy tail, and fitting with a small M47

could prioritize to fit the tail rather than the second peak. For the fitting, we used the python package48

sklearn.mixture.GaussianMixture with the options as covariance type = ′full′, tol = 10−4, n init =49

16.50

After the fitting, we reorganise the indices of the normal distributions so that µi < µi+1 holds. We judged51

the distribution is multimodal if the result fulfill the conditions below52

• µ0 < 1.05 (there is the trivial peak)53

• w0 ≥ wi (the trivial peak has the largest weight)54

• 1 ≤ ∃i < M s.t., µi − µ0 > max(1, σ0 + σi) and wi/w0 > 0.01 (there is another, distant peak)55

2



Figure S1: A. Two characteristic dynamics of model0 starting from different initial points. The relaxation
behaviours are qualitatively different between the top- and bottom panels. B. The distribution of the re-
laxation time showing a clear bimodality. C. Trajectories are overlaid in 2-dimensional principal component
space. Color indicates log10 of time. The trajectories having shorter relaxation time (top panel of A) are
colored in green-white-purple while the others are colored in blue-white-red. The black point corresponds

to the attractor. Initial concentration of each metabolites is 10ui,n [X
(ss)
i ] with [X

(ss)
i ] as the steady-state

concentration of the ith metabolite, and ui,n as a random number uniformly distributed in [−2, 2] while the
total concentrations of adenine nucleotide carriers are normalized. v = 1 and κ = 10−6 for all reactions.
Other parameters are [glc] = 1, At = 1, r = 0.1 and d = 10−8.

3 The trajectories on PC1-PC2 space, the distribution of the ex-56

pansion ratio, and the relaxation time distribution for all inter-57

mediate models of the reduction58

Here, we present the trajectories on PC1-PC2 space (Figs. S2 and S3), the distribution of the expansion ratio59

(Figs. S4), and the relaxation time distribution (Figs. S5) for all the intermediate models of the reduction60

described in the main text. As mentioned in the main text, d = 10−8 becomes larger than the growth rate61

µ at the relaxation plateaux for some models, and in such cases, the relaxation time cannot distinguish62

the growth- and dormant trajectories. According to the importance of [atp] + [adp] that we found in the63

main text, we wonder if the minimum value of [atp] + [adp] during the relaxation of each trajectory works64

as a criterion to distinguish the two types of the trajectories. In the accordance with the expectation, we65

found that the distribution of Amin = mint∈(0,∞) log10([atp](t) + [adp](t)) of each intermediate model was66

double-peaked. Thus, we colored each trajectory based on which peak of the distribution Amin the trajectory67

belongs to. Owing to the clear separation of the peaks, we checked that the average of Amin works as a68

separator of the peaks.69

4 The expansion ratio with cutoffs70

As shown in Figs.2A and Figs.3A, the concentrations of some chemicals become too low. Because of the71

logarithm-conversion of the concentrations, these low concentrations can strongly contribute to the multi-72

modal distributions of the expansion ratio to result. To check if the multimodal distribution of the expansion73

is sensitive to such low concentrations, we computed the expansion ratio of model0 with cutoffs. With a74

given value of cutoff, C, we converted each element of the trajectories ~x(t) to ξi(t) = max(xi(t), C). The75
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Figure S2: The trajectories on the PCS (from model1 to model12)
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Figure S3: The trajectories on the PCS (from model13 to model18)
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Figure S4: The distribution of the expansion ratio
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Figure S5: The distribution of the relaxation time
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trajectories ~ξ(t)′s are logarithm-converted and then used for computing the expansion ratio. As shown in76

Fig.S6, the distributions are multimodal up to C = 10−10, while the distribution becomes long-tailed with77

two plateaus for C ' 10−9.78
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Figure S6: The distribution of the expansion ratio of model0 with several values of cutoff: without cutoff
(purple), C = 10−10 (green), C = 10−9 (cyan), and C = 10−8 (orange). Parameters are set to the default
values: v = 1 and κ = 10−6 for all reactions, [glc] = 1.0, At = 1.0, r = 0.1, and d = 10−8.

5 L/D ratio79

The trajectories projected onto the two-dimensional PC space give us an impression that the dormant tra-80

jectories take roundabout ways comparing the growth trajectories. For the confirmation of the impression,81

we compare the length of the trajectory in the phase space.82

For a trajectory x(t), we introduce two quantities, namely, the line integral of the trajectory L =
∫
x
dl,83

and the Euclidean distance between the initial point and the attractor D = d(x(0), x(∞)). Since the straight84

line gives the shortest possible length between two points, the ratio L/D of x measures the deviation of the85

trajectory x from the shortest path from the initial point to the attractor, representing how far x takes a86

detour.87

For grouping the trajectories, we used the minimum value of [atp] + [adp] during the relaxation Amin88

of each trajectory (see section.3). We computed the average L/D ratio of the high Amin (growth) and the89

low Amin (dormant) trajectories, respectively. As shown in Fig. S7, the average L/D ratio of the low Amin90

trajectories is larger than that of the trajectories with high Amin values for all the models while the differences91

are within the error bar in model 5.92
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Figure S7: The average ratio of the line integral of the trajectory (L) to the Euclidean distance between
the initial point and the attractor (D) for the growth trajectories and dormant trajectory. The ratio L/D is
averaged over the trajectories for each group (high- and low Amin groups) and plotted against the model index
with the error bars as the standard deviation. In all the cases, the low Amin trajectories have a larger L/D
ratio than that of the growth trajectories. The broken black line is an eye guideline representing L/D = 1.
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6 The minor attractor of model893

In the model reduction, only model8 exhibited bistability. The fraction of the initial points relaxing to the94

major attractor which is analysed in the main manuscript is approximately 92%.95

Here, we apply the same analysis for the trajectories relaxing to the minor attractor to confirm that96

the choice of the attractor is not crucial for the model reduction. We applied perturbation on the minor97

attractor as 10ui,n [X
(ss)
i ] where ui,n and [X

(ss)
i ] represents a random number for the ith metabolite and the98

nth perturbation, uniformly-distributed in [−1, 1] and the concentration of the ith metabolite at the minor99

attractor, respectively.100

First, the distribution of the expansion ratio computed from the trajectories relaxing to the minor attractor101

also exhibited bimodality (Fig. S8A). For the visualization of the trajectories, PCA was performed on the102

trajectories. In the PC1-PC2 space, the growth trajectories (green-white-purple) and the dormant trajectories103

(blue-white-red) are clearly separated. Also, the average L/D ratio (see Sec.5) with the standard deviation104

of the growth- and the dormant trajectories are approximately 7.99± 3.46 and 9.30± 2.44, respectively.105
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Figure S8: A. The distribution of the expansion ratio of the trajectories perturbed from the minor attractor.
B. The trajectories are projected onto the PC1-PC2 space. The trajectories are colored based on the dynamics
of Amin (low: blue-white-red, high: green-white-purple). There are 145 growth- and 160 dormant trajectories
are overlaid in the figure. Parameters are set to the default values: v = 1 and κ = 10−6 for all reactions,
[glc] = 1.0, At = 1.0, r = 0.1, and d = 10−8.

7 Analytic solution of the simple model and the choice of the106

function φ107

For obtaining the analytic solution of the simple model (Eqs.(9) and (10) in the main text) in the growth108

region, we ignore the growth dilution term here (r = 0 case). Then, the ordinary differential equation is109

given by110

d[pep]

dt
= φ([pyr])(1− [pep] + [pyr])− (1 + d)[pep],

d[pyr]

dt
= φ([pyr])([pep]− [pyr])− d[pyr].

In the region where φ([pyr]) = φ0 holds, the ODE is linear, and thus, easily solved. In the other region, we111
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transform the variables as γ(t) = [pep](t) + [pyr](t) and δ(t) = [pep](t)− [pyr](t). Then, temporal evolution112

of (γ, δ) is ruled by113

dγ

dt
= 1− (1 + d)γ.

dδ

dt
= (1− (γ − δ)/2)(1− 2δ)− (γ + δ)/2− dδ.

The solution for this is given by114

γ(t) = f−1 + C0e
−ft,

δ(t) = C0e
−ft − (κ+ η)/2f, (S5)

+ C0

αC1U(1 + α, 2 + β; ζe−ft) + L1+β
−(1+α)(ζe

−ft)

C1U(α, 1 + β; ζe−ft) + Lβ−α(ζe−ft)
e−ft.

where U and L is the confluent hypergeometric function and the associated Laguerre polynomial, respectively.115

Lumped parameters are116

f = 1 + d,

ξ(f) = 1− 3f + f2,

η(f) =
√

1− 6f + 3f2 + 2f3 + f4,

ζ(f) =
C0

f
,

κ(f) = −1 + f + f2,

α(f) = (ξ(f) + η(f))/2f2,

β(f) = η(f)/f2,

and the integral constants C0 and C1 are given by117

C0 = γ(0)− 1/f,

C1 = −
C0L

1+β
−(1+α)(C0/f) + Lβ−α(C0/f)

(
C0 − (κ+ η)/2f − δ(0)

)
C0αU(1 + α, 2 + β;C0/f) + U(α, 1 + β;C0/f)

(
C0 − (κ+ η)/2f − δ(0)

) .
Note that there is only a single timescale 1/f = 1/(1 + d) in the growth region. 1/f is O(1) with the118

default parameter set. While we omitted the growth-dilution term −µ[·] for obtaining the analytic solution,119

if the growth rate µ is smaller than 1, the effect of including the dilution term is masked by f . On the other120

hand, it simply speeds up the relaxation if µ is larger than unity. Thus, in either way, the inclusion of µ does121

not change the argument that the slowest timescale in the growth region is O(1).122

The analytic solution is obtained for φ = max{1− [pyr], φ0} case. Now we wonder if the structure of the123

vector field is sensitive to the choice of φ. In Figs. S9, we drew the two-dimensional vector fields with the124

exponential function (A) and Hill function (B) as the function φ. The figures imply that the characteristic125

nature of the vector field is robust for the choice of φ as long as φ reaches a small value as [pyr] increases.126

8 The minimal model with de-novo AMP synthesis127

Since the E. coli core model includes no AMP synthesis pathway, we assumed that the total concentration128

of the adenine nucleotide carriers (ATP, ADP, and AMP) is constant in the main text. To check if this129

assumption is crucial for the obtained result, we introduce a coarse-grained AMP synthesis reaction to the130

minimal model and study the dynamics of the model.131
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Log10||v||A. Exponential B. HillLog10||v||

Figure S9: The stream lines in the phase space with alternative functions. The exponential function
exp(−[pyr]) and the Hill function [pyr]nH/(KnH + [pyr]nH ) are used as the function φ for A and B, re-
spectively. K = 1.0 and nH = −4 for B. The other parameter values are v = 1 and κ = 10−6 for all reactions,
[glc] = 1.0, r = 0.1, and d = 10−8.

Here, we extend the minimal model studied in the main manuscript. The nucleotide carriers such as132

AMP and GMP are synthesized from the chemicals in the pentose-phosphate pathway (PPP) with utilizing133

ATP energy. In the minimal model, PPP is already removed from the model and thus, glucose is the134

chemical species being the closest to the PPP in the original metabolic network. Threfore, we introduced135

phenomenological AMP synthesis reaction glc + atp 
 amp + adp where glucose is the substrate and the136

reaction needs the energy consumption (ATP → ADP). Then, the total concentration of adenine carriers is137

no longer constant, and thus, we put the constant-rate degradation term and the growth dilution term whose138

rate is proportional to the growth reaction to all chemicals. Then, the equations are given by139

d[pep]

dt
= Juptake + Jpps − Jpyk − Jppc − (d+ µ)[pep], (S6)

d[pyr]

dt
= Jpyk − Jpps − (d+ µ)[pyr], (S7)

d[oaa]

dt
= Jpps − Jgrowth − (d+ µ)[oaa], (S8)

d[atp]

dt
= Juptake + Jpyk − Jpps − Jgrowth − Jadk1 − Jamps − (d+ µ)[atp], (S9)

d[adp]

dt
= −Juptake − Jpyk + Jgrowth + 2Jadk1 + Jamps − (d+ µ)[adp], (S10)

d[amp]

dt
= Jpps − Jakd1 + Jamps − (d+ µ)[amp], (S11)

Jamps = vatp([glc][atp]− [amp][adp]). (S12)

Here we analyzed the trajectories starting from randomly-generated initial point 10ui,n with ui,n as the140

uniformly-distributed random number in [−1, 1] for the ith chemical and the nth initial point. This reduces141

the requirements of the computational resources because we can skip the computation for finding attractors.142

As far as we have checked the model had a single attractor.143

Fig. S10 shows the distribution of the expansion ratio and the projected trajectories onto the two-144

dimensional PC space. As depicted, the model with the de-novo synthesis of AMP still exhibits distinct145

trajectories while the dormant trajectories become rare with the default parameter set.146
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Figure S10: A. The distribution of the expansion ratio of the minimal model with the de-novo AMP synthesis.
It shows clear bimodality. B. The trajectories projected onto the 2-dimensional PC space. The green-white-
purple and blue-white-red colored trajectories are the growth- and the dormant trajectories, respectively.
The trajectories are colored based on the relaxation time of each trajectory. The black dot represents the
attractor and the initial points cluster in the region highlighted in orange. v = 1 and κ = 10−6 for all
reactions while vatp = 0.1, [glc] = 1.0, r = 0.1, and d = 10−8).

9 model0 with the nicotinamide nucleotide carriers147

In the main text, we replaced NAD(NADP) and NADH(NADPH) with ATP and ADP, respectively, with148

the assumption that the ATP synthesis via electron transport chain and the conversion of NADP to NADPH149

is sufficiently quick. Here, we relax these assumptions and introduce the dynamics of NAD, NADH, NADP,150

and NADPH to model0.151

Here, we introduce two phenomenological reactions shown in Table.1 and the replacement of the nicoti-152

namide nucleotide carriers by the adenine nucleotide carriers are not performed. A full list of the reactions153

is provided in SI Data.3.154

Reaction Name Reaction Formula

ATPPMF NADH + ADP → NAD + ATP
NADTRHD NAD + NADPH → NADH + NADP

Table 1: Reactions added to model0

The reaction ”ATPPMF” is for the ATP generation using proton motive force which consists of NADH16,155

CYTBD, and ATPS4r in the original core model. NADTRHD has the same stoichiometry as that in the core156

model except for the hydrogen ion.157

In the model, the degradation and growth-dilution term are omitted for their dynamics, and [nad]+[nadh]158

and [nadp]+[nadph] are constant because the cofactors are not newly synthesized in the model. For simplicity,159

here we set [atp] + [adp] + [amp] = [nad] + [nadh] = [nadp] + [nadph] = At.160

Here we used the randomly-generated initial conditions with ui,n as the random number, 10ui,n , ui,n ∈161

[−1, 1], instead of the initial condition generated by the perturbation. The concentrations of the cofactors162

are normalized after assigning the random numbers. We found in this model the distinct trajectories emerge163

when the range of initial concentration of pyruvate is set to [1, 103] (i.e, ui,n ∈ [0, 3] for pyruvate) as shown164

in Figs. S11. This is qualitatively consistent with the result of the minimal model in the main text that165

pyruvate plays a crucial role to display distinct relaxation behaviors. Including the nicotinamide nucleotide166

carries simply changes the needed pyruvate level to have a dormant trajectory quantitatively.167
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In this model, the separation of the trajectories is unclear in the two-dimensional PC space (Fig. S11B),168

while it is in the three-dimensional PC space (Fig. S11C). Note that, in these figures, we colored the tra-169

jectories based on Amin because the distribution of Amin showed clear bimodality. However, it is not fully170

consistent with the separation of the trajectories in Fig. S11C. This is probably because Amin alone is now171

an insufficient indicator of the energetic state of the cell. For more precise coloring, the contributions of the172

nicotinamide nucleotide carriers should be incorporated, while it is beyond the scope of the present study.173

10 Random Reduction174

We obtained the minimal model by manually deciding the order of the reaction removal. However, in general,175

the resulting minimal models by the reduction depending on the order of the removal. For asking if what we176

learned from the minimal model in the main text is generic, here we reduce the E. coli core model in random177

orders.178

For the random reduction, we randomly choose a reaction and check if the reaction is removable by179

Algorithm.1 and iterate it until reaching the stage where no more reaction is removable. Pseudo-codes for180

the two algorithms are presented in the following. For the random reduction, we generated 256 random initial181

points1 for each trial to compute the distribution of the expansion ratio. The reaction lists of 16 minimal182

models obtained from different random seeds for the reduction are given in SI Data.4.183

Algorithm.1 requires the reaction network (a list of the reactions) and the name of the reaction to be184

removed as inputs. If the reaction is removable from the network, it returns the reaction network without185

the reaction while it returns the same reaction network as the input if the reaction is not removable.186

The algorithm first checks whether the input reaction can be simply removed (line 3) or the contraction187

is needed (line 6). In the case where the removal of the input reaction leads to dead-end chemicals (chemicals188

with only one reaction connected), the algorithm computes a set of reactions T . T is a minimal set of189

reactions including the input reaction so the simultaneous removal of the reactions in T from the reaction190

network does not lead to dead-end chemicals (line 10).191

If a chemical in the growth reaction is eliminated by the reaction removal, a neighboring chemical in the192

backbone network B (the reaction network without ATP, ADP, and AMP) is chosen as the replacement of193

the eliminated chemical (line 17− 19).194

By the removal of the reaction, we obtain a candidate of the reduced reaction network R̃. Then, the195

algorithm checks if the network R̃ satisfies the following three conditions, namely, connectivity, the existence196

of a non-zero steady flux without the degradation and growth dilution, and multimodality of the distribution197

of the expansion ratio (line 20).198

Algorithm.2 calls Algorithm.1 with a randomly selected reaction(s) and check if the obtained network is199

minimal.200

For checking if the distribution of the expansion ratio is multimodal and/or long-tailed, we construct to201

simulate the kinetic model of R̃ with a default parameter set used in the main text (v = 1 and κ = 10−6 for202

all reactions, [glc] = 1.0, At = 1.0, r = 0.1, and d = 10−8). The initial condition is randomly generated as203

10u with u as the uniformly distributed random number in [−1, 1].204

By the random reduction, we obtained two groups of minimal models classified by the shape of the205

distribution of the expansion ratio. The first case shows clear multimodality (model #0−#13). The second206

case shows a long-tail rather than additional peaks (model #14 and #15).207

In the rest of this section, these two minimal models exhibiting the unimodal distribution with a plateau208

are not used for further analysis.209

All the minimal models had more reactions than the minimal model in the main text. Interestingly, the210

network structures of the minimal models are qualitatively different depending on whether the model exhibits211

the clear bimodal distribution of the expansion ratio or not. The models with the bimodal distribution share212

two network features, namely, (i) ATP, ADP, and AMP are in the model, and (ii) there are both types of213

reactions; with- and without- the adenine nucleotide carriers coupling as well as branching of the network.214

110ui,n with ui,n as the random number for the ith chemical and the nth initial point, being uniformly distributed in [−1, 1].
The concentrations of ATP, ADP, and AMP are normalized so that the total concentration is At.
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Figure S11: A. The distribution of the expansion ratio of model0 with NAD, NADH, NADP, and NADPH,
showing clear bimodality. B and C. The trajectories in the 2-dimensional (B) and 3-dimensional (C) PC
space. The green-white-purple and blue-white-red colored trajectories are the growth- and the dormant
trajectories, respectively. The trajectories are colored based on Amin. The black dot represents the attractor
and the initial points cluster in the region highlighted in orange. v = 1 and κ = 10−6 for all reactions. Other
parameters are [glc] = 1.0, At = 1/3, r = 0.1, and d = 10−8.
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Algorithm 1 Compute a reduced network from given network R and a reaction to be removed rxn

Notations:

• R : the reaction network

• B : the reaction network without atp, adp, and amp

• R− T : the reaction network without the reactions in T

• E(k) : the number of reactions that the chemical k is associated

1: C ← the list of chemicals in R
2: C0 ← C−’glc’
3: if E(k) ≥ 2 for ∀k ∈ C0 after rxn is removed then
4: RemoveList←[rxn]
5: RenameList←[]
6: else if rxn is one-to-one reaction in B and no loop b/w substrate and product of rxn then
7: RemoveList←[rxn]
8: RenameList←[(Substrate of rxn,Product of rxn)]
9: else

10: find a minimal reaction set T so that E(k) ≥ 2 or E(k) = 0 for ∀k ∈ C0 in R− T
11: RemoveList← T
12: RenameList←[]
13: end if
14: R̃← R−RemoveList
15: C̃ ←chemicals in R̃
16: Rename chemical names in R̃ and C̃ according to RenameList

17: if a growth factor gi is removed then
18: replace gi by a closest chemical on B
19: end if
20: if Connected and Non-zero steady flux exists and The dist. of the exp. ratio is multimodal then
21: return R̃
22: else
23: return R
24: end if
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These are the vital network features for the model to satisfy the two conditions for the distinct trajectories215

discussed in the main text. We like to emphasise that during the random model reductions, several models216

without AMP were generated, while none of them showed a multimodal distribution of the expansion ratio217

and they were rejected based on the distribution of the expansion ratio.218

On the other hand, the minimal models exhibiting the distribution of the expansion ratio with a long-219

tail lack the second condition, i.e, all the reactions are coupled with the adenine nucleotide carriers. As a220

consequence, all the metabolic reactions are uniformly slowed down even if ATP and ADP deplete, and thus,221

the distinction among the trajectories is not as clear as the other minimal models.222

In Figs. S13, we plotted the trajectories of each minimal model. Since we found that the distributions223

of Amin (see section. 3) of the minimal models were double-peaked, we colored the trajectories by the same224

criterion used in section. 3. Interestingly, there are several types of minimal models in terms of the visual225

impression of the trajectories in PC1-PC2 space; The minimal models showing clear separations of two types226

of trajectories as the minimal model studied in the main text (#1,#2,#6 − #8,#11 and #12), models227

exhibiting the oscillation during the relaxation (#3 and #10), and models where the separation of the228

trajectories is not quite clear (#0,#4,#5,#9 and #13)2. However, in the original high-dimensional phase-229

space, the two types of trajectories are distinct in terms of the L/D ratio (see section. 5) for the models with230

the bimodal distribution of the expansion ratio (model #0-#13) as shown in Fig. S14.231

Algorithm 2 The algorithm for a random reduction (the same notation with Algorithm 1 is used)

1: while 1 do
2: RxnList ← All reactions in R−[’growth reaction’]
3: Shuffle RxnList

4: for r in RxnList do
5: R0 ←SingleLoopReduction(R,r) (see Alg. 1)
6: if R0 6= R then
7: break
8: end if
9: end for

10: if R = R0 then
11: return R
12: end if
13: R← R0

14: end while

11 Random Parameters232

In the main text, we saw that the distinct trajectories emerge in two sets of parameter values, the realistic233

setting and uniform assignment for v′is and k′is. Here, we like to check the robustness of the emergence of the234

distinct trajectories by randomly assigning the parameter values.235

Thus, here we simulated model0 with a variety of parameter values. As concluded in the main test, the236

concentrations of ATP and ADP play a crucial role in the emergence of distinct trajectories. Therefore, we237

studied the nature of relaxation dynamics of the model with several values of the total concentrations of the238

adenine nucleotide carriers At (= [atp] + [adp] + [amp]). Besides, for the kinetic parameters for the rate239

equation (v′is and k′is. see Eq.(3) in the main text), we assigned random values. We keep the concentration of240

the nutrient [glc], the degradation constant d, and the proportionality constant between the growth reaction241

and the growth rate r unchanged from the main text.242

For each values of At, we generated 32 random vectors of parameters ~p = (~v,~k) where ~v and ~k are vector243

representation of the parameters v′is and k′is, respectively. For each ~p, we ran the differential equations from244

2Note that the reductions were done in random order and the same minimal network can result. Actually, there are several
the same model pairs, namely, #0 and #13, #1 and #7, #3 and #10 and #4 and #9.
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Figure S12: Two types of resulted distribution of the expansion ratio. The first type exhibiting the clear
multimodality (left) and the second type showing a long-tail rather than additional extrema (right). Labels
in the panels are the indices of the minimal models.

128 randomly generated initial points and computed the distribution of the expansion ratio. v′is and k′is are245

given as 10u where u is an uniformly-distributed random number. For v′is, u ranges from 0 to 1, while it246

ranges from −6 to −4 or from −4 to −2 for k′is.247

Fig. S15 shows the fraction of ~p′s that led a bimodal distribution as a function of At. The results obtained248

from two different ranges of k′is are overlaid. The bimodality is judged by using the same criterion described in249

Sec.2. The fraction of parameter sets leading to a bimodal distribution of the expansion ratio is a decreasing250

function of At if k′is ranges from 10−4 to 10−2, while interestingly, it shows non-monotonic behaviour in the251

case where k′is ranges from 10−6 to 10−4. Thus, the emergence of distinct trajectories robustly takes place252

while the chance of it with random parameter assignments eventually decreases as At increases.253
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Figure S13: The trajectories on the PCS. Trajectories are colored according to Amin.
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Figure S14: The average L/D ratio of for the minimal models obtained by the random reduction. Error
bars indicate the standard deviation. The trajectories with low Amin has a higher L/D ratio than that of
trajectories with high Amin. The black dashed line is L/D = 1 for an eye guide.

20



 0

 25

 50

 75

 100

0.1 1 10

M
u
lt

im
o
d
a
l 

F
ra

c
ti

o
n
 (

%
)

At

ki=10
-4

∼10
-2

10
-6

∼10
-4

Figure S15: The fraction of the parameter sets leading to a multimodal distribution of the expansion ratio is
plotted as the function of the total adenine nucleotide carriers concentration, At. The result obtained from
the simulations with two different ranges of k′is are overlaid.

21


