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" Emergence of growth and dormancy from a kinetic model of the
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Note that in the present study including this supplementary document, all the trajectories are logarithm-
converted before the analysis.
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1 The E. coli core model with biologically realistic parameter val-
ues

It is worth asking if the model exhibits distinct trajectories with biologically realistic kinetic values. However,
obtaining the kinetic parameters for all reactions even in a rather small E. coli core model is still challenging.
Thus, we take advantage of the metabolic ensemble modeling (MEM) [1,2] which is a method for the parameter
estimation of the metabolic models. In the MEM approach, each enzymatic reaction is decomposed into a
sequence of elementary reactions, i.e., an enzymatic reaction A + B = C catalyzed by FE is, for instance,



27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

decomposed as follows

A+E AE (S1)
AE+ B ABE (S2)
ABE CE (S3)
CE C+E (S4)

Note that the rates of elementary reactions (Eq.(S1)-(S4)) can be represented by the mass-action kinetics.
For example, the forward reaction of Eq.(S1) is given by

VA+E—AE = karp—aplA][E],

where kay g ag, [A], and [E] represents the rate-constant of the reaction A+ E — AF), the concentration of
the chemical A, and the concentration of the free enzyme E (E not in the complex form). Let [A]ss and [E]g
be the steady concentration of the chemical A and the total concentration of the enzyme FE, respectively.
Then at the steady state, the logarithm of the reaction flux is

Imvarpsar =(karpoap[Alss[Elo) + In([E]/[Elo).

Note that the term depending on [4] is dropped because In[A]/[A]ss is zero at the steady-state. The MEM
approach seeks the values of the scaled rate-constant such as I%AJFEHAE = karp—ag|A]ss|Flo and e =
[E]/[E]o so that the model can fit the experimentally-obtained fluxome data using the ensemble modeling [3].
(for more detail, see [1,2])

For the simulation of the F. coli core model, we adopted the parameter values estimated by Khodayari et.
al [2]. For obtaining the values of (non-scaled) rate constants, we need to divide the scaled rate constants by
experimentally reported concentrations of chemicals because what they estimated are, for instance, in the form
of karr—ar[Alss[Elo. We calculated the rate-constants by using the concentration data measured by Gerosa
et al. [4] and estimated by Akbari et al. [5]. Since the concentration of glyoxylate was presented in neither [4]
nor [5], we used the geometric mean of the concentrations of two neighbor metabolites in the metabolic
network, isocitrate, and L-malate. The back-calculated parameters are presented in SI Data.2. After the
back-calculation of the rate-constants, we constructed the ODE model where the elementary reactions for
each enzymatic reaction are adiabatically eliminated and the Michaelis-Menten type rate equation was used
(see [2]).

2 Judging multimodality

Let us suppose that there is a list of the expansion ratio { R(x,y)}z ye7; where T; is the set of the trajectories
of the ith model. Then, we fit the histogram of the expansion ratio by a sum of the Normal distributions
G(R,[1,0) = Eij\igl wN (R; ui,ai),Zij\ialwi = 1,w; > 0 where N(R;pu;,0;) is the Normal distribution
with p; and o; as the mean and the standard deviation, respectively. Here, we heuristically choose M
as 4 because the distributions of the expansion ratio often had a heavy tail, and fitting with a small M
could prioritize to fit the tail rather than the second peak. For the fitting, we used the python package
sklearn.mixture.GaussianMixture with the options as covariance_type = 'full’,tol = 10~% n_init =
16.

After the fitting, we reorganise the indices of the normal distributions so that u; < ;41 holds. We judged
the distribution is multimodal if the result fulfill the conditions below

e 1o < 1.05 (there is the trivial peak)
e wp > w; (the trivial peak has the largest weight)

o 1 <3< M s.t., p; — po > max(1,00 + 0;) and w;/wg > 0.01 (there is another, distant peak)
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Figure S1: A. Two characteristic dynamics of model0 starting from different initial points. The relaxation
behaviours are qualitatively different between the top- and bottom panels. B. The distribution of the re-
laxation time showing a clear bimodality. C. Trajectories are overlaid in 2-dimensional principal component
space. Color indicates log;, of time. The trajectories having shorter relaxation time (top panel of A) are
colored in green-white-purple while the others are colored in blue-white-red. The black point corresponds
to the attractor. Initial concentration of each metabolites is 10%-[X ] with [X{*] as the steady-state
concentration of the ith metabolite, and u; ,, as a random number uniformly distributed in [—2, 2] while the
total concentrations of adenine nucleotide carriers are normalized. v = 1 and x = 107° for all reactions.
Other parameters are [glc] =1, 4; = 1,7 = 0.1 and d = 1075.

3 The trajectories on PC1-PC2 space, the distribution of the ex-
pansion ratio, and the relaxation time distribution for all inter-
mediate models of the reduction

Here, we present the trajectories on PC1-PC2 space (Figs. S2 and S3), the distribution of the expansion ratio
(Figs. S4), and the relaxation time distribution (Figs. S5) for all the intermediate models of the reduction
described in the main text. As mentioned in the main text, d = 10~® becomes larger than the growth rate
1 at the relaxation plateaux for some models, and in such cases, the relaxation time cannot distinguish
the growth- and dormant trajectories. According to the importance of [atp] + [adp] that we found in the
main text, we wonder if the minimum value of [atp] + [adp] during the relaxation of each trajectory works
as a criterion to distinguish the two types of the trajectories. In the accordance with the expectation, we
found that the distribution of A, = minge(o,00) 10gyo([atp](t) + [adp](t)) of each intermediate model was
double-peaked. Thus, we colored each trajectory based on which peak of the distribution A, the trajectory
belongs to. Owing to the clear separation of the peaks, we checked that the average of A, works as a
separator of the peaks.

4 The expansion ratio with cutoffs

As shown in Figs.2A and Figs.3A, the concentrations of some chemicals become too low. Because of the
logarithm-conversion of the concentrations, these low concentrations can strongly contribute to the multi-
modal distributions of the expansion ratio to result. To check if the multimodal distribution of the expansion
is sensitive to such low concentrations, we computed the expansion ratio of model0 with cutoffs. With a
given value of cutoff, C', we converted each element of the trajectories Z(t) to & (t) = max(z;(t),C). The

10

2.5

(um)?'307



PC2

Figure S2:

The trajectories on the PCS (from modell to modell2)

Logyot

10



PC2

PC1

Figure S3: The trajectories on the PCS (from modell3 to model18)

Logyot

10



Log,(frequency)

;MWWWW e

]MEWHWWM e

Model 3

Model 4

Model 5

i, e

B ] ‘ Model 9
ik, ! !

0 2 4 6 8

Figure S4: The distribution of the expansion ratio

10

Model 10

Model 11

Model 12

Model 13

Model 14

i

MWWWWWWWWWWMMMEI N




Log,o(frequency)

AN obrNMNobNmMNobrNMNOrANMNORNMNOANORANMOLEADNO

0
1 10
. lflh 0w aL ol
2 0 11
. ool e 2L nuwﬂﬂﬂmmﬂmm il |
i 3 | _2 i 12 |
4
i 4| _2 i 13 |
4
i 5 | _(2) i 14 |
4
0
6 15
il s 20 e ulillli
0
7 16
_ il 1 . ol o
0
. 8 17
i ol o o)~ 20 lllimiy ool |
T T T I— 0 T T T ™18
i l Mmmmﬂmﬂﬂhﬂ] ! Hﬂﬂﬂﬂﬂh[ﬂﬂ] | i mmmwnmmﬂﬂﬂmm ! il Hﬂﬂﬂﬂﬂmmmmmm ]
2 4 6 8 10 2 4 6 8 10

Log;((relax. time)

Figure S5: The distribution of the relaxation time



7 trajectories E (t)'s are logarithm-converted and then used for computing the expansion ratio. As shown in

Fig.S6, the distributions are multimodal up to C' = 107!°, while the distribution becomes long-tailed with

7
% two plateaus for C' 2 1079,
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Figure S6: The distribution of the expansion ratio of model0 with several values of cutoff: without cutoff
(purple), C' = 10710 (green), C' = 1079 (cyan), and C' = 10~% (orange). Parameters are set to the default
values: v =1 and k = 107° for all reactions, [glc] = 1.0, 4; = 1.0, = 0.1, and d = 1073.

» 5 L/D ratio

The trajectories projected onto the two-dimensional PC space give us an impression that the dormant tra-
jectories take roundabout ways comparing the growth trajectories. For the confirmation of the impression,
we compare the length of the trajectory in the phase space.

For a trajectory x(t), we introduce two quantities, namely, the line integral of the trajectory L = fw dl,
and the Euclidean distance between the initial point and the attractor D = d(z(0), z(c0)). Since the straight
line gives the shortest possible length between two points, the ratio L/D of z measures the deviation of the
trajectory x from the shortest path from the initial point to the attractor, representing how far x takes a
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s detour.
For grouping the trajectories, we used the minimum value of [atp] + [adp] during the relaxation A,

of each trajectory (see section.3). We computed the average L/D ratio of the high A, (growth) and the
low Apin (dormant) trajectories, respectively. As shown in Fig. S7, the average L/D ratio of the low A
trajectories is larger than that of the trajectories with high A, values for all the models while the differences
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o2 are within the error bar in model 5.
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Figure S7: The average ratio of the line integral of the trajectory (L) to the Euclidean distance between
the initial point and the attractor (D) for the growth trajectories and dormant trajectory. The ratio L/D is
averaged over the trajectories for each group (high- and low Ay, groups) and plotted against the model index
with the error bars as the standard deviation. In all the cases, the low A, trajectories have a larger L/D
ratio than that of the growth trajectories. The broken black line is an eye guideline representing L/D = 1.
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6 The minor attractor of model8

In the model reduction, only model8 exhibited bistability. The fraction of the initial points relaxing to the
major attractor which is analysed in the main manuscript is approximately 92%.

Here, we apply the same analysis for the trajectories relaxing to the minor attractor to confirm that
the choice of the attractor is not crucial for the model reduction. We applied perturbation on the minor
attractor as 10%:n [Xi(ss)] where u; 5, and [Xi(ss)} represents a random number for the ith metabolite and the
nth perturbation, uniformly-distributed in [—1,1] and the concentration of the ith metabolite at the minor
attractor, respectively.

First, the distribution of the expansion ratio computed from the trajectories relaxing to the minor attractor
also exhibited bimodality (Fig. S8A). For the visualization of the trajectories, PCA was performed on the
trajectories. In the PC1-PC2 space, the growth trajectories (green-white-purple) and the dormant trajectories
(blue-white-red) are clearly separated. Also, the average L/D ratio (see Sec.5) with the standard deviation
of the growth- and the dormant trajectories are approximately 7.99 + 3.46 and 9.30 4 2.44, respectively.
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Figure S8: A. The distribution of the expansion ratio of the trajectories perturbed from the minor attractor.
B. The trajectories are projected onto the PC1-PC2 space. The trajectories are colored based on the dynamics
of Apmin (low: blue-white-red, high: green-white-purple). There are 145 growth- and 160 dormant trajectories
are overlaid in the figure. Parameters are set to the default values: v = 1 and x = 1076 for all reactions,
[gle] = 1.0, 4; = 1.0,7 = 0.1, and d = 1078,

7 Analytic solution of the simple model and the choice of the

function ¢
For obtaining the analytic solution of the simple model (Egs.(9) and (10) in the main text) in the growth

region, we ignore the growth dilution term here (r = 0 case). Then, the ordinary differential equation is
given by

bl oy (1~ [pep] + [pwr)) — (1 + d)fpep)
) (o] (fpep] — fowr]) — dp]

In the region where ¢([pyr]) = ¢ holds, the ODE is linear, and thus, easily solved. In the other region, we
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transform the variables as () = [pep](t) + [pyr](¢) and d(t) = [pep](t) — [pyr](¢). Then, temporal evolution
of (y,0) is ruled by

dy

7 = 1-(+dn
O = (=021~ 20) ~ (y+8)/2 b

The solution for this is given by

y(t) = 7Y+ Coe 1,
5(t) = Coe ' —(k+mn)/2f, (S5)
Lo Tt 1+ —ft
. COaClU(1+a,2+ﬁ,Ce )+L7(1+a)(ge )e_ft.

CrU(a, 1+ B;Ce=1t) + LP , (Ce=11)

where U and L is the confluent hypergeometric function and the associated Laguerre polynomial, respectively.
Lumped parameters are

f = 14+d,
&f) = 1-3f+f7%
n(f) = V1—6f+3f2+2f3+ f4,
Co
C(f) = 77
K(f) = =1+ f+ /7
alf) = (&) +n()/2f,
B(f) = n(f)/f2

and the integral constants Cy and C; are given by
CoL Yoy (Co/ ) + L2 o(Co/£)(Co = (s 4+ m)/2f = 6(0))

C, = - .
Coal(1+ 0,2+ 5 Co/ f) + Ul 1+ 5 Co/ ) (Co = (s +1)/2f = 5(0))

Note that there is only a single timescale 1/f = 1/(1 + d) in the growth region. 1/f is O(1) with the
default parameter set. While we omitted the growth-dilution term —pu[-] for obtaining the analytic solution,
if the growth rate p is smaller than 1, the effect of including the dilution term is masked by f. On the other
hand, it simply speeds up the relaxation if u is larger than unity. Thus, in either way, the inclusion of p does
not change the argument that the slowest timescale in the growth region is O(1).

The analytic solution is obtained for ¢ = max{1 — [pyr], ¢} case. Now we wonder if the structure of the
vector field is sensitive to the choice of ¢. In Figs. S9, we drew the two-dimensional vector fields with the
exponential function (A) and Hill function (B) as the function ¢. The figures imply that the characteristic
nature of the vector field is robust for the choice of ¢ as long as ¢ reaches a small value as [pyr| increases.

8 The minimal model with de-novo AMP synthesis

Since the E. coli core model includes no AMP synthesis pathway, we assumed that the total concentration
of the adenine nucleotide carriers (ATP, ADP, and AMP) is constant in the main text. To check if this
assumption is crucial for the obtained result, we introduce a coarse-grained AMP synthesis reaction to the
minimal model and study the dynamics of the model.

11
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Figure S9: The stream lines in the phase space with alternative functions. The exponential function
exp(—[pyr]) and the Hill function [pyr]"# /(K™# + [pyr]™#) are used as the function ¢ for A and B, re-
spectively. K = 1.0 and ny = —4 for B. The other parameter values are v = 1 and x = 1076 for all reactions,
[gle] = 1.0,7 = 0.1, and d = 1075.

Here, we extend the minimal model studied in the main manuscript. The nucleotide carriers such as
AMP and GMP are synthesized from the chemicals in the pentose-phosphate pathway (PPP) with utilizing
ATP energy. In the minimal model, PPP is already removed from the model and thus, glucose is the
chemical species being the closest to the PPP in the original metabolic network. Threfore, we introduced
phenomenological AMP synthesis reaction glc + atp = amp + adp where glucose is the substrate and the
reaction needs the energy consumption (ATP — ADP). Then, the total concentration of adenine carriers is
no longer constant, and thus, we put the constant-rate degradation term and the growth dilution term whose
rate is proportional to the growth reaction to all chemicals. Then, the equations are given by

d[pep]

di = Juptake + Jpps — Jpyk — Jppe — (d + p)[pep], (S6)
d
[21’1“] = Jpyk = Jpps — (d+ p)[pyr], (S7)
d[(z;a] = Jpps - Jgrowth - (d + ,u)[oaa], (SS)
dlat
[dtp] = Jupta.kc + prk - Jpps - Jgrowth — Jadk1 — Jamps - (d + ﬂ)[atp], (89)
dlad
[E;tp] = —Juptake - prk + Jgrowth + 2Jadk1 + Ja,mps — (d + ,LL) [adp], (SIO)
d
[adr?p] = Jpps — Jaka1 + Jamps - (d + ,U/)[amp]y (Sl 1)
Jamps = Vatp([glc][atp] — [amp][adp]). (S12)

Here we analyzed the trajectories starting from randomly-generated initial point 10%#» with u;, as the
uniformly-distributed random number in [—1, 1] for the ith chemical and the nth initial point. This reduces
the requirements of the computational resources because we can skip the computation for finding attractors.
As far as we have checked the model had a single attractor.

Fig. S10 shows the distribution of the expansion ratio and the projected trajectories onto the two-
dimensional PC space. As depicted, the model with the de-novo synthesis of AMP still exhibits distinct
trajectories while the dormant trajectories become rare with the default parameter set.

12
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Figure S10: A. The distribution of the expansion ratio of the minimal model with the de-novo AMP synthesis.
It shows clear bimodality. B. The trajectories projected onto the 2-dimensional PC space. The green-white-
purple and blue-white-red colored trajectories are the growth- and the dormant trajectories, respectively.
The trajectories are colored based on the relaxation time of each trajectory. The black dot represents the
attractor and the initial points cluster in the region highlighted in orange. v = 1 and x = 107° for all
reactions while v,e, = 0.1, [gle] = 1.0,r = 0.1, and d = 1079).

9 model0 with the nicotinamide nucleotide carriers

In the main text, we replaced NAD(NADP) and NADH(NADPH) with ATP and ADP, respectively, with
the assumption that the ATP synthesis via electron transport chain and the conversion of NADP to NADPH
is sufficiently quick. Here, we relax these assumptions and introduce the dynamics of NAD, NADH, NADP,
and NADPH to model0.

Here, we introduce two phenomenological reactions shown in Table.1 and the replacement of the nicoti-
namide nucleotide carriers by the adenine nucleotide carriers are not performed. A full list of the reactions
is provided in SI Data.3.

’ Reaction Name H Reaction Formula ‘

ATPPMF NADH + ADP — NAD + ATP
NADTRHD NAD + NADPH — NADH + NADP

Table 1: Reactions added to model0

The reaction ” ATPPMF” is for the ATP generation using proton motive force which consists of NADH16,
CYTBD, and ATPS4r in the original core model. NADTRHD has the same stoichiometry as that in the core
model except for the hydrogen ion.

In the model, the degradation and growth-dilution term are omitted for their dynamics, and [nad]+ [nadh]
and [nadp]+ [nadph] are constant because the cofactors are not newly synthesized in the model. For simplicity,
here we set [atp] + [adp] + [amp] = [nad] + [nadh] = [nadp] + [nadph] = A;.

Here we used the randomly-generated initial conditions with w; , as the random number, 10", u; ,, €
[—1,1], instead of the initial condition generated by the perturbation. The concentrations of the cofactors
are normalized after assigning the random numbers. We found in this model the distinct trajectories emerge
when the range of initial concentration of pyruvate is set to [1,10%] (i.e, u;, € [0, 3] for pyruvate) as shown
in Figs. S11. This is qualitatively consistent with the result of the minimal model in the main text that
pyruvate plays a crucial role to display distinct relaxation behaviors. Including the nicotinamide nucleotide
carries simply changes the needed pyruvate level to have a dormant trajectory quantitatively.
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In this model, the separation of the trajectories is unclear in the two-dimensional PC space (Fig. S11B),
while it is in the three-dimensional PC space (Fig. S11C). Note that, in these figures, we colored the tra-
jectories based on A, because the distribution of A, showed clear bimodality. However, it is not fully
consistent with the separation of the trajectories in Fig. S11C. This is probably because A, alone is now
an insufficient indicator of the energetic state of the cell. For more precise coloring, the contributions of the
nicotinamide nucleotide carriers should be incorporated, while it is beyond the scope of the present study.

10 Random Reduction

We obtained the minimal model by manually deciding the order of the reaction removal. However, in general,
the resulting minimal models by the reduction depending on the order of the removal. For asking if what we
learned from the minimal model in the main text is generic, here we reduce the E. coli core model in random
orders.

For the random reduction, we randomly choose a reaction and check if the reaction is removable by
Algorithm.1 and iterate it until reaching the stage where no more reaction is removable. Pseudo-codes for
the two algorithms are presented in the following. For the random reduction, we generated 256 random initial
points® for each trial to compute the distribution of the expansion ratio. The reaction lists of 16 minimal
models obtained from different random seeds for the reduction are given in SI Data.4.

Algorithm.1 requires the reaction network (a list of the reactions) and the name of the reaction to be
removed as inputs. If the reaction is removable from the network, it returns the reaction network without
the reaction while it returns the same reaction network as the input if the reaction is not removable.

The algorithm first checks whether the input reaction can be simply removed (line 3) or the contraction
is needed (line 6). In the case where the removal of the input reaction leads to dead-end chemicals (chemicals
with only one reaction connected), the algorithm computes a set of reactions 7. T is a minimal set of
reactions including the input reaction so the simultaneous removal of the reactions in 7' from the reaction
network does not lead to dead-end chemicals (line 10).

If a chemical in the growth reaction is eliminated by the reaction removal, a neighboring chemical in the
backbone network B (the reaction network without ATP, ADP, and AMP) is chosen as the replacement of
the eliminated chemical (line 17 — 19).

By the removal of the reaction, we obtain a candidate of the reduced reaction network R. Then, the
algorithm checks if the network R satisfies the following three conditions, namely, connectivity, the existence
of a non-zero steady flux without the degradation and growth dilution, and multimodality of the distribution
of the expansion ratio (line 20).

Algorithm.2 calls Algorithm.1 with a randomly selected reaction(s) and check if the obtained network is
minimal.

For checking if the distribution of the expansion ratio is multimodal and/or long-tailed, we construct to
simulate the kinetic model of R with a default parameter set used in the main text (v = 1 and x = 10~ for
all reactions, [glc] = 1.0, 4; = 1.0,7 = 0.1, and d = 1078). The initial condition is randomly generated as
10* with u as the uniformly distributed random number in [—1, 1].

By the random reduction, we obtained two groups of minimal models classified by the shape of the
distribution of the expansion ratio. The first case shows clear multimodality (model #0 — #13). The second
case shows a long-tail rather than additional peaks (model #14 and #15).

In the rest of this section, these two minimal models exhibiting the unimodal distribution with a plateau
are not used for further analysis.

All the minimal models had more reactions than the minimal model in the main text. Interestingly, the
network structures of the minimal models are qualitatively different depending on whether the model exhibits
the clear bimodal distribution of the expansion ratio or not. The models with the bimodal distribution share
two network features, namely, (i) ATP, ADP, and AMP are in the model, and (ii) there are both types of
reactions; with- and without- the adenine nucleotide carriers coupling as well as branching of the network.

L10%in with U;,n as the random number for the ith chemical and the nth initial point, being uniformly distributed in [—1,1].
The concentrations of ATP, ADP, and AMP are normalized so that the total concentration is A¢.
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Figure S11: A. The distribution of the expansion ratio of model0 with NAD, NADH, NADP, and NADPH,
showing clear bimodality. B and C. The trajectories in the 2-dimensional (B) and 3-dimensional (C) PC
space. The green-white-purple and blue-white-red colored trajectories are the growth- and the dormant
trajectories, respectively. The trajectories are colored based on A;,. The black dot represents the attractor
and the initial points cluster in the region highlighted in orange. v = 1 and x = 10~ for all reactions. Other
parameters are [glc] = 1.0, A; = 1/3,7 = 0.1, and d = 1078.
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Algorithm 1 Compute a reduced network from given network R and a reaction to be removed rxn

Notations:
e 1R : the reaction network
e B : the reaction network without atp, adp, and amp
e R — T : the reaction network without the reactions in T'

e FE(k) : the number of reactions that the chemical k is associated

: C < the list of chemicals in R

: C() — C—’glc’

. if E(k) > 2 for Yk € Cy after rxn is removed then

RemoveList<—|[rxn]

RenameList<—||

. else if rxn is one-to-one reaction in B and no loop b/w substrate and product of rxn then

RemoveList+<[rxn]

RenameList+<[(Substrate of rxn,Product of rxn)]

. else

find a minimal reaction set T so that F(k) > 2 or E(k) =0 for Yk € Cpin R—T

RemoveList« T

RenameList+|]

: end if

. R <+ R—RemoveList

. C <+chemicals in R

: Rename chemical names in R and C' according to RenameList

. if a growth factor g; is removed then

replace g; by a closest chemical on B

. end if

. if Connected and Non-zero steady flux exists and The dist. of the exp. ratio is multimodal then
return R

. else

return R

: end if

NN N N N = s e s s e e
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These are the vital network features for the model to satisfy the two conditions for the distinct trajectories
discussed in the main text. We like to emphasise that during the random model reductions, several models
without AMP were generated, while none of them showed a multimodal distribution of the expansion ratio
and they were rejected based on the distribution of the expansion ratio.

On the other hand, the minimal models exhibiting the distribution of the expansion ratio with a long-
tail lack the second condition, i.e, all the reactions are coupled with the adenine nucleotide carriers. As a
consequence, all the metabolic reactions are uniformly slowed down even if ATP and ADP deplete, and thus,
the distinction among the trajectories is not as clear as the other minimal models.

In Figs. S13, we plotted the trajectories of each minimal model. Since we found that the distributions
of Apin (see section. 3) of the minimal models were double-peaked, we colored the trajectories by the same
criterion used in section. 3. Interestingly, there are several types of minimal models in terms of the visual
impression of the trajectories in PC1-PC2 space; The minimal models showing clear separations of two types
of trajectories as the minimal model studied in the main text (#1,#2,#6 — #8,#11 and #12), models
exhibiting the oscillation during the relaxation (#3 and #10), and models where the separation of the
trajectories is not quite clear (#0, #4, #5, #9 and #13)2. However, in the original high-dimensional phase-
space, the two types of trajectories are distinct in terms of the L/D ratio (see section. 5) for the models with
the bimodal distribution of the expansion ratio (model #0-#13) as shown in Fig. S14.

Algorithm 2 The algorithm for a random reduction (the same notation with Algorithm 1 is used)

while 1 do
RxnList <— All reactions in R—['growth reaction’]
Shuffle RxnList
for r in RxnList do
Ry +SingleLoopReduction(R,r) (see Alg. 1)
if Ry # R then
break
end if
end for
10: if R= Ry then
11: return R
12:  end if
13: R+ Ry
14: end while

11 Random Parameters

In the main text, we saw that the distinct trajectories emerge in two sets of parameter values, the realistic
setting and uniform assignment for v;s and k/s. Here, we like to check the robustness of the emergence of the
distinct trajectories by randomly assigning the parameter values.

Thus, here we simulated model0 with a variety of parameter values. As concluded in the main test, the
concentrations of ATP and ADP play a crucial role in the emergence of distinct trajectories. Therefore, we
studied the nature of relaxation dynamics of the model with several values of the total concentrations of the
adenine nucleotide carriers A; (= [atp] + [adp] + [amp]). Besides, for the kinetic parameters for the rate
equation (vjs and kis. see Eq.(3) in the main text), we assigned random values. We keep the concentration of
the nutrient [glc], the degradation constant d, and the proportionality constant between the growth reaction
and the growth rate r unchanged from the main text.

For each values of A;, we generated 32 random vectors of parameters p'= (¥, l_z:) where ¥ and k are vector
representation of the parameters v)s and kjs, respectively. For each p, we ran the differential equations from

2Note that the reductions were done in random order and the same minimal network can result. Actually, there are several
the same model pairs, namely, #0 and #13, #1 and #7, #3 and #10 and #4 and #39.
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Figure S12: Two types of resulted distribution of the expansion ratio. The first type exhibiting the clear
multimodality (left) and the second type showing a long-tail rather than additional extrema (right). Labels
in the panels are the indices of the minimal models.

128 randomly generated initial points and computed the distribution of the expansion ratio. v}s and ks are
given as 10* where u is an uniformly-distributed random number. For v}s, u ranges from 0 to 1, while it
ranges from —6 to —4 or from —4 to —2 for k/s.

Fig. S15 shows the fraction of p’s that led a bimodal distribution as a function of A;. The results obtained
from two different ranges of k/s are overlaid. The bimodality is judged by using the same criterion described in
Sec.2. The fraction of parameter sets leading to a bimodal distribution of the expansion ratio is a decreasing
function of A; if ks ranges from 10~* to 1072, while interestingly, it shows non-monotonic behaviour in the
case where ks ranges from 1076 to 107*. Thus, the emergence of distinct trajectories robustly takes place
while the chance of it with random parameter assignments eventually decreases as A; increases.
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Figure S14: The average L/D ratio of for the minimal models obtained by the random reduction. Error
bars indicate the standard deviation. The trajectories with low A, has a higher L/D ratio than that of
trajectories with high A,,;,. The black dashed line is L/D = 1 for an eye guide.
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Figure S15: The fraction of the parameter sets leading to a multimodal distribution of the expansion ratio is
plotted as the function of the total adenine nucleotide carriers concentration, A;. The result obtained from

the simulations with two different ranges of k}s are overlaid.
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