Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke

Jun Wang^{1, 2}, Ruijia Liu², Md Nabiul Hasan², Sydney Fischer², Matt Como³, Victoria M Fiesler², Gulnaz Begum², Yang Chen^{1, 2}, Mohammad Iqbal H. Bhuiyan², Shuying Dong², Eric Li², Kristopher T Kahle⁴, Jinwei Zhang⁵, Xianming Deng⁶, Arohan R Subramanya^{7, 8}, Yan Yin^{1*}, Dandan Sun^{2, 8*}

Running title: SPAK-NKCC1 complex in the blood-CSF barrier

*Address correspondence to:

Dandan Sun, M.D., Ph.D. Department of Neurology University of Pittsburgh 7016 Biomedical Science Tower 3, 3501 Fifth Ave. Pittsburgh, PA 15260 Tel: (412) 624-0418, Fax: (412) 648-3321

E-mail address: sund@upmc.edu

Yan Yin, M.D., Ph.D. Department of Neurology The Second Hospital of Dalian Medical University Dalian, Liaoning, China 116027 E-mail address: <u>yanyin1208@126.com</u>

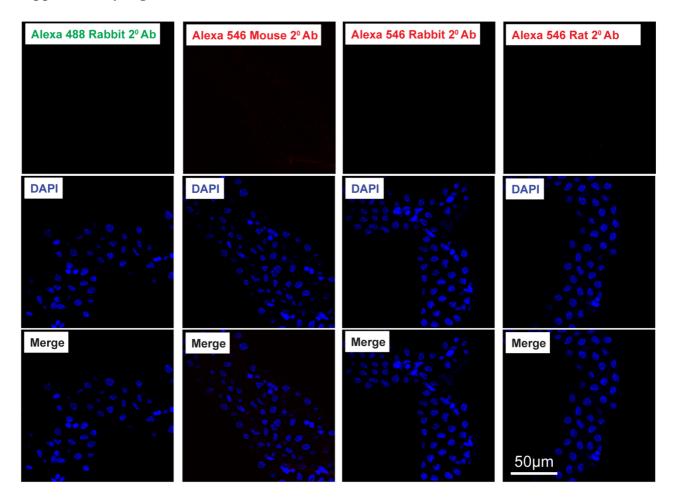
¹Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China

²Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA

³Pennsylvania State University, State College, PA, USA.

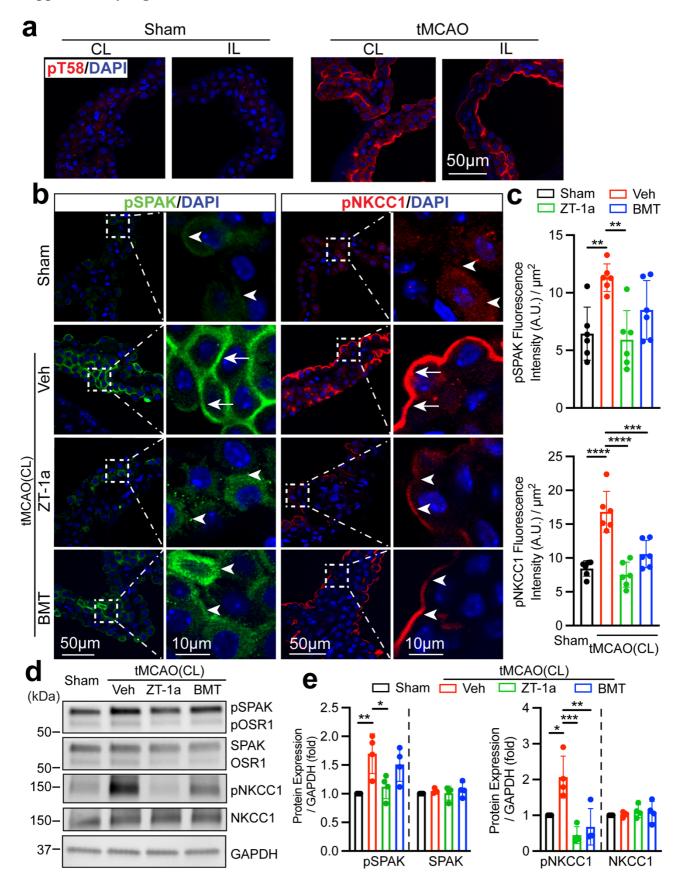
⁴Department of Neurosurgery, The Massachusetts General Hospital and Harvard Medical School, Boston, MA,

⁵Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratory, Exeter, EX4 4PS, UK

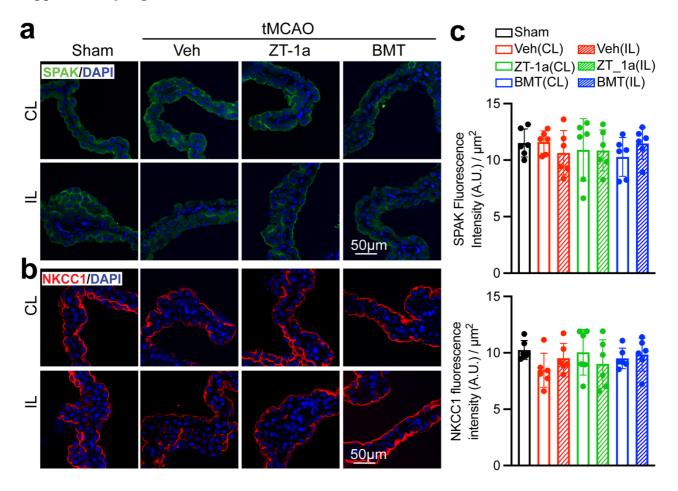

⁶State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China

⁷Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

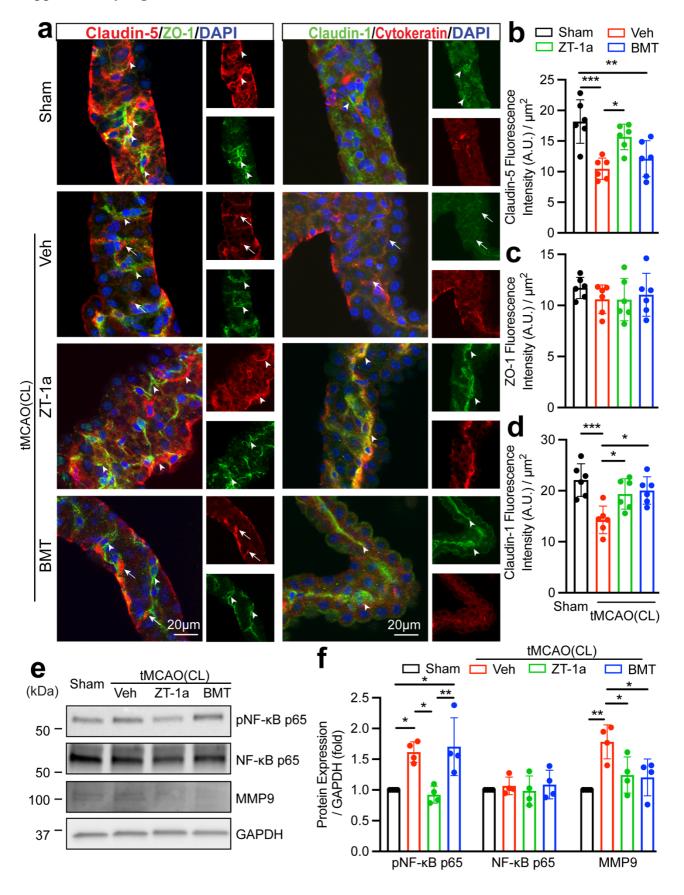
⁸ Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA


Supplementary Table 1. List of antibodies used for immunofluorescence (IF), western blot (WB) and flow cytometry (Flow).

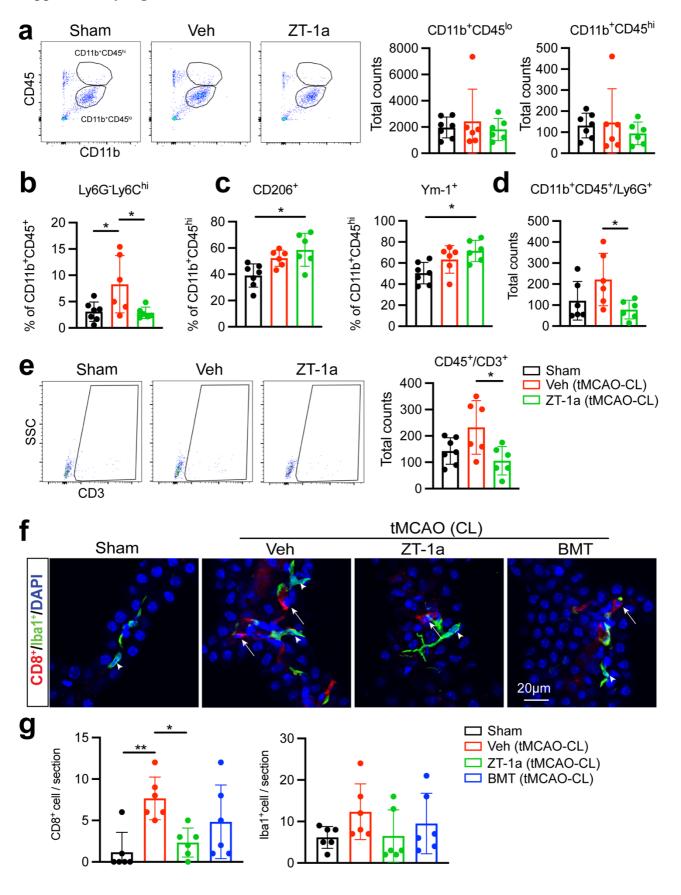
Antibody	Host	Dilution	Company	Catalog No.	Application
SPAK	Rabbit	1:200	Cell Signaling Technology	2281	
pSPAK	Rabbit	1:200	EMD Millipore	07-2273	
NKCC1	Rabbit	1:200	Abcam	ab59791	
pNKCC1	Rabbit	1:200	EMD Millipore	ABS1004	
pT58 NCC	Rabbit	1:500	N/A	N/A	
(pThr211	Rabbit	1:200	Wako Bioproducts	019-19741	IF
NKCC1)					
Iba1					
ZO-1	Rabbit	1:200	Invitrogen	40-2200	
Claudin-1	Rabbit	1:200	Invitrogen	51-9000	
Claudin-5	Mouse	1:200	Invitrogen	35-2500	
Cytokeratin	Mouse	1:200	Sigma	C2562	
MAP2	Mouse	1:200	EMD Millipore	MAB3418	
CD8	Rat	1:100	Invitrogen	14-0081-82	
SPAK/OSR1	Rabbit	1:300	N/A	N/A	WB
pSPAK/pOSR1	Rabbit	1:300	N/A	N/A	
NKCC1 (T4)	Mouse	1:3000	DSHB	T4	
pNKCC1	Rabbit	1:300	N/A	N/A	
pNF-κB p65	Rabbit	1:500	Cell Signaling Technology	3031S	
NF-κB p65	Rabbit	1:1000	Santa Cruz	SC-372	
MMP9	Rabbit	1:500	Abcam	ab283575	
GAPDH	Rabbit	1:5000	Cell Signaling Technology	2118S	
β-actin	Rabbit	1:5000	Cell Signaling Technology	4970S	
BUV395-CD11b	Rat	250	BD Biosciences	56353	Flow
APC-CD45	Rat	250	BioLegend	103111	
PerCP/Cy5.5-Ly6G	Rat	250	BioLegend	127615	
PE-Cy7-Ly-6C	Rat	250	BD Biosciences	560593	
BV421-CD3	Armenian Hamster	250	BioLegend	100336	
FITC-CD206	Rat	250	BioLegend	141704	
PE-Ym-1	Rabbit	2500	Abcam	Ab211621	


Supplementary Figure 1. Immunostaining negative control.

Representative images of secondary antibody staining in the mouse LVCP with the following anibodies: Goat anti-rabbit Alexa 488, Goat anti-mouse Alexa 546, Goat anti-rabbit Alexa 546 and Goat anti-rat Alexa 546 at 1:200, images were taken under a 40x oil-immersion objective with identical setting.


Supplementary Figure 2. Activation of SPAK-NKCC1 complex in choroid plexus post ischemic stroke.

a. Representative immunostaining images of a phosphorylated species (active) of pT58 in Sham or stroke ChP. **b.** Representative immunofluorescent images of pSPAK and pNKCC1 staining of lateral ventricle choroid plexus (LVCP) in the contralateral (CL) hemispheres in Sham, stroke Veh-control, ZT-1a or BMT-treated brains. Arrowheads: low level pSPAK and pNKCC1 expression. Arrows: elevated pSPAK or pNKCC1 expression. **c.** Quantification summary. Data is represented by mean \pm SD (n = 6, 4 male, 2 female), **p < 0.01, ***p < 0.001, ****p < 0.0001. The Sham pSPAK and pNKCC1 data in panel **c** are the same as the Sham data presented in **Fig 3e. d.** Western blot analysis of SPAK-NKCC1 cascade expression in the CL of LVCP in Sham, Veh-control, ZT-1a- or BMT-treated mice at 24 h Rp after ischemic stroke. ChP tissue lysates were prepared and subjected to immunoblotting with the indicated antibodies. **e.** Immunoblot summary in ChP. Data are expressed as mean \pm SD (n = 4, 2 male, 2 female). *p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA.


Supplementary Figure 3. Pharmacology block SPAK-NKCC1 cascade restore SPAK protein expression at the apical membrane of CPECs.

a and **b**. Representative confocal images of SPAK and NKCC1 protein expression in the contralateral (CL) and ipsilateral (IL) of lateral ventricle choroid plexus (LVCP) post-stroke. **c**. Summary data of SPAK and NKCC1 fluorescence intensity. Data is represented as mean \pm SD (n = 6, 4 male, 2 female).

Supplementary Figure 4. Blocking SPAK-NKCC1 cascade increased ChP tight junction integrity after ischemic stroke.

a. Representative confocal images of tight junction proteins (Claudin-5, ZO-1, Claudin-1) as well as the epithelial marker cytokeratin in the lateral ventricle choroid plexus (LVCP) of contralateral (CL) hemispheres of in Sham, stroke Veh-control, ZT-1a- or BMT-treated brains. Arrowheads: expression of Claudin-5, ZO-1 or Claudin-1. Arrows: Low level expression of Claudin-5 and Claudin-1. The Sham data in panel **b** - **d** are the same as the Sham data represented in **Fig. 4b** - **d**. Data are represented as mean ±SD (n = 6, 4 male, 2 female). *p < 0.05, **p < 0.01, ***p < 0.001. **e.** Western blot analysis of pNF-Kb, NF-κB and MMP9 protein expression in the CL LVCP of Sham, stroke Veh-control, ZT-1a- and BMT-treated mice at 24 h reperfusion after stroke. ChP tissue lysates were prepared and subjected to immunoblotting with the indicated antibodies. **f.** Immunoblot quantitation. Data are means ± SD (n = 4, 2 male, 2 female). *p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA.

Supplementary Figure 5. Pharmacological inhibition of SPAK-NKCC1 cascade reduced immune cell infiltration in ChP.

a. Representative flow cytometric plots of CD11b⁺CD45^{lo} or CD11b⁺CD45^{hi} myeloid cells from the isolated CL ChP at 3 d post-surgery with quantification of total number of CD11b⁺CD45^{lo} or CD11b⁺CD45^{hi} myeloid cells in the ChP. **b** and **c.** Percentage of CD11b⁺CD45⁺Ly6G⁻Ly6C^{hi} and CD206⁺ and Ym-1⁺ cells gated within CD11b⁺CD45⁺ cells. **d.** Total number of CD11b⁺CD45⁺Ly6G⁺ neutrophils in the ChP. **e.** Representative flow cytometric plots and the total number of CD3⁺ T cells in the ChP. Data are mean \pm SD (n = 6-7). *p < 0.05. One-way ANOVA. **f.** Representative images of CD8⁺ T cells (arrows) and Iba1⁺ microglia cells (arrowheads) of CL LVCP in Sham, stroke Vehcontrol, ZT-1a- or BMT-treated stroke mice at 24 h Rp. **g.** Summary. Data are mean \pm SD (n=6, 4 male, 2 female). *p < 0.01, **p < 0.001. One-way ANOVA.